Restructure proof to use hindley rosen

This commit is contained in:
Yiyun Liu 2025-04-08 22:25:25 -04:00
parent 9d3c3726dd
commit 21bb2944a3

View file

@ -9,7 +9,7 @@ From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn).
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
Module βηPar. Module ηPar.
Inductive R : Tm -> Tm -> Prop := Inductive R : Tm -> Tm -> Prop :=
| VarCong i : | VarCong i :
R (VarTm i) (VarTm i) R (VarTm i) (VarTm i)
@ -20,10 +20,6 @@ Module βηPar.
| AbsCong a0 a1 : | AbsCong a0 a1 :
R a0 a1 -> R a0 a1 ->
R (Abs a0) (Abs a1) R (Abs a0) (Abs a1)
| AppAbs b0 b1 a0 a1 :
R b0 b1 ->
R a0 a1 ->
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1)
| AbsEta b0 b1 : | AbsEta b0 b1 :
R b0 b1 -> R b0 b1 ->
R b0 (Abs (App (ren_Tm shift b1) (VarTm var_zero))). R b0 (Abs (App (ren_Tm shift b1) (VarTm var_zero))).
@ -32,13 +28,6 @@ Module βηPar.
Derive Inversion inv with (forall a b, R a b). Derive Inversion inv with (forall a b, R a b).
Lemma AppAbs' b0 b1 a0 a1 u :
u = (subst_Tm (scons a1 VarTm) b1) ->
R b0 b1 ->
R a0 a1 ->
R (App (Abs b0) a0) u.
Proof. move => ->. apply AppAbs. Qed.
Lemma AbsEta' b0 b1 u : Lemma AbsEta' b0 b1 u :
u = (Abs (App (ren_Tm shift b1) (VarTm var_zero))) -> u = (Abs (App (ren_Tm shift b1) (VarTm var_zero))) ->
R b0 b1 -> R b0 b1 ->
@ -54,7 +43,6 @@ Module βηPar.
Proof. Proof.
move => h. move : ρ. elim : a b /h => /=; eauto with βηPar. move => h. move : ρ. elim : a b /h => /=; eauto with βηPar.
- eauto using refl. - eauto using refl.
- move => *; apply : AppAbs'; eauto. by asimpl.
- move => *; apply : AbsEta'; eauto. by asimpl. - move => *; apply : AbsEta'; eauto. by asimpl.
Qed. Qed.
@ -94,33 +82,286 @@ Module βηPar.
Proof. Proof.
move => h. move : ρ0 ρ1. move => h. move : ρ0 ρ1.
elim : a b /h => //=; eauto using morphing_up with βηPar. elim : a b /h => //=; eauto using morphing_up with βηPar.
- move => * /=.
apply : AppAbs'; eauto using morphing_up. by asimpl.
- move => * /=. - move => * /=.
apply : AbsEta'; eauto using morphing_up. by asimpl. apply : AbsEta'; eauto using morphing_up. by asimpl.
Qed. Qed.
End βηPar. End ηPar.
Module βPar.
Inductive R : Tm -> Tm -> Prop :=
| VarCong i :
R (VarTm i) (VarTm i)
| AppCong b0 b1 a0 a1 :
R b0 b1 ->
R a0 a1 ->
R (App b0 a0) (App b1 a1)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AppAbs b0 b1 a0 a1 :
R b0 b1 ->
R a0 a1 ->
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1).
#[export]Hint Constructors R : βηPar.
Derive Inversion inv with (forall a b, R a b).
Lemma AppAbs' b0 b1 a0 a1 u :
u = (subst_Tm (scons a1 VarTm) b1) ->
R b0 b1 ->
R a0 a1 ->
R (App (Abs b0) a0) u.
Proof. move => ->. apply AppAbs. Qed.
Lemma refl a : R a a.
Proof. elim : a => //=; eauto with βηPar. Qed.
Lemma morphing a b ρ :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof.
move => h. move : ρ. elim : a b /h => /=; eauto with βηPar.
- eauto using refl.
- move => *; apply : AppAbs'; eauto. by asimpl.
Qed.
Lemma renaming a b ξ :
R a b ->
R (ren_Tm ξ a) (ren_Tm ξ b).
