Implement nbe in typed racket
This commit is contained in:
parent
7bf8bdde48
commit
212cbdbceb
2 changed files with 91 additions and 104 deletions
62
nbe-test.rkt
62
nbe-test.rkt
|
@ -1,6 +1,6 @@
|
|||
#lang racket
|
||||
#lang typed/racket
|
||||
|
||||
(require rackunit "nbe.rkt")
|
||||
(require typed/rackunit "nbe.rkt")
|
||||
|
||||
(define-syntax tm-app
|
||||
(syntax-rules ()
|
||||
|
@ -11,64 +11,74 @@
|
|||
(define-syntax-rule (tm-var a) `(var ,a))
|
||||
(define-syntax-rule (tm-abs a) `(λ ,a))
|
||||
|
||||
(: tm-id Term)
|
||||
(define tm-id '(λ (var 0)))
|
||||
|
||||
(: tm-fst Term)
|
||||
(define tm-fst '(λ (λ (var 1))))
|
||||
|
||||
(: tm-snd Term)
|
||||
(define tm-snd '(λ (λ (var 0))))
|
||||
|
||||
(: tm-pair Term)
|
||||
(define tm-pair `(λ (λ (λ ,(tm-app '(var 0) '(var 2) '(var 1))))))
|
||||
|
||||
(define tm-fix
|
||||
(let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
|
||||
(tm-abs (tm-app g g))))
|
||||
;; (define tm-fix
|
||||
;; (let ([g (tm-abs (tm-app (tm-var 1) (tm-app (tm-var 0) (tm-var 0))))])
|
||||
;; (tm-abs (tm-app g g))))
|
||||
|
||||
(: tm-zero Term)
|
||||
(define tm-zero tm-snd)
|
||||
|
||||
(: tm-suc (-> Term Term))
|
||||
(define (tm-suc a) (tm-abs (tm-abs (tm-app (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
|
||||
|
||||
(: tm-add (-> Term Term Term))
|
||||
(define (tm-add a b)
|
||||
(tm-abs (tm-abs
|
||||
(tm-app b (tm-var 1) (tm-app a (tm-var 1) (tm-var 0))))))
|
||||
|
||||
(: tm-compose (-> Term Term Term))
|
||||
(define (tm-compose a b)
|
||||
(tm-abs (tm-app a (tm-app b (tm-var 0)))))
|
||||
|
||||
(: tm-mult (-> Term Term Term))
|
||||
(define (tm-mult a b) (tm-compose a b))
|
||||
|
||||
(: tm-nat (-> V Term))
|
||||
(define (tm-nat n)
|
||||
(if (positive? n)
|
||||
(tm-suc (tm-nat (- n 1)))
|
||||
tm-zero))
|
||||
|
||||
(define (tm-pnat n)
|
||||
(if (positive? n)
|
||||
`(succ ,(tm-pnat (- n 1)))
|
||||
'zero))
|
||||
;; (define (tm-pnat n)
|
||||
;; (if (positive? n)
|
||||
;; `(succ ,(tm-pnat (- n 1)))
|
||||
;; 'zero))
|
||||
|
||||
(define (tm-ifz a b c)
|
||||
`(if-zero ,a ,b ,c))
|
||||
;; (define (tm-ifz a b c)
|
||||
;; `(if-zero ,a ,b ,c))
|
||||
|
||||
(define (tm-psuc a)
|
||||
`(succ ,a))
|
||||
;; (define (tm-psuc a)
|
||||
;; `(succ ,a))
|
||||
|
||||
(define (tm-double m)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
|
||||
;; (define (tm-double m)
|
||||
;; (tm-app tm-fix
|
||||
;; (tm-abs (tm-abs (tm-ifz (tm-var 0) 'zero 'zero))) m ))
|
||||
|
||||
(define (tm-padd m n)
|
||||
(tm-app tm-fix
|
||||
(tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
|
||||
;; (define (tm-padd m n)
|
||||
;; (tm-app tm-fix
|
||||
;; (tm-abs (tm-abs (tm-abs (tm-ifz (tm-var 1) (tm-var 0) (tm-psuc (tm-app (tm-var 3) (tm-var 0) (tm-var 1))))))) m n))
|
||||
|
||||
(check-equal? (normalize `(app ,tm-id ,tm-id)) tm-id)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-snd)) tm-fst)
|
||||
(check-equal? (normalize `(app (app (app ,tm-pair ,tm-id) ,tm-fst) ,tm-fst)) tm-id)
|
||||
(check-equal? (normalize (tm-app tm-snd (tm-app tm-pair tm-id tm-fst) tm-fst)) tm-fst)
|
||||
(check-equal? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
(check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
|
||||
(check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
|
||||
(check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
(check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
|
||||
