Implement nbe in typed racket

This commit is contained in:
Yiyun Liu 2025-05-10 12:36:00 -04:00
parent 7bf8bdde48
commit 212cbdbceb
2 changed files with 91 additions and 104 deletions

View file

@ -1,6 +1,6 @@
#lang racket
#lang typed/racket
(require rackunit "nbe.rkt")
(require typed/rackunit "nbe.rkt")
(define-syntax tm-app
(syntax-rules ()
@ -11,64 +11,74 @@
(define-syntax-rule (tm-var a) `(var ,a))
(define-syntax-rule (tm-abs a) `(λ ,a))
(: tm-id Term)
(define tm-id '(λ (var 0)))
(: tm-fst Term)
(define tm-fst '(λ (λ (var 1))))
(: tm-snd Term)
(define tm-snd '(λ (λ (var 0))))
(: tm-pair Term)
(define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1))))))
(define tm-fix
(let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
(tm-abs (tm-app g g))))
;; (define tm-fix
;; (let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
;; (tm-abs (tm-app g g))))
(: tm-zero Term)
(define tm-zero tm-snd)
(: tm-suc (-> Term Term))
(define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
(: tm-add (-> Term Term Term))
(define (tm-add a b)
(tm-abs (tm-abs
(tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
(: tm-compose (-> Term Term Term))
(define (tm-compose a b)
(tm-abs (tm-app a (tm-app b (tm-var 0)))))
(: tm-mult (-> Term Term Term))
(define (tm-mult a b) (tm-compose a b))
(: tm-nat (-> V Term))
(define (tm-nat n)
(if (positive? n)
(tm-suc (tm-nat (- n 1)))
tm-zero))
(define (tm-pnat n)
(if (positive? n)
`(succ ,(tm-pnat (- n 1)))
'zero))
;; (define (tm-pnat n)
;; (if (positive? n)
;; `(succ ,(tm-pnat (- n 1)))
;; 'zero))
(define (tm-ifz a b c)
`(if-zero ,a ,b ,c))
;; (define (tm-ifz a b c)
;; `(if-zero ,a ,b ,c))
(define (tm-psuc a)
`(succ ,a))
;; (define (tm-psuc a)
;; `(succ ,a))
(define (tm-double m)
(tm-app tm-fix
(tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
;; (define (tm-double m)
;; (tm-app tm-fix
;; (tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
(define (tm-padd m n)
(tm-app tm-fix
(tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
;; (define (tm-padd m n)
;; (tm-app tm-fix
;; (tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
(check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst)
(check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
(check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
(check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
(check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
(check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
(check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
(check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19))
(check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))
;; (check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
;; (check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
;; (check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
;; (check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
;; (check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
;; (check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19))
;; (check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))