Proof. substify. apply morphing. Qed.
Definition morphing2_ok ρ0 ρ1 := forall (i : nat), R (ρ0 i) (ρ1 i).
Lemma morphing2_ren (ξ : nat -> nat) ρ0 ρ1 :
morphing2_ok ρ0 ρ1 ->
morphing2_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
Proof. rewrite /morphing2_ok; eauto using renaming. Qed.
Lemma morphing2_ext a b ρ0 ρ1 :
R a b ->
morphing2_ok ρ0 ρ1 ->
morphing2_ok (scons a ρ0) (scons b ρ1).
Proof.
move => * [|i] //=.
Qed.
Lemma morphing_up ρ0 ρ1 :
morphing2_ok ρ0 ρ1 ->
morphing2_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
Proof.
move => h.
apply morphing2_ext. apply VarCong.
by apply morphing2_ren.
Qed.
Lemma morphing2 a b ρ0 ρ1 :
R a b ->
morphing2_ok ρ0 ρ1 ->
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
Proof.
move => h. move : ρ0 ρ1.
elim : a b /h => //=; eauto using morphing_up with βηPar.
- move => * /=.
apply : AppAbs'; eauto using morphing_up. by asimpl.
Qed.
End βPar.
Module ηexp.
Inductive R : Tm -> Tm -> Prop :=
| AppCong0 b0 b1 a :
R b0 b1 ->
R (App b0 a) (App b1 a)
| AppCong1 b a0 a1 :
R a0 a1 ->
R (App b a0) (App b a1)
| AbsCong a0 a1 :
R a0 a1 ->
R (Abs a0) (Abs a1)
| AbsEta a :
R a (Abs (App (ren_Tm shift a) (VarTm var_zero))).
Derive Inversion inv with (forall a b, R a b).
Lemma AbsEta' a u :
u = (Abs (App (ren_Tm shift a) (VarTm var_zero))) ->
R a u.
Proof. move => ->. apply AbsEta. Qed.
Lemma morphing a b ρ :
R a b ->
R (subst_Tm ρ a) (subst_Tm ρ b).
Proof.
move => h. move : ρ. elim : a b /h => //=; try qauto ctrs:R.
- move => *; apply : AbsEta'; eauto. by asimpl.
Qed.
End ηexp.
Module ηexps.
#[local]Ltac solve_s_rec :=
move => *; eapply rtc_l; eauto;
hauto lq:on ctrs:ηexp.R.
#[local]Ltac solve_s :=
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
Lemma AbsCong (a b : Tm) :
rtc ηexp.R a b ->
rtc ηexp.R (Abs a) (Abs b).
Proof. solve_s. Qed.
Lemma AppCong (a0 a1 b0 b1 : Tm) :
rtc ηexp.R a0 a1 ->
rtc ηexp.R b0 b1 ->
rtc ηexp.R (App a0 b0) (App a1 b1).
Proof. solve_s. Qed.
Lemma morphing a b ρ :
rtc ηexp.R a b ->
rtc ηexp.R (subst_Tm ρ a) (subst_Tm ρ b).
Proof.
induction 1; hauto l:on use:ηexp.morphing ctrs:rtc.
Qed.
Lemma renaming a b ξ :
rtc ηexp.R a b ->
rtc ηexp.R (ren_Tm ξ a) (ren_Tm ξ b).
Proof. substify. apply morphing. Qed.
Definition lifting_ok ρ0 ρ1 := forall (i : nat), rtc ηexp.R (ρ0 i) (ρ1 i).
Lemma lifting_ren (ξ : nat -> nat) ρ0 ρ1 :
lifting_ok ρ0 ρ1 ->
lifting_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
Proof. rewrite /lifting_ok; eauto using renaming. Qed.
Lemma lifting_ext a b ρ0 ρ1 :
rtc ηexp.R a b ->
lifting_ok ρ0 ρ1 ->
lifting_ok (scons a ρ0) (scons b ρ1).
Proof.
move => * [|i] //=.
Qed.
Lemma lifting_up ρ0 ρ1 :
lifting_ok ρ0 ρ1 ->
lifting_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
Proof.
move => h.
apply lifting_ext. apply rtc_refl.
by apply lifting_ren.
Qed.
Lemma lifting a ρ0 ρ1 :
lifting_ok ρ0 ρ1 ->
rtc ηexp.R (subst_Tm ρ0 a) (subst_Tm ρ1 a).
Proof.
move : ρ0 ρ1.
elim : a => //=;
qauto use:lifting_up, ηexps.AbsCong,ηexps.AppCong .
Qed.
End ηexps.
Lemma subst_id b : subst_Tm (scons (VarTm var_zero) (funcomp VarTm shift)) b = b.
symmetry. have h : b = subst_Tm VarTm b by asimpl.
rewrite {1}h.
apply ext_Tm.
case => //=.
Qed.
Lemma βη_commute0 a b c :
βPar.R a b ->
ηexp.R a c ->
exists d, rtc ηexp.R b d /\ βPar.R c d.
Proof.
move => h. move : c.
elim :a b /h.
- move => i c. elim /ηexp.inv => //=_.
move => *. subst.
eexists. split; last by apply βPar.refl.
apply rtc_once. constructor.
- move => b0 b1 a0 a1 hb ihb ha iha u.
elim /ηexp.inv => //=_.
+ move => b2 b3 a2 hb' [*]. subst.
move : ihb hb' => /[apply]. move=> [b2 [ihb0 ihb1]].
clear iha.
exists (App b2 a1).
split.
sfirstorder use:ηexps.AppCong, rtc_refl.
hauto lq:on ctrs:βPar.R use:βPar.refl.
+ move => b2 ? a2 + [*]. subst.
move => {}/iha {ihb} [a12 [ih0 ih1]].
exists (App b1 a12).
split.
sfirstorder use:ηexps.AppCong, rtc_refl.
hauto lq:on ctrs:βPar.R use:βPar.refl.
+ move => *. subst. move {ihb iha}.
eexists. split.
apply rtc_once. apply ηexp.AbsEta. simpl.
hauto lq:on ctrs:βPar.R use:βPar.renaming.
- move => a0 a1 ha iha u.
elim /ηexp.inv => //=_.
+ qauto l:on ctrs:βPar.R use:ηexps.AbsCong.
+ move => *. subst. move {iha}.
eexists.
split.
apply rtc_once. apply ηexp.AbsEta.
hauto lq:on ctrs:βPar.R use:βPar.renaming.
- move => b0 b1 a0 a1 hb ihb ha iha u.
elim /ηexp.inv => //=_.
+ move => b2 b3 a2 + [*]. subst.
elim /ηexp.inv => //=_.
* move => a2 a3 + [*]. subst.
move => /[dup] hba.
move => {}/ihb {iha}.
move => [bd [ih0 ih1]].
exists (subst_Tm (scons a1 VarTm ) bd).
split.
** sfirstorder use:ηexps.morphing.
** constructor; eauto.
* move => *. subst. move {ihb iha}.
exists (subst_Tm (scons a1 VarTm) b1).
split. apply rtc_refl.
constructor.
apply : βPar.AppAbs'; cycle 1. sfirstorder use:βPar.renaming.
constructor. by asimpl; rewrite subst_id.
eauto.
+ move => b2 a2 a3 + [*]. subst.
move => {}/iha {ihb}.
move => [a13 [ih0 ih1]].
exists (subst_Tm (scons a13 VarTm) b1).
split; last by constructor.
apply ηexps.lifting.
case => //=. eauto using rtc_refl.
+ move => *. subst. move {ihb iha}.
exists (Abs (App (ren_Tm shift (subst_Tm (scons a1 VarTm) b1)) (VarTm var_zero))). split.
* apply rtc_once. constructor.
* constructor. constructor; last by apply βPar.refl.
apply : βPar.AppAbs'; eauto using βPar.renaming.
by asimpl.
Qed.
Module IPar. Module IPar.
Inductive R : Tm -> Tm -> Prop := Inductive R : Tm -> Tm -> Prop :=
| VarCong i : | VarCong i :
R (VarTm i) (VarTm i) R (VarTm i) (VarTm i)
| AppCong b0 b1 a0 a1 : | AppCong b0 b1 a0 a1 :
βηPar.R b0 b1 -> ηPar.R b0 b1 ->
βηPar.R a0 a1 -> ηPar.R a0 a1 ->
R (App b0 a0) (App b1 a1) R (App b0 a0) (App b1 a1)
| AbsCong a0 a1 : | AbsCong a0 a1 :
βηPar.R a0 a1 -> ηPar.R a0 a1 ->
R (Abs a0) (Abs a1) R (Abs a0) (Abs a1).
| AppAbs b0 b1 a0 a1 :
βηPar.R b0 b1 ->
βηPar.R a0 a1 ->
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1).
Derive Inversion inv with (forall a b, R a b). Derive Inversion inv with (forall a b, R a b).
Lemma ToβηPar a b : R a b -> βηPar.R a b. Lemma ToηPar a b : R a b -> ηPar.R a b.
Proof. induction 1; hauto lq:on ctrs:βηPar.R. Qed. Proof. induction 1; hauto lq:on ctrs:ηPar.R. Qed.
End IPar. End IPar.
Module OExp. Module OExp.
@ -131,22 +372,22 @@ Module OExp.
Derive Inversion inv with (forall a b, R a b). Derive Inversion inv with (forall a b, R a b).
End OExp. End OExp.
Lemma βηO_commute a b c : Lemma ηO_commute a b c :
βηPar.R a b -> OExp.R a c -> ηPar.R a b -> OExp.R a c ->
exists d, OExp.R b d /\ βηPar.R c d. exists d, OExp.R b d /\ ηPar.R c d.
Proof. Proof.
hauto lq:on inv:OExp.R ctrs:OExp.R,βηPar.R use:βηPar.renaming, βηPar.refl. hauto lq:on inv:OExp.R ctrs:OExp.R,ηPar.R use:ηPar.renaming, ηPar.refl.
Qed. Qed.
Lemma βηO_commute0 a b c : Lemma ηO_commute0 a b c :
βηPar.R a b -> rtc OExp.R a c -> ηPar.R a b -> rtc OExp.R a c ->
exists d, rtc OExp.R b d /\ βηPar.R c d. exists d, rtc OExp.R b d /\ ηPar.R c d.
Proof. Proof.
move => + h. move : b. induction h; hauto lq:on ctrs:rtc use:βηO_commute. move => + h. move : b. induction h; hauto lq:on ctrs:rtc use:ηO_commute.
Qed. Qed.
Lemma IO_factorization a c : Lemma IO_factorization a c :
βηPar.R a c -> exists b, IPar.R a b /\ rtc OExp.R b c. ηPar.R a c -> exists b, IPar.R a b /\ rtc OExp.R b c.
Proof. Proof.
move => h. elim : a c /h. move => h. elim : a c /h.
- move => i. exists (VarTm i). - move => i. exists (VarTm i).
@ -159,9 +400,6 @@ Proof.
- move => a0 a1 ha [a' [iha0 iha1]]. - move => a0 a1 ha [a' [iha0 iha1]].
exists (Abs a1). split. by apply IPar.AbsCong. exists (Abs a1). split. by apply IPar.AbsCong.
apply rtc_refl. apply rtc_refl.
- move => b0 b1 a0 a1 hb [b' [ihb0 ihb1]] ha [a' [iha0 iha1]].
eexists. split. apply IPar.AppAbs; eauto.
apply rtc_refl.
- move => b0 b1 hb [b' [ihb0 ihb1]]. - move => b0 b1 hb [b' [ihb0 ihb1]].
exists b'. split => //. exists b'. split => //.
apply : rtc_r; eauto. apply : rtc_r; eauto.
@ -169,41 +407,15 @@ Proof.
Qed. Qed.
Lemma IO_merge a b c : Lemma IO_merge a b c :
βηPar.R a b -> OExp.R b c -> βηPar.R a c. ηPar.R a b -> OExp.R b c -> ηPar.R a c.
Proof. hauto lq:on inv:OExp.R ctrs:βηPar.R. Qed. Proof. hauto lq:on inv:OExp.R ctrs:ηPar.R. Qed.