(check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
|
||||
(check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19))
|
||||
(check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))
|
||||
;; (check-equal? (normalize (tm-mult (tm-nat 3) (tm-nat 2))) (normalize (tm-nat 6)))
|
||||
;; (check-equal? (normalize (tm-mult (tm-nat 11) (tm-nat 116))) (normalize (tm-nat 1276)))
|
||||
;; (check η-eq? (normalize (tm-add (tm-nat 499) (tm-nat 777))) (normalize (tm-add (tm-nat 777) (tm-nat 499))))
|
||||
;; (check βη-eq? (tm-mult (tm-nat 6) (tm-nat 7)) (tm-nat 42))
|
||||
;; (check βη-eq? '(if-zero (succ (succ zero)) zero (succ (succ (var 0)))) (tm-pnat 3))
|
||||
;; (check βη-eq? (tm-padd (tm-pnat 8) (tm-pnat 11)) (tm-pnat 19))
|
||||
;; (check βη-eq? (tm-padd (tm-pnat 2) (tm-psuc (tm-var 0))) '(succ (succ (succ (var 0)))))
|
||||
|
|
133
nbe.rkt
133
nbe.rkt
|
@ -3,19 +3,10 @@
|
|||
;; t := λ t | app t t | i
|
||||
|
||||
(define-type V Nonnegative-Integer)
|
||||
(define-type Term (∪ (List 'var V) (List 'λ Term) (List 'app Term Term)))
|
||||
|
||||
(define-type Term (∪ Var Abs App))
|
||||
(struct Var ([get : V]))
|
||||
(struct Abs ([body : Term]))
|
||||
(struct App ([fun : Term] [arg : Term]))
|
||||
|
||||
(define-type D (∪ D-ne Clos))
|
||||
(struct Idx ([get : V]))
|
||||
(struct D-ne ([get : (∪ Idx DApp)]))
|
||||
(struct Clos ([get : (-> (Promise D) (Promise D))] ))
|
||||
(struct DApp ([fun : D-ne] [arg : (Promise D)]))
|
||||
|
||||
|
||||
(define-type D (∪ (List 'fun (-> (Promise D) D)) (List 'neu D-ne)))
|
||||
(define-type D-ne (∪ (List 'app D-ne D) (List 'idx V)))
|
||||
|
||||
(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D))))
|
||||
(define (ext ρ a)
|
||||
|
@ -24,53 +15,31 @@
|
|||
a
|
||||
(ρ (- i 1)))))
|
||||
|
||||
(: ap (-> (Promise D) (Promise D) D))
|
||||
(define (ap a b)
|
||||
(match (force a)
|
||||
[(Clos f) (force (f b))]
|
||||
[(D-ne u) (D-ne (DApp (D-ne u) b))]))
|
||||
|
||||
;; (define-syntax-rule (ap a b)
|
||||
;; (match (force a)
|
||||
;; [`(fun ,f) (force (f b))]
|
||||
;; [`(neu ,u) `(neu (app ,u ,b))]
|
||||
;; [_ (error "ap: type error")]))
|
||||
(define-syntax-rule (ap a b)
|
||||
(match a
|
||||
[`(fun ,f) (f (delay b))]
|
||||
[`(neu ,u) `(neu (app ,u ,b))]))
|
||||
|
||||
|
||||
(define-syntax-rule (interp-fun a ρ)
|
||||
(list 'fun (λ (x) (interp a (ext ρ x)))))
|
||||
|
||||
|
||||
(: interp (-> Term (-> V (Promise D)) D))
|
||||
(define (interp a ρ)
|
||||
(match a
|
||||
[`(var ,i) (force (ρ i))]
|
||||
;; ['zero 'zero]
|
||||
;; [`(succ ,a) `(succ ,(interp a ρ))]
|
||||
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
|
||||
[`(λ ,a) (interp-fun a ρ)]
|
||||
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))
|
||||
|
||||
;; Domain
|
||||
;; D := neu D_ne | fun [(var -> var) -> D → D]
|
||||
;; D_ne := var i | app D_ne D
|
||||
|
||||
;; (define (tm? a)
|
||||
;; (match a
|
||||
;; ['zero true]
|
||||
;; [`(succ ,a) (tm? a)]
|
||||
;; [`(if-zero ,a ,b ,c) (and (tm? a) (tm? b) (tm? c))]
|
||||
;; [`(λ ,a) (tm? a)]
|
||||
;; [`(app ,a ,b) (and (tm? a) (tm? b))]
|
||||
;; [`(var ,i) (exact-nonnegative-integer? i)]
|
||||
;; [_ false]))
|
||||
|
||||
;; (define-syntax-rule (ap a b)
|
||||
;; (match (force a)
|
||||
;; [`(fun ,f) (force (f b))]
|
||||
;; [`(neu ,u) `(neu (app ,u ,b))]
|
||||
;; [_ (error "ap: type error")]))
|
||||
|
||||
;; (define-syntax-rule (ifz a b c)
|
||||
;; (match (force a)
|
||||
;; ['zero (force b)]
|
||||
;; [`(succ ,u) (ap c u)]