133
nbe.rkt
View file

@ -3,19 +3,10 @@
;; t := λ t | app t t | i
(define-type V Nonnegative-Integer)
(define-type Term ( (List 'var V) (List 'λ Term) (List 'app Term Term)))
(define-type Term ( Var Abs App))
(struct Var ([get : V]))
(struct Abs ([body : Term]))
(struct App ([fun : Term] [arg : Term]))
(define-type D ( D-ne Clos))
(struct Idx ([get : V]))
(struct D-ne ([get : ( Idx DApp)]))
(struct Clos ([get : (-> (Promise D) (Promise D))] ))
(struct DApp ([fun : D-ne] [arg : (Promise D)]))
(define-type D ( (List 'fun (-> (Promise D) D)) (List 'neu D-ne)))
(define-type D-ne ( (List 'app D-ne D) (List 'idx V)))
(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D))))
(define (ext ρ a)
@ -24,53 +15,31 @@
a
(ρ (- i 1)))))
(: ap (-> (Promise D) (Promise D) D))
(define (ap a b)
(match (force a)
[(Clos f) (force (f b))]
[(D-ne u) (D-ne (DApp (D-ne u) b))]))
;; (define-syntax-rule (ap a b)
;; (match (force a)
;; [`(fun ,f) (force (f b))]
;; [`(neu ,u) `(neu (app ,u ,b))]
;; [_ (error "ap: type error")]))
(define-syntax-rule (ap a b)
(match a
[`(fun ,f) (f (delay b))]
[`(neu ,u) `(neu (app ,u ,b))]))
(define-syntax-rule (interp-fun a ρ)
(list 'fun (λ (x) (interp a (ext ρ x)))))
(: interp (-> Term (-> V (Promise D)) D))
(define (interp a ρ)
(match a
[`(var ,i) (force (ρ i))]
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(interp a ρ))]
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
[`(λ ,a) (interp-fun a ρ)]
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))
;; Domain
;; D := neu D_ne | fun [(var -> var) -> D → D]
;; D_ne := var i | app D_ne D
;; (define (tm? a)
;; (match a
;; ['zero true]
;; [`(succ ,a) (tm? a)]
;; [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
;; [`(λ ,a) (tm? a)]
;; [`(app ,a ,b) (and (tm? a) (tm? b))]
;; [`(var ,i) (exact-nonnegative-integer? i)]
;; [_ false]))
;; (define-syntax-rule (ap a b)
;; (match (force a)
;; [`(fun ,f) (force (f b))]
;; [`(neu ,u) `(neu (app ,u ,b))]
;; [_ (error "ap: type error")]))
;; (define-syntax-rule (ifz a b c)
;; (match (force a)
;; ['zero (force b)]
;; [`(succ ,u) (ap c u)]
;; [`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
;; (define-syntax-rule (ext ρ a)
;; (lambda (i)
;; (if (zero? i)
;; a
;; (ρ (- i 1)))))
;; (define-syntax-rule (interp-fun a ρ)
;; (list 'fun (λ (x) (interp a (ext ρ x)))))
;; (: interp (-> Term (-> Term)))
@ -83,38 +52,44 @@
;; [`(λ ,a) (interp-fun a ρ)]
;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
;; (define (reify n a)
;; (match (force a)
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(reify n a))]
;; [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))]
;; [`(neu ,a) (reify-neu n a)]))
(: reify (-> V D Term))
(define (reify n a)
(match a
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(reify n a))]
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
[`(neu ,a) (reify-neu n a)]
))
;; (define (extract-body a)
;; (match a
;; [`(λ ,a) a]
;; [_ (error "reify-neu: not reifiable")]))
;; (define (reify-neu n a)
;; (match a
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
;; [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
;; [`(var ,i) (list 'var (- n (+ i 1)))]))
(: reify-neu (-> V D-ne Term))
(define (reify-neu n a)
(match a
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
;; (define (idsub s i) `(neu (var ,(- s (+ i 1)))))
(: idsub (-> V V D))
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
;; (define (scope a)
;; (match a
;; ['zero 0]
;; [`(succ ,a) (scope a)]
;; [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
;; [`(λ ,a) (max 0 (- (scope a) 1))]
;; [`(app ,a ,b) (max (scope a) (scope b))]
;; [`(var ,i) (+ i 1)]))
(: scope (-> Term V))
(define (scope a)
(match a
['zero 0]
[`(succ ,a) (scope a)]
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
[`(λ ,a) (max 0 (- (scope a) 1))]
[`(app ,a ,b) (max (scope a) (scope b))]
[`(var ,i) (+ i 1)]))
;; (define (normalize a)
;; (let ([sa (scope a)])
;; (reify sa (interp a (curry idsub sa)))))
(: normalize (-> Term Term))
(define (normalize a)
(let ([sa (scope a)])
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
;; (define (subst ρ a)
;; (match a
@ -146,6 +121,7 @@
;; [v `(app ,v ,(eval-tm-strict b))])]))
;; ;; Coquand's algorithm but for β-normal forms
;; (: η-eq? (-> Term Term Boolean))
;; (define (η-eq? a b)
;; (match (list a b)
;; ['(zero zero) true]
@ -163,7 +139,8 @@
;; (define (βη-eq? a b)
;; (η-eq? (normalize a) (normalize b)))
;; (define (β-eq? a b)
;; (equal? (normalize a) (normalize b)))
(: β-eq? (-> Term Term Boolean))
(define (β-eq? a b)
(equal? (normalize a) (normalize b)))
;; (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)
(provide reify interp normalize β-eq? Term D V)