459 lines
12 KiB
Coq
459 lines
12 KiB
Coq
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
|
||
Import Ltac2.Control.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import FunInd.
|
||
Require Import Psatz.
|
||
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn).
|
||
From Hammer Require Import Tactics.
|
||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
|
||
|
||
Module ηPar.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| VarCong i :
|
||
R (VarTm i) (VarTm i)
|
||
| AppCong b0 b1 a0 a1 :
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App b0 a0) (App b1 a1)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (Abs a0) (Abs a1)
|
||
| AbsEta b0 b1 :
|
||
R b0 b1 ->
|
||
R b0 (Abs (App (ren_Tm shift b1) (VarTm var_zero))).
|
||
|
||
#[export]Hint Constructors R : βηPar.
|
||
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
|
||
Lemma AbsEta' b0 b1 u :
|
||
u = (Abs (App (ren_Tm shift b1) (VarTm var_zero))) ->
|
||
R b0 b1 ->
|
||
R b0 u.
|
||
Proof. move => ->. apply AbsEta. Qed.
|
||
|
||
Lemma refl a : R a a.
|
||
Proof. elim : a => //=; eauto with βηPar. Qed.
|
||
|
||
Lemma morphing a b ρ :
|
||
R a b ->
|
||
R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
move => h. move : ρ. elim : a b /h => /=; eauto with βηPar.
|
||
- eauto using refl.
|
||
- move => *; apply : AbsEta'; eauto. by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming a b ξ :
|
||
R a b ->
|
||
R (ren_Tm ξ a) (ren_Tm ξ b).
|
||
Proof. substify. apply morphing. Qed.
|
||
|
||
Definition morphing2_ok ρ0 ρ1 := forall (i : nat), R (ρ0 i) (ρ1 i).
|
||
|
||
Lemma morphing2_ren (ξ : nat -> nat) ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
|
||
Proof. rewrite /morphing2_ok; eauto using renaming. Qed.
|
||
|
||
Lemma morphing2_ext a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (scons a ρ0) (scons b ρ1).
|
||
Proof.
|
||
move => * [|i] //=.
|
||
Qed.
|
||
|
||
Lemma morphing_up ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
|
||
Proof.
|
||
move => h.
|
||
apply morphing2_ext. apply VarCong.
|
||
by apply morphing2_ren.
|
||
Qed.
|
||
|
||
Lemma morphing2 a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
|
||
Proof.
|
||
move => h. move : ρ0 ρ1.
|
||
elim : a b /h => //=; eauto using morphing_up with βηPar.
|
||
- move => * /=.
|
||
apply : AbsEta'; eauto using morphing_up. by asimpl.
|
||
Qed.
|
||
|
||
End ηPar.
|
||
|
||
Module βPar.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| VarCong i :
|
||
R (VarTm i) (VarTm i)
|
||
| AppCong b0 b1 a0 a1 :
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App b0 a0) (App b1 a1)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (Abs a0) (Abs a1)
|
||
| AppAbs b0 b1 a0 a1 :
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App (Abs b0) a0) (subst_Tm (scons a1 VarTm) b1).
|
||
|
||
#[export]Hint Constructors R : βηPar.
|
||
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
|
||
Lemma AppAbs' b0 b1 a0 a1 u :
|
||
u = (subst_Tm (scons a1 VarTm) b1) ->
|
||
R b0 b1 ->
|
||
R a0 a1 ->
|
||
R (App (Abs b0) a0) u.
|
||
Proof. move => ->. apply AppAbs. Qed.
|
||
|
||
Lemma refl a : R a a.
|
||
Proof. elim : a => //=; eauto with βηPar. Qed.
|
||
|
||
Lemma morphing a b ρ :
|
||
R a b ->
|
||
R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
move => h. move : ρ. elim : a b /h => /=; eauto with βηPar.
|
||
- eauto using refl.
|
||
- move => *; apply : AppAbs'; eauto. by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming a b ξ :
|
||
R a b ->
|
||
R (ren_Tm ξ a) (ren_Tm ξ b).
|
||
Proof. substify. apply morphing. Qed.
|
||
|
||
Definition morphing2_ok ρ0 ρ1 := forall (i : nat), R (ρ0 i) (ρ1 i).
|
||
|
||
Lemma morphing2_ren (ξ : nat -> nat) ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
|
||
Proof. rewrite /morphing2_ok; eauto using renaming. Qed.
|
||
|
||
Lemma morphing2_ext a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (scons a ρ0) (scons b ρ1).
|
||
Proof.
|
||
move => * [|i] //=.
|
||
Qed.
|
||
|
||
Lemma morphing_up ρ0 ρ1 :
|
||
morphing2_ok ρ0 ρ1 ->
|
||
morphing2_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
|
||
Proof.
|
||
move => h.
|
||
apply morphing2_ext. apply VarCong.
|
||
by apply morphing2_ren.
|
||
Qed.
|
||
|
||
Lemma morphing2 a b ρ0 ρ1 :
|
||
R a b ->
|
||
morphing2_ok ρ0 ρ1 ->
|
||
R (subst_Tm ρ0 a) (subst_Tm ρ1 b).
|
||
Proof.
|
||
move => h. move : ρ0 ρ1.
|
||
elim : a b /h => //=; eauto using morphing_up with βηPar.
|
||
- move => * /=.
|
||
apply : AppAbs'; eauto using morphing_up. by asimpl.
|
||
Qed.
|
||
|
||
End βPar.
|
||
|
||
|
||
Module ηexp.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| AppCong0 b0 b1 a :
|
||
R b0 b1 ->
|
||
R (App b0 a) (App b1 a)
|
||
| AppCong1 b a0 a1 :
|
||
R a0 a1 ->
|
||
R (App b a0) (App b a1)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (Abs a0) (Abs a1)
|
||
| AbsEta a :
|
||
R a (Abs (App (ren_Tm shift a) (VarTm var_zero))).
|
||
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
|
||
Lemma AbsEta' a u :
|
||
u = (Abs (App (ren_Tm shift a) (VarTm var_zero))) ->
|
||
R a u.
|
||
Proof. move => ->. apply AbsEta. Qed.
|
||
|
||
Lemma morphing a b ρ :
|
||
R a b ->
|
||
R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
move => h. move : ρ. elim : a b /h => //=; try qauto ctrs:R.
|
||
- move => *; apply : AbsEta'; eauto. by asimpl.
|
||
Qed.
|
||
|
||
End ηexp.
|
||
|
||
Module ηexps.
|
||
|
||
#[local]Ltac solve_s_rec :=
|
||
move => *; eapply rtc_l; eauto;
|
||
hauto lq:on ctrs:ηexp.R.
|
||
|
||
#[local]Ltac solve_s :=
|
||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||
|
||
Lemma AbsCong (a b : Tm) :
|
||
rtc ηexp.R a b ->
|
||
rtc ηexp.R (Abs a) (Abs b).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma AppCong (a0 a1 b0 b1 : Tm) :
|
||
rtc ηexp.R a0 a1 ->
|
||
rtc ηexp.R b0 b1 ->
|
||
rtc ηexp.R (App a0 b0) (App a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma morphing a b ρ :
|
||
rtc ηexp.R a b ->
|
||
rtc ηexp.R (subst_Tm ρ a) (subst_Tm ρ b).
|
||
Proof.
|
||
induction 1; hauto l:on use:ηexp.morphing ctrs:rtc.
|
||
Qed.
|
||
|
||
Lemma renaming a b ξ :
|
||
rtc ηexp.R a b ->
|
||
rtc ηexp.R (ren_Tm ξ a) (ren_Tm ξ b).
|
||
Proof. substify. apply morphing. Qed.
|
||
|
||
Definition lifting_ok ρ0 ρ1 := forall (i : nat), rtc ηexp.R (ρ0 i) (ρ1 i).
|
||
|
||
Lemma lifting_ren (ξ : nat -> nat) ρ0 ρ1 :
|
||
lifting_ok ρ0 ρ1 ->
|
||
lifting_ok (funcomp (ren_Tm ξ) ρ0) (funcomp (ren_Tm ξ) ρ1).
|
||
Proof. rewrite /lifting_ok; eauto using renaming. Qed.
|
||
|
||
Lemma lifting_ext a b ρ0 ρ1 :
|
||
rtc ηexp.R a b ->
|
||
lifting_ok ρ0 ρ1 ->
|
||
lifting_ok (scons a ρ0) (scons b ρ1).
|
||
Proof.
|
||
move => * [|i] //=.
|
||
Qed.
|
||
|
||
Lemma lifting_up ρ0 ρ1 :
|
||
lifting_ok ρ0 ρ1 ->
|
||
lifting_ok (up_Tm_Tm ρ0) (up_Tm_Tm ρ1).
|
||
Proof.
|
||
move => h.
|
||
apply lifting_ext. apply rtc_refl.
|
||
by apply lifting_ren.
|
||
Qed.
|
||
|
||
Lemma lifting a ρ0 ρ1 :
|
||
lifting_ok ρ0 ρ1 ->
|
||
rtc ηexp.R (subst_Tm ρ0 a) (subst_Tm ρ1 a).
|
||
Proof.
|
||
move : ρ0 ρ1.
|
||
elim : a => //=;
|
||
qauto use:lifting_up, ηexps.AbsCong,ηexps.AppCong .
|
||
Qed.
|
||
|
||
End ηexps.
|
||
|
||
Lemma subst_id b : subst_Tm (scons (VarTm var_zero) (funcomp VarTm shift)) b = b.
|
||
symmetry. have h : b = subst_Tm VarTm b by asimpl.
|
||
rewrite {1}h.
|
||
apply ext_Tm.
|
||
case => //=.
|
||
Qed.
|
||
|
||
Lemma βη_commute0 a b c :
|
||
βPar.R a b ->
|
||
ηexp.R a c ->
|
||
exists d, rtc ηexp.R b d /\ βPar.R c d.
|
||
Proof.
|
||
move => h. move : c.
|
||
elim :a b /h.
|
||
- move => i c. elim /ηexp.inv => //=_.
|
||
move => *. subst.
|
||
eexists. split; last by apply βPar.refl.
|
||
apply rtc_once. constructor.
|
||
- move => b0 b1 a0 a1 hb ihb ha iha u.
|
||
elim /ηexp.inv => //=_.
|
||
+ move => b2 b3 a2 hb' [*]. subst.
|
||
move : ihb hb' => /[apply]. move=> [b2 [ihb0 ihb1]].
|
||
clear iha.
|
||
exists (App b2 a1).
|
||
split.
|
||
sfirstorder use:ηexps.AppCong, rtc_refl.
|
||
hauto lq:on ctrs:βPar.R use:βPar.refl.
|
||
+ move => b2 ? a2 + [*]. subst.
|
||
move => {}/iha {ihb} [a12 [ih0 ih1]].
|
||
exists (App b1 a12).
|
||
split.
|
||
sfirstorder use:ηexps.AppCong, rtc_refl.
|
||
hauto lq:on ctrs:βPar.R use:βPar.refl.
|
||
+ move => *. subst. move {ihb iha}.
|
||
eexists. split.
|
||
apply rtc_once. apply ηexp.AbsEta. simpl.
|
||
hauto lq:on ctrs:βPar.R use:βPar.renaming.
|
||
- move => a0 a1 ha iha u.
|
||
elim /ηexp.inv => //=_.
|
||
+ qauto l:on ctrs:βPar.R use:ηexps.AbsCong.
|
||
+ move => *. subst. move {iha}.
|
||
eexists.
|
||
split.
|
||
apply rtc_once. apply ηexp.AbsEta.
|
||
hauto lq:on ctrs:βPar.R use:βPar.renaming.
|
||
- move => b0 b1 a0 a1 hb ihb ha iha u.
|
||
elim /ηexp.inv => //=_.
|
||
+ move => b2 b3 a2 + [*]. subst.
|
||
elim /ηexp.inv => //=_.
|
||
* move => a2 a3 + [*]. subst.
|
||
move => /[dup] hba.
|
||
move => {}/ihb {iha}.
|
||
move => [bd [ih0 ih1]].
|
||
exists (subst_Tm (scons a1 VarTm ) bd).
|
||
split.
|
||
** sfirstorder use:ηexps.morphing.
|
||
** constructor; eauto.
|
||
* move => *. subst. move {ihb iha}.
|
||
exists (subst_Tm (scons a1 VarTm) b1).
|
||
split. apply rtc_refl.
|
||
constructor.
|
||
apply : βPar.AppAbs'; cycle 1. sfirstorder use:βPar.renaming.
|
||
constructor. by asimpl; rewrite subst_id.
|
||
eauto.
|
||
+ move => b2 a2 a3 + [*]. subst.
|
||
move => {}/iha {ihb}.
|
||
move => [a13 [ih0 ih1]].
|
||
exists (subst_Tm (scons a13 VarTm) b1).
|
||
split; last by constructor.
|
||
apply ηexps.lifting.
|
||
case => //=. eauto using rtc_refl.
|
||
+ move => *. subst. move {ihb iha}.
|
||
exists (Abs (App (ren_Tm shift (subst_Tm (scons a1 VarTm) b1)) (VarTm var_zero))). split.
|
||
* apply rtc_once. constructor.
|
||
* constructor. constructor; last by apply βPar.refl.
|
||
apply : βPar.AppAbs'; eauto using βPar.renaming.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Module IPar.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| VarCong i :
|
||
R (VarTm i) (VarTm i)
|
||
| AppCong b0 b1 a0 a1 :
|
||
ηPar.R b0 b1 ->
|
||
ηPar.R a0 a1 ->
|
||
R (App b0 a0) (App b1 a1)
|
||
| AbsCong a0 a1 :
|
||
ηPar.R a0 a1 ->
|
||
R (Abs a0) (Abs a1).
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
|
||
Lemma ToηPar a b : R a b -> ηPar.R a b.
|
||
Proof. induction 1; hauto lq:on ctrs:ηPar.R. Qed.
|
||
End IPar.
|
||
|
||
Module OExp.
|
||
Inductive R : Tm -> Tm -> Prop :=
|
||
| AbsEta b :
|
||
R b (Abs (App (ren_Tm shift b) (VarTm var_zero))).
|
||
|
||
Derive Inversion inv with (forall a b, R a b).
|
||
End OExp.
|
||
|
||
Lemma ηO_commute a b c :
|
||
ηPar.R a b -> OExp.R a c ->
|
||
exists d, OExp.R b d /\ ηPar.R c d.
|
||
Proof.
|
||
hauto lq:on inv:OExp.R ctrs:OExp.R,ηPar.R use:ηPar.renaming, ηPar.refl.
|
||
Qed.
|
||
|
||
Lemma ηO_commute0 a b c :
|
||
ηPar.R a b -> rtc OExp.R a c ->
|
||
exists d, rtc OExp.R b d /\ ηPar.R c d.
|
||
Proof.
|
||
move => + h. move : b. induction h; hauto lq:on ctrs:rtc use:ηO_commute.
|
||
Qed.
|
||
|
||
Lemma IO_factorization a c :
|
||
ηPar.R a c -> exists b, IPar.R a b /\ rtc OExp.R b c.
|
||
Proof.
|
||
move => h. elim : a c /h.
|
||
- move => i. exists (VarTm i).
|
||
split. constructor.
|
||
apply rtc_refl.
|
||
- move => b0 b1 a0 a1 hb [b' [ihb0 ihb1]] ha [a' [iha0 iha1]].
|
||
exists (App b1 a1).
|
||
split. apply IPar.AppCong; eauto.
|
||
apply rtc_refl.
|
||
- move => a0 a1 ha [a' [iha0 iha1]].
|
||
exists (Abs a1). split. by apply IPar.AbsCong.
|
||
apply rtc_refl.
|
||
- move => b0 b1 hb [b' [ihb0 ihb1]].
|
||
exists b'. split => //.
|
||
apply : rtc_r; eauto.
|
||
constructor.
|
||
Qed.
|
||
|
||
Lemma IO_merge a b c :
|
||
ηPar.R a b -> OExp.R b c -> ηPar.R a c.
|
||
Proof. hauto lq:on inv:OExp.R ctrs:ηPar.R. Qed.
|
||
|
||
Lemma IO_merge' a b c :
|
||
ηPar.R a b -> rtc OExp.R b c -> ηPar.R a c.
|
||
Proof. induction 2; hauto l:on use:IO_merge. Qed.
|
||
|
||
Lemma diamond a b0 b1 :
|
||
ηPar.R a b0 -> ηPar.R a b1 -> exists c, ηPar.R b0 c /\ ηPar.R b1 c.
|
||
Proof.
|
||
move => h. move : b1.
|
||
elim : a b0 / h.
|
||
- move => i b1 /IO_factorization.
|
||
move => [b [h0 h1]].
|
||
inversion h0; subst. exists b1.
|
||
split => //=.
|
||
apply : IO_merge'; eauto.
|
||
constructor.
|
||
apply ηPar.refl.
|
||
- move => b0 b1 a0 a1 hb ihb ha iha b2 /IO_factorization.
|
||
move => [u [h0 h1]].
|
||
elim /IPar.inv : h0=>//_.
|
||
+ move => b3 b4 a2 a3 hb' ha' [*]. subst.
|
||
have {}/ihb [b14 [ihb0 ihb1]] := hb'.
|
||
have {}/iha [a13 [iha0 iha1]] := ha'.
|
||
set q := (App _ _) in h1.
|
||
have : ηPar.R q (App b14 a13) by constructor.
|
||
move : ηO_commute0 h1. subst q. repeat move/[apply].
|
||
move => [d [h0 h1]].
|
||
exists d.
|
||
split => //.
|
||
apply : IO_merge'; eauto using ηPar.AppCong.
|
||
- move => a0 a1 ha iha u /IO_factorization.
|
||
move => [v [ih0 ih1]].
|
||
elim /IPar.inv : ih0 => //= _.
|
||
move => a2 a3 + [*]. subst.
|
||
move => {}/iha. move => [a2 [h0 h1]].
|
||
move /ηPar.AbsCong in h1.
|
||
move : ηO_commute0 ih1 h1; repeat move/[apply].
|
||
move => [d [h1 h2]].
|
||
exists d.
|
||
split => //.
|
||
apply : IO_merge'; eauto.
|
||
by constructor.
|
||
- move => b0 b1 hb ihb b2 {}/ihb.
|
||
move => [c [h0 h1]].
|
||
eexists. split; cycle 1.
|
||
apply ηPar.AbsEta; eauto.
|
||
hauto lq:on ctrs:ηPar.R use:ηPar.renaming.
|
||
Qed.
|