146 lines
4.2 KiB
Racket
146 lines
4.2 KiB
Racket
#lang typed/racket
|
||
;; Grammar (Λ)
|
||
;; t := λ t | app t t | i
|
||
|
||
(define-type V Nonnegative-Integer)
|
||
(define-type Term (∪ (List 'var V) (List 'λ Term) (List 'app Term Term)))
|
||
|
||
(define-type D (∪ (List 'fun (-> (Promise D) D)) (List 'neu D-ne)))
|
||
(define-type D-ne (∪ (List 'app D-ne D) (List 'idx V)))
|
||
|
||
(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D))))
|
||
(define (ext ρ a)
|
||
(lambda (i)
|
||
(if (zero? i)
|
||
a
|
||
(ρ (- i 1)))))
|
||
|
||
|
||
(define-syntax-rule (ap a b)
|
||
(match a
|
||
[`(fun ,f) (f (delay b))]
|
||
[`(neu ,u) `(neu (app ,u ,b))]))
|
||
|
||
|
||
(define-syntax-rule (interp-fun a ρ)
|
||
(list 'fun (λ (x) (interp a (ext ρ x)))))
|
||
|
||
|
||
(: interp (-> Term (-> V (Promise D)) D))
|
||
(define (interp a ρ)
|
||
(match a
|
||
[`(var ,i) (force (ρ i))]
|
||
;; ['zero 'zero]
|
||
;; [`(succ ,a) `(succ ,(interp a ρ))]
|
||
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
|
||
[`(λ ,a) (interp-fun a ρ)]
|
||
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))
|
||
|
||
;; Domain
|
||
;; D := neu D_ne | fun [(var -> var) -> D → D]
|
||
;; D_ne := var i | app D_ne D
|
||
|
||
|
||
;; (: interp (-> Term (-> Term)))
|
||
|
||
;; (define (interp a ρ)
|
||
;; (delay (match a
|
||
;; [`(var ,i) (force (ρ i))]
|
||
;; ['zero 'zero]
|
||
;; [`(succ ,a) `(succ ,(interp a ρ))]
|
||
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
|
||
;; [`(λ ,a) (interp-fun a ρ)]
|
||
;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
|
||
|
||
(: reify (-> V D Term))
|
||
(define (reify n a)
|
||
(match a
|
||
;; ['zero 'zero]
|
||
;; [`(succ ,a) `(succ ,(reify n a))]
|
||
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
|
||
[`(neu ,a) (reify-neu n a)]
|
||
))
|
||
|
||
;; (define (extract-body a)
|
||
;; (match a
|
||
;; [`(λ ,a) a]
|
||
;; [_ (error "reify-neu: not reifiable")]))
|
||
|
||
(: reify-neu (-> V D-ne Term))
|
||
(define (reify-neu n a)
|
||
(match a
|
||
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
|
||
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
|
||
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
|
||
|
||
(: idsub (-> V V D))
|
||
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
|
||
|
||
(: scope (-> Term V))
|
||
(define (scope a)
|
||
(match a
|
||
['zero 0]
|
||
[`(succ ,a) (scope a)]
|
||
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
|
||
[`(λ ,a) (max 0 (- (scope a) 1))]
|
||
[`(app ,a ,b) (max (scope a) (scope b))]
|
||
[`(var ,i) (+ i 1)]))
|
||
|
||
(: normalize (-> Term Term))
|
||
(define (normalize a)
|
||
(let ([sa (scope a)])
|
||
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
|
||
|
||
;; (define (subst ρ a)
|
||
;; (match a
|
||
;; [`(var ,i) (ρ i)]
|
||
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
|
||
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
|
||
;; '(var 0)) a))]))
|
||
|
||
;; (define (idsub-tm i) `(var ,i))
|
||
;; (define (subst1 b a)
|
||
;; (subst (ext idsub-tm b) a))
|
||
|
||
;; (define (eval-tm a)
|
||
;; (match a
|
||
;; [(list 'var _) a]
|
||
;; [(list 'λ a) `(λ ,(eval-tm a))]
|
||
;; [(list 'app a b)
|
||
;; (match (eval-tm a)
|
||
;; [(list 'λ a) (eval-tm (subst1 b a))]
|
||
;; [v `(app ,v ,(eval-tm b))])]))
|
||
|
||
;; (define (eval-tm-strict a)
|
||
;; (match a
|
||
;; [(list 'var _) a]
|
||
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
|
||
;; [(list 'app a b)
|
||
;; (match (eval-tm-strict a)
|
||
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
|
||
;; [v `(app ,v ,(eval-tm-strict b))])]))
|
||
|
||
;; ;; Coquand's algorithm but for β-normal forms
|
||
;; (: η-eq? (-> Term Term Boolean))
|
||
;; (define (η-eq? a b)
|
||
;; (match (list a b)
|
||
;; ['(zero zero) true]
|
||
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
|
||
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
|
||
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
|
||
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
|
||
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
|
||
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
|
||
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
|
||
;; [`((var ,i) (var ,j)) (eqv? i j)]
|
||
;; [_ false]))
|
||
|
||
|
||
;; (define (βη-eq? a b)
|
||
;; (η-eq? (normalize a) (normalize b)))
|
||
|
||
(: β-eq? (-> Term Term Boolean))
|
||
(define (β-eq? a b)
|
||
(equal? (normalize a) (normalize b)))
|
||
|
||
(provide reify interp normalize β-eq? Term D V)
|