nbe-kripke-racket/nbe.rkt

146 lines
4.2 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang typed/racket
;; Grammar (Λ)
;; t := λ t | app t t | i
(define-type V Nonnegative-Integer)
(define-type Term ( (List 'var V) (List 'λ Term) (List 'app Term Term)))
(define-type D ( (List 'fun (-> (Promise D) D)) (List 'neu D-ne)))
(define-type D-ne ( (List 'app D-ne D) (List 'idx V)))
(: ext (-> (-> V (Promise D)) (Promise D) (-> V (Promise D))))
(define (ext ρ a)
(lambda (i)
(if (zero? i)
a
(ρ (- i 1)))))
(define-syntax-rule (ap a b)
(match a
[`(fun ,f) (f (delay b))]
[`(neu ,u) `(neu (app ,u ,b))]))
(define-syntax-rule (interp-fun a ρ)
(list 'fun (λ (x) (interp a (ext ρ x)))))
(: interp (-> Term (-> V (Promise D)) D))
(define (interp a ρ)
(match a
[`(var ,i) (force (ρ i))]
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(interp a ρ))]
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
[`(λ ,a) (interp-fun a ρ)]
[`(app ,a ,b) (ap (interp a ρ) (interp b ρ))]))
;; Domain
;; D := neu D_ne | fun [(var -> var) -> D → D]
;; D_ne := var i | app D_ne D
;; (: interp (-> Term (-> Term)))
;; (define (interp a ρ)
;; (delay (match a
;; [`(var ,i) (force (ρ i))]
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(interp a ρ))]
;; [`(if-zero ,a ,b ,c) (ifz (interp a ρ) (interp b ρ) (interp-fun c ρ))]
;; [`(λ ,a) (interp-fun a ρ)]
;; [`(app ,a ,b) (ap (interp a ρ) (interp b ρ))])))
(: reify (-> V D Term))
(define (reify n a)
(match a
;; ['zero 'zero]
;; [`(succ ,a) `(succ ,(reify n a))]
[`(fun ,f) (list 'λ (reify (+ n 1) (f (delay `(neu (idx ,n))))))]
[`(neu ,a) (reify-neu n a)]
))
;; (define (extract-body a)
;; (match a
;; [`(λ ,a) a]
;; [_ (error "reify-neu: not reifiable")]))
(: reify-neu (-> V D-ne Term))
(define (reify-neu n a)
(match a
;; [`(if-zero ,a ,b ,c) (list 'if (reify-neu n a) (reify n b) (extract-body (reify n c)))]
[`(app ,u ,v) (list 'app (reify-neu n u) (reify n v))]
[`(idx ,i) (list 'var (max 0 (- n (+ i 1))))]))
(: idsub (-> V V D))
(define (idsub s i) `(neu (idx ,(max 0 (- s (+ i 1))))))
(: scope (-> Term V))
(define (scope a)
(match a
['zero 0]
[`(succ ,a) (scope a)]
[`(if-zero ,a ,b ,c) (max (scope a) (scope b) (scope c))]
[`(λ ,a) (max 0 (- (scope a) 1))]
[`(app ,a ,b) (max (scope a) (scope b))]
[`(var ,i) (+ i 1)]))
(: normalize (-> Term Term))
(define (normalize a)
(let ([sa (scope a)])
(reify sa (interp a (λ (x) (delay (idsub sa x)))))))
;; (define (subst ρ a)
;; (match a
;; [`(var ,i) (ρ i)]
;; [`(app ,a ,b) `(app ,(subst ρ a) ,(subst ρ b))]
;; [`(λ ,a) `(λ ,(subst (ext (compose (curry subst (λ (i) `(var ,(+ i 1)))) ρ)
;; '(var 0)) a))]))
;; (define (idsub-tm i) `(var ,i))
;; (define (subst1 b a)
;; (subst (ext idsub-tm b) a))
;; (define (eval-tm a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm a))]
;; [(list 'app a b)
;; (match (eval-tm a)
;; [(list 'λ a) (eval-tm (subst1 b a))]
;; [v `(app ,v ,(eval-tm b))])]))
;; (define (eval-tm-strict a)
;; (match a
;; [(list 'var _) a]
;; [(list 'λ a) `(λ ,(eval-tm-strict a))]
;; [(list 'app a b)
;; (match (eval-tm-strict a)
;; [(list 'λ a) (eval-tm-strict (subst1 (eval-tm-strict b) a))]
;; [v `(app ,v ,(eval-tm-strict b))])]))
;; ;; Coquand's algorithm but for β-normal forms
;; (: η-eq? (-> Term Term Boolean))
;; (define (η-eq? a b)
;; (match (list a b)
;; ['(zero zero) true]
;; [`((succ ,a) (succ ,b)) (η-eq? a b)]
;; [`((if-zero ,a ,b ,c) (if-zero ,a0 ,b0 ,c0))
;; (and (η-eq? a a0) (η-eq? b b0) (η-eq? c c0))]
;; [`((λ ,a) (λ ,b)) (η-eq? a b)]
;; [`((λ ,a) ,u) (η-eq? a `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)))]
;; [`(,u (λ ,a)) (η-eq? `(app ,(subst (λ (i) `(var ,(+ i 1))) u) (var 0)) a)]
;; [`((app ,u0 ,v0) (app ,u1 ,v1)) (and (η-eq? u0 u1) (η-eq? v0 v1))]
;; [`((var ,i) (var ,j)) (eqv? i j)]
;; [_ false]))
;; (define (βη-eq? a b)
;; (η-eq? (normalize a) (normalize b)))
(: β-eq? (-> Term Term Boolean))
(define (β-eq? a b)
(equal? (normalize a) (normalize b)))
(provide reify interp normalize β-eq? Term D V)