Lemma IO_merge' a b c : Lemma IO_merge' a b c :
βηPar.R a b -> rtc OExp.R b c -> βηPar.R a c. ηPar.R a b -> rtc OExp.R b c -> ηPar.R a c.
Proof. induction 2; hauto l:on use:IO_merge. Qed. Proof. induction 2; hauto l:on use:IO_merge. Qed.
(* Lemma AppAbsEta b0 a0 b1 a1 : *)
(* βηPar.R b0 (Abs b1) -> *)
(* βηPar.R a0 a1 -> *)
(* βηPar.R *)
Lemma diamond a b c : IPar.R a b -> IPar.R a c -> exists d, IPar.R b d /\ IPar.R c d.
Proof.
elim : a b c.
- hauto lq:on inv:IPar.R ctrs:IPar.R.
- move => a iha b c.
elim /IPar.inv => //=_.
move => a0 a1 + [?]?. subst.
move => /[swap]. elim /IPar.inv => //=_.
move => a0 a2 + [?]?. subst.
move /IO_factorization.
move => [a3 [h0 h1]].
move /IO_factorization.
move => [a4 [h2 h3]].
move : iha h0 h2. repeat move/[apply].
move => [d [h2 h4]].
move :
Lemma diamond a b0 b1 : Lemma diamond a b0 b1 :
βηPar.R a b0 -> βηPar.R a b1 -> exists c, βηPar.R b0 c /\ βηPar.R b1 c. ηPar.R a b0 -> ηPar.R a b1 -> exists c, ηPar.R b0 c /\ ηPar.R b1 c.
Proof. Proof.
move => h. move : b1. move => h. move : b1.
elim : a b0 / h. elim : a b0 / h.
@ -213,7 +425,7 @@ Proof.
split => //=. split => //=.
apply : IO_merge'; eauto. apply : IO_merge'; eauto.
constructor. constructor.
apply βηPar.refl. apply ηPar.refl.
- move => b0 b1 a0 a1 hb ihb ha iha b2 /IO_factorization. - move => b0 b1 a0 a1 hb ihb ha iha b2 /IO_factorization.
move => [u [h0 h1]]. move => [u [h0 h1]].
elim /IPar.inv : h0=>//_. elim /IPar.inv : h0=>//_.
@ -221,15 +433,27 @@ Proof.
have {}/ihb [b14 [ihb0 ihb1]] := hb'. have {}/ihb [b14 [ihb0 ihb1]] := hb'.
have {}/iha [a13 [iha0 iha1]] := ha'. have {}/iha [a13 [iha0 iha1]] := ha'.
set q := (App _ _) in h1. set q := (App _ _) in h1.
have : βηPar.R q (App b14 a13) by constructor. have : ηPar.R q (App b14 a13) by constructor.
move : βηO_commute0 h1. subst q. repeat move/[apply]. move : ηO_commute0 h1. subst q. repeat move/[apply].
move => [d [h0 h1]]. move => [d [h0 h1]].
exists d. exists d.
split => //. split => //.
apply : IO_merge'; eauto using βηPar.AppCong. apply : IO_merge'; eauto using ηPar.AppCong.
+ move => b3 b4 a2 a3 hb' ha' [*]. subst. - move => a0 a1 ha iha u /IO_factorization.
move /IO_factorization : hb. move => [v [ih0 ih1]].
move => [b []]. elim /IPar.inv : ih0 => //= _.
elim /IPar.inv => //=_ a2 b5 hb'' [?]? ho. subst. move => a2 a3 + [*]. subst.
move /βηPar.AbsCong : hb'. move => {}/ihb. move => [b14 [ihb0 ihb1]]. move => {}/iha. move => [a2 [h0 h1]].
move : iha ha' => /[apply]. move => [a13 [iha0 iha1]]. move /ηPar.AbsCong in h1.
move : ηO_commute0 ih1 h1; repeat move/[apply].
move => [d [h1 h2]].
exists d.
split => //.
apply : IO_merge'; eauto.
by constructor.
- move => b0 b1 hb ihb b2 {}/ihb.
move => [c [h0 h1]].
eexists. split; cycle 1.
apply ηPar.AbsEta; eauto.
hauto lq:on ctrs:ηPar.R use:ηPar.renaming.
Qed.