|
||||
;; [`(neu ,u) `(neu (if-zero ,u ,b ,c))]))
|
||||
|
||||
;; (define-syntax-rule (ext ρ a)
|
||||
;; (lambda (i)
|
||||
;; (if (zero? i)
|
||||
;; a
|
||||
;; (ρ (- i 1)))))
|
||||
|
||||
;; (define-syntax-rule (interp-fun a ρ)
|
||||
;; (list 'fun (λ (x) (interp a (ext ρ x)))))
|
||||
|
||||
;; (: interp (-> Term (-> Term)))
|
||||
|
||||
|
@ -83,38 +52,44 @@
|
|||
;; [`(λ ,a) (interp-fun a ρ)]
|
||||
;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
|
||||
|
||||
;; (define (reify n a)
|
||||
;; (match (force a)
|
||||
;; ['zero 'zero]
|
||||
;; [`(succ ,a) `(succ ,(reify n a))]
|
||||
;; [`(fun ,f) (list 'λ (reify (+ n 1) (f `(neu (var ,n)))))]
|
||||
;; [`(neu ,a) (reify-neu n a)]))
|
||||
(: reify (-> V D Term))
|
||||
(define (reify n a)
|
||||
(match a
|
||||
;; ['zero 'zero]
|
||||
;; [`(succ ,a) `(succ ,(reify n a))]
|
||||
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
|
||||
[`(neu ,a) (reify-neu n a)]
|
||||
))
|
||||
|
||||
;; (define (extract-body a)
|
||||
;; (match a
|
||||
;; [`(λ ,a) a]
|
||||
;; [_ (error "reify-neu: not reifiable")]))
|
||||
|
||||
;; (define (reify-neu n a)
|
||||
;; (match a
|
||||
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
|
||||
;; [`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
|
||||
;; [`(var ,i) (list 'var (- n (+ i 1)))]))
|
||||
(: reify-neu (-> V D-ne Term))
|
||||
(define (reify-neu n a)
|
||||
(match a
|
||||
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
|
||||
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
|
||||
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
|
||||
|
||||
;; (define (idsub s i) `(neu (var ,(- s (+ i 1)))))
|
||||
(: idsub (-> V V D))
|
||||
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
|
||||
|
||||
;; (define (scope a)
|
||||
;; (match a
|
||||
;; ['zero 0]
|
||||
;; [`(succ ,a) (scope a)]
|
||||
;; [`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
|
||||
;; [`(λ ,a) (max 0 (- (scope a) 1))]
|
||||
;; [`(app ,a ,b) (max (scope a) (scope b))]
|
||||
;; [`(var ,i) (+ i 1)]))
|
||||
(: scope (-> Term V))
|
||||
(define (scope a)
|
||||
(match a
|
||||
['zero 0]
|
||||
[`(succ ,a) (scope a)]
|
||||
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
|
||||
[`(λ ,a) (max 0 (- (scope a) 1))]
|
||||
[`(app ,a ,b) (max (scope a) (scope b))]
|
||||
[`(var ,i) (+ i 1)]))
|
||||
|
||||
;; (define (normalize a)
|
||||
;; (let ([sa (scope a)])
|
||||
;; (reify sa (interp a (curry idsub sa)))))
|
||||
(: normalize (-> Term Term))
|
||||
(define (normalize a)
|
||||
(let ([sa (scope a)])
|
||||
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
|
||||
|
||||
;; (define (subst ρ a)
|
||||
;; (match a
|
||||
|
@ -146,6 +121,7 @@
|
|||
;; [v `(app ,v ,(eval-tm-strict b))])]))
|
||||
|
||||
;; ;; Coquand's algorithm but for β-normal forms
|
||||
;; (: η-eq? (-> Term Term Boolean))
|
||||
;; (define (η-eq? a b)
|
||||
;; (match (list a b)
|
||||
;; ['(zero zero) true]
|
||||
|
@ -163,7 +139,8 @@
|
|||
;; (define (βη-eq? a b)
|
||||
;; (η-eq? (normalize a) (normalize b)))
|
||||
|
||||
;; (define (β-eq? a b)
|
||||
;; (equal? (normalize a) (normalize b)))
|
||||
(: β-eq? (-> Term Term Boolean))
|
||||
(define (β-eq? a b)
|
||||
(equal? (normalize a) (normalize b)))
|
||||
|
||||
;; (provide eval-tm eval-tm-strict reify interp normalize tm? η-eq? βη-eq? β-eq?)
|
||||
(provide reify interp normalize β-eq? Term D V)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue