1113 lines
33 KiB
Coq
1113 lines
33 KiB
Coq
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
|
||
Import Ltac2.Control.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import FunInd.
|
||
Require Import Arith.Wf_nat.
|
||
Require Import Psatz.
|
||
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
|
||
From Hammer Require Import Tactics.
|
||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||
|
||
Ltac2 spec_refl () :=
|
||
List.iter
|
||
(fun a => match a with
|
||
| (i, _, _) =>
|
||
let h := Control.hyp i in
|
||
try (specialize $h with (1 := eq_refl))
|
||
end) (Control.hyps ()).
|
||
|
||
Ltac spec_refl := ltac2:(spec_refl ()).
|
||
|
||
Module ERed.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1
|
||
| PairEta a0 a1 :
|
||
R a0 a1 ->
|
||
R (PPair (PProj PL a0) (PProj PR a0)) a1
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PApp a0 b0) (PApp a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PPair a0 b0) (PPair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1)
|
||
| VarTm i :
|
||
R (VarPTm i) (VarPTm i).
|
||
|
||
Lemma refl n (a : PTm n) : R a a.
|
||
Proof.
|
||
elim : n / a; hauto lq:on ctrs:R.
|
||
Qed.
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppEta' n a0 a1 (u : PTm n) :
|
||
u = (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) ->
|
||
R a0 a1 ->
|
||
R u a1.
|
||
Proof. move => ->. apply AppEta. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a0 a1 ha iha m ξ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||
Proof. eauto using renaming. Qed.
|
||
|
||
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b :
|
||
R a b ->
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
||
Proof. hauto q:on inv:option. Qed.
|
||
|
||
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)).
|
||
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed.
|
||
|
||
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
|
||
Proof.
|
||
move => + h. move : m ρ0 ρ1. elim : n a b / h => n.
|
||
move => a0 a1 ha iha m ρ0 ρ1 hρ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : hauto lq:on ctrs:R use:morphing_up.
|
||
Qed.
|
||
|
||
End ERed.
|
||
|
||
Inductive SNe {n} : PTm n -> Prop :=
|
||
| N_Var i :
|
||
SNe (VarPTm i)
|
||
| N_App a b :
|
||
SNe a ->
|
||
SN b ->
|
||
SNe (PApp a b)
|
||
| N_Proj p a :
|
||
SNe a ->
|
||
SNe (PProj p a)
|
||
with SN {n} : PTm n -> Prop :=
|
||
| N_Pair a b :
|
||
SN a ->
|
||
SN b ->
|
||
SN (PPair a b)
|
||
| N_Abs a :
|
||
SN a ->
|
||
SN (PAbs a)
|
||
| N_SNe a :
|
||
SNe a ->
|
||
SN a
|
||
| N_Exp a b :
|
||
TRedSN a b ->
|
||
SN b ->
|
||
SN a
|
||
with TRedSN {n} : PTm n -> PTm n -> Prop :=
|
||
| N_β a b :
|
||
SN b ->
|
||
TRedSN (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||
| N_AppL a0 a1 b :
|
||
SN b ->
|
||
TRedSN a0 a1 ->
|
||
TRedSN (PApp a0 b) (PApp a1 b)
|
||
| N_ProjPairL a b :
|
||
SN b ->
|
||
TRedSN (PProj PL (PPair a b)) a
|
||
| N_ProjPairR a b :
|
||
SN a ->
|
||
TRedSN (PProj PR (PPair a b)) b
|
||
| N_ProjCong p a b :
|
||
TRedSN a b ->
|
||
TRedSN (PProj p a) (PProj p b).
|
||
|
||
Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop.
|
||
|
||
Inductive SNe' {n} : PTm n -> Prop :=
|
||
| N_Var' i :
|
||
SNe' (VarPTm i)
|
||
| N_App' a b :
|
||
SNe a ->
|
||
SNe' (PApp a b)
|
||
| N_Proj' p a :
|
||
SNe a ->
|
||
SNe' (PProj p a).
|
||
|
||
Lemma PProjAbs_imp n p (a : PTm (S n)) :
|
||
~ SN (PProj p (PAbs a)).
|
||
Proof.
|
||
move E : (PProj p (PAbs a)) => u hu.
|
||
move : p a E.
|
||
elim : n u / hu=>//=.
|
||
hauto lq:on inv:SNe.
|
||
hauto lq:on inv:TRedSN.
|
||
Qed.
|
||
|
||
Lemma PProjPair_imp n (a b0 b1 : PTm n ) :
|
||
~ SN (PApp (PPair b0 b1) a).
|
||
Proof.
|
||
move E : (PApp (PPair b0 b1) a) => u hu.
|
||
move : a b0 b1 E.
|
||
elim : n u / hu=>//=.
|
||
hauto lq:on inv:SNe.
|
||
hauto lq:on inv:TRedSN.
|
||
Qed.
|
||
|
||
Scheme sne_ind := Induction for SNe Sort Prop
|
||
with sn_ind := Induction for SN Sort Prop
|
||
with sred_ind := Induction for TRedSN Sort Prop.
|
||
|
||
Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind.
|
||
|
||
Fixpoint ne {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => true
|
||
| PApp a b => ne a && nf b
|
||
| PAbs a => false
|
||
| PPair _ _ => false
|
||
| PProj _ a => ne a
|
||
end
|
||
with nf {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => true
|
||
| PApp a b => ne a && nf b
|
||
| PAbs a => nf a
|
||
| PPair a b => nf a && nf b
|
||
| PProj _ a => ne a
|
||
end.
|
||
|
||
Lemma ne_nf n a : @ne n a -> nf a.
|
||
Proof. elim : a => //=. Qed.
|
||
|
||
Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop :=
|
||
| T_Refl :
|
||
TRedSN' a a
|
||
| T_Once b :
|
||
TRedSN a b ->
|
||
TRedSN' a b.
|
||
|
||
Lemma SN_Proj n p (a : PTm n) :
|
||
SN (PProj p a) -> SN a.
|
||
Proof.
|
||
move E : (PProj p a) => u h.
|
||
move : a E.
|
||
elim : n u / h => n //=; sauto.
|
||
Qed.
|
||
|
||
Lemma N_β' n a (b : PTm n) u :
|
||
u = (subst_PTm (scons b VarPTm) a) ->
|
||
SN b ->
|
||
TRedSN (PApp (PAbs a) b) u.
|
||
Proof. move => ->. apply N_β. Qed.
|
||
|
||
Lemma sn_renaming n :
|
||
(forall (a : PTm n) (s : SNe a), forall m (ξ : fin n -> fin m), SNe (ren_PTm ξ a)) /\
|
||
(forall (a : PTm n) (s : SN a), forall m (ξ : fin n -> fin m), SN (ren_PTm ξ a)) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin n -> fin m), TRedSN (ren_PTm ξ a) (ren_PTm ξ b)).
|
||
Proof.
|
||
move : n. apply sn_mutual => n; try qauto ctrs:SN, SNe, TRedSN depth:1.
|
||
move => a b ha iha m ξ /=.
|
||
apply N_β'. by asimpl. eauto.
|
||
Qed.
|
||
|
||
#[export]Hint Constructors SN SNe TRedSN : sn.
|
||
|
||
Ltac2 rec solve_anti_ren () :=
|
||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||
intro $x;
|
||
lazy_match! Constr.type (Control.hyp x) with
|
||
| fin ?x -> _ ?y => (ltac1:(case;qauto depth:2 db:sn))
|
||
| _ => solve_anti_ren ()
|
||
end.
|
||
|
||
Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||
|
||
Lemma sn_antirenaming n :
|
||
(forall (a : PTm n) (s : SNe a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SNe b) /\
|
||
(forall (a : PTm n) (s : SN a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin m -> fin n) a0,
|
||
a = ren_PTm ξ a0 -> exists b0, TRedSN a0 b0 /\ b = ren_PTm ξ b0).
|
||
Proof.
|
||
move : n. apply sn_mutual => n; try solve_anti_ren.
|
||
|
||
move => a b ha iha m ξ []//= u u0 [+ ?]. subst.
|
||
case : u => //= => u [*]. subst.
|
||
spec_refl. eexists. split. apply N_β=>//. by asimpl.
|
||
|
||
move => a b hb ihb m ξ[]//= p p0 [? +]. subst.
|
||
case : p0 => //= p p0 [*]. subst.
|
||
spec_refl. by eauto with sn.
|
||
|
||
move => a b ha iha m ξ[]//= u u0 [? ]. subst.
|
||
case : u0 => //=. move => p p0 [*]. subst.
|
||
spec_refl. by eauto with sn.
|
||
Qed.
|
||
|
||
Lemma sn_unmorphing n :
|
||
(forall (a : PTm n) (s : SNe a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SNe b) /\
|
||
(forall (a : PTm n) (s : SN a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall m (ρ : fin m -> PTm n) a0,
|
||
a = subst_PTm ρ a0 -> (exists b0, b = subst_PTm ρ b0 /\ TRedSN a0 b0) \/ SNe a0).
|
||
Proof.
|
||
move : n. apply sn_mutual => n; try solve_anti_ren.
|
||
- move => a b ha iha m ξ b0.
|
||
case : b0 => //=.
|
||
+ hauto lq:on rew:off db:sn.
|
||
+ move => p p0 [+ ?]. subst.
|
||
case : p => //=.
|
||
hauto lq:on db:sn.
|
||
move => p [?]. subst.
|
||
asimpl. left.
|
||
spec_refl.
|
||
eexists. split; last by eauto using N_β.
|
||
by asimpl.
|
||
- move => a0 a1 b hb ihb ha iha m ρ []//=.
|
||
+ hauto lq:on rew:off db:sn.
|
||
+ move => t0 t1 [*]. subst.
|
||
spec_refl.
|
||
case : iha.
|
||
* move => [u [? hu]]. subst.
|
||
left. eexists. split; eauto using N_AppL.
|
||
reflexivity.
|
||
* move => h.
|
||
right.
|
||
apply N_App => //.
|
||
- move => a b hb ihb m ρ []//=.
|
||
+ hauto l:on ctrs:TRedSN.
|
||
+ move => p p0 [?]. subst.
|
||
case : p0 => //=.
|
||
* hauto lq:on rew:off db:sn.
|
||
* move => p p0 [*]. subst.
|
||
hauto lq:on db:sn.
|
||
- move => a b ha iha m ρ []//=; first by hauto l:on db:sn.
|
||
hauto q:on inv:PTm db:sn.
|
||
- move => p a b ha iha m ρ []//=; first by hauto l:on db:sn.
|
||
move => t0 t1 [*]. subst.
|
||
spec_refl.
|
||
case : iha.
|
||
+ move => [b0 [? h]]. subst.
|
||
left. eexists. split; last by eauto with sn.
|
||
reflexivity.
|
||
+ hauto lq:on db:sn.
|
||
Qed.
|
||
|
||
Lemma SN_AppInv : forall n (a b : PTm n), SN (PApp a b) -> SN a /\ SN b.
|
||
Proof.
|
||
move => n a b. move E : (PApp a b) => u hu. move : a b E.
|
||
elim : n u /hu=>//=.
|
||
hauto lq:on rew:off inv:SNe db:sn.
|
||
move => n a b ha hb ihb a0 b0 ?. subst.
|
||
inversion ha; subst.
|
||
move {ihb}.
|
||
hecrush use:sn_unmorphing.
|
||
hauto lq:on db:sn.
|
||
Qed.
|
||
|
||
Lemma SN_ProjInv : forall n p (a : PTm n), SN (PProj p a) -> SN a.
|
||
Proof.
|
||
move => n p a. move E : (PProj p a) => u hu.
|
||
move : p a E.
|
||
elim : n u / hu => //=.
|
||
hauto lq:on rew:off inv:SNe db:sn.
|
||
hauto lq:on rew:off inv:TRedSN db:sn.
|
||
Qed.
|
||
|
||
Lemma ered_sn_preservation n :
|
||
(forall (a : PTm n) (s : SNe a), forall b, ERed.R a b -> SNe b) /\
|
||
(forall (a : PTm n) (s : SN a), forall b, ERed.R a b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall c, ERed.R a c -> exists d, TRedSN' c d /\ ERed.R b d).
|
||
Proof.
|
||
move : n. apply sn_mutual => n.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- move => a b ha iha hb ihb b0.
|
||
inversion 1; subst.
|
||
+ have /iha : (ERed.R (PProj PL a0) (PProj PL b0)) by sauto lq:on.
|
||
sfirstorder use:SN_Proj.
|
||
+ sauto lq:on.
|
||
- move => a ha iha b.
|
||
inversion 1; subst.
|
||
+ have : ERed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)).
|
||
apply ERed.AppCong; eauto using ERed.refl.
|
||
sfirstorder use:ERed.renaming.
|
||
move /iha.
|
||
move /SN_AppInv => [+ _].
|
||
hauto l:on use:sn_antirenaming.
|
||
+ sauto lq:on.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- move => a b ha iha c h0.
|
||
inversion h0; subst.
|
||
inversion H1; subst.
|
||
+ exists (PApp a1 b1). split. sfirstorder.
|
||
asimpl.
|
||
sauto lq:on.
|
||
+ have {}/iha := H3 => iha.
|
||
exists (subst_PTm (scons b1 VarPTm) a2).
|
||
split.
|
||
sauto lq:on.
|
||
hauto lq:on use:ERed.morphing, ERed.refl inv:option.
|
||
- sauto.
|
||
- move => a b hb ihb c.
|
||
elim /ERed.inv => //= _.
|
||
move => p a0 a1 ha [*]. subst.
|
||
elim /ERed.inv : ha => //= _.
|
||
+ move => a0 a2 ha' [*]. subst.
|
||
exists (PProj PL a1).
|
||
split. sauto.
|
||
sauto lq:on.
|
||
+ sauto lq:on rew:off.
|
||
- move => a b ha iha c.
|
||
elim /ERed.inv => //=_.
|
||
move => p a0 a1 + [*]. subst.
|
||
elim /ERed.inv => //=_.
|
||
+ move => a0 a2 h1 [*]. subst.
|
||
exists (PProj PR a1).
|
||
split. sauto.
|
||
sauto lq:on.
|
||
+ sauto lq:on.
|
||
- sauto.
|
||
Qed.
|
||
|
||
Module RRed.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppAbs a b :
|
||
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||
|
||
| ProjPair p a b :
|
||
R (PProj p (PPair a b)) (if p is PL then a else b)
|
||
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PApp a0 b) (PApp a1 b)
|
||
| AppCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PApp a b0) (PApp a b1)
|
||
| PairCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PPair a0 b) (PPair a1 b)
|
||
| PairCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PPair a b0) (PPair a b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1).
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppAbs' n a (b : PTm n) u :
|
||
u = (subst_PTm (scons b VarPTm) a) ->
|
||
R (PApp (PAbs a) b) u.
|
||
Proof.
|
||
move => ->. by apply AppAbs. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a b m ξ /=.
|
||
apply AppAbs'. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
|
||
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
|
||
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
||
Proof.
|
||
move E : (ren_PTm ξ a) => u h.
|
||
move : n ξ a E. elim : m u b/h.
|
||
- move => n a b m ξ []//=. move => []//= t t0 [*]. subst.
|
||
eexists. split. apply AppAbs. by asimpl.
|
||
- move => n p a b m ξ []//=.
|
||
move => p0 []//=. hauto q:on ctrs:R.
|
||
- move => n a0 a1 ha iha m ξ []//=.
|
||
move => p [*]. subst.
|
||
spec_refl.
|
||
move : iha => [t [h0 h1]]. subst.
|
||
eexists. split. eauto using AbsCong.
|
||
by asimpl.
|
||
- move => n a0 a1 b ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a b0 b1 h ih m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a0 a1 b ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a b0 b1 h ih m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n p a0 a1 ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
Qed.
|
||
|
||
End RRed.
|
||
|
||
Module RPar.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Beta ***********************)
|
||
| AppAbs a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1)
|
||
|
||
| ProjPair p a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1)
|
||
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PApp a0 b0) (PApp a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PPair a0 b0) (PPair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1)
|
||
| VarTm i :
|
||
R (VarPTm i) (VarPTm i).
|
||
|
||
Lemma refl n (a : PTm n) : R a a.
|
||
Proof.
|
||
elim : n / a; hauto lq:on ctrs:R.
|
||
Qed.
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppAbs' n a0 a1 (b0 b1 : PTm n) u :
|
||
u = (subst_PTm (scons b1 VarPTm) a1) ->
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PApp (PAbs a0) b0) u.
|
||
Proof. move => ->. apply AppAbs. Qed.
|
||
|
||
Lemma ProjPair' n p u (a0 a1 b0 b1 : PTm n) :
|
||
u = (if p is PL then a1 else b1) ->
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PProj p (PPair a0 b0)) u.
|
||
Proof. move => ->. apply ProjPair. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a0 a1 b0 b1 ha iha hb ihb m ξ /=.
|
||
eapply AppAbs'; eauto. by asimpl.
|
||
all : qauto ctrs:R use:ProjPair'.
|
||
Qed.
|
||
|
||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||
Proof. eauto using renaming. Qed.
|
||
|
||
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b :
|
||
R a b ->
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
||
Proof. hauto q:on inv:option. Qed.
|
||
|
||
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)).
|
||
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed.
|
||
|
||
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
|
||
Proof.
|
||
move => + h. move : m ρ0 ρ1. elim : n a b / h => n.
|
||
move => a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=.
|
||
eapply AppAbs'; eauto; cycle 1. sfirstorder use:morphing_up.
|
||
by asimpl.
|
||
all : hauto lq:on ctrs:R use:morphing_up, ProjPair'.
|
||
Qed.
|
||
|
||
Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) :
|
||
R a b ->
|
||
R (subst_PTm ρ a) (subst_PTm ρ b).
|
||
Proof.
|
||
hauto l:on use:morphing, refl.
|
||
Qed.
|
||
|
||
|
||
Lemma cong n (a0 a1 : PTm (S n)) b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1).
|
||
Proof.
|
||
move => h0 h1. apply morphing=>//.
|
||
hauto q:on inv:option ctrs:R.
|
||
Qed.
|
||
|
||
Lemma FromRRed n (a b : PTm n) :
|
||
RRed.R a b -> RPar.R a b.
|
||
Proof.
|
||
induction 1; qauto l:on use:RPar.refl ctrs:RPar.R.
|
||
Qed.
|
||
|
||
End RPar.
|
||
|
||
Lemma red_sn_preservation n :
|
||
(forall (a : PTm n) (s : SNe a), forall b, RPar.R a b -> SNe b) /\
|
||
(forall (a : PTm n) (s : SN a), forall b, RPar.R a b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall c, RPar.R a c -> exists d, TRedSN' c d /\ RPar.R b d).
|
||
Proof.
|
||
move : n. apply sn_mutual => n.
|
||
- hauto l:on inv:RPar.R.
|
||
- qauto l:on inv:RPar.R,SNe,SN ctrs:SNe.
|
||
- hauto lq:on inv:RPar.R, SNe ctrs:SNe.
|
||
- qauto l:on ctrs:SN inv:RPar.R.
|
||
- hauto lq:on ctrs:SN inv:RPar.R.
|
||
- hauto lq:on ctrs:SN.
|
||
- hauto q:on ctrs:SN inv:SN, TRedSN'.
|
||
- move => a b ha iha hb ihb.
|
||
elim /RPar.inv : ihb => //=_.
|
||
+ move => a0 a1 b0 b1 ha0 hb0 [*]. subst.
|
||
eauto using RPar.cong, T_Refl.
|
||
+ move => a0 a1 b0 b1 h0 h1 [*]. subst.
|
||
elim /RPar.inv : h0 => //=_.
|
||
move => a0 a2 h [*]. subst.
|
||
eexists. split. apply T_Once. hauto lq:on ctrs:TRedSN.
|
||
eauto using RPar.cong.
|
||
- move => a0 a1 b hb ihb ha iha c.
|
||
elim /RPar.inv => //=_.
|
||
+ qauto l:on inv:TRedSN.
|
||
+ move => a2 a3 b0 b1 h0 h1 [*]. subst.
|
||
have {}/iha := h0.
|
||
move => [d [iha0 iha1]].
|
||
hauto lq:on rew:off inv:TRedSN' ctrs:TRedSN, RPar.R, TRedSN'.
|
||
- hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN.
|
||
- hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN.
|
||
- sauto.
|
||
Qed.
|
||
|
||
Function tstar {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => a
|
||
| PAbs a => PAbs (tstar a)
|
||
| PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a)
|
||
| PApp a b => PApp (tstar a) (tstar b)
|
||
| PPair a b => PPair (tstar a) (tstar b)
|
||
| PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b)
|
||
| PProj p a => PProj p (tstar a)
|
||
end.
|
||
|
||
Module TStar.
|
||
Lemma renaming n m (ξ : fin n -> fin m) (a : PTm n) :
|
||
tstar (ren_PTm ξ a) = ren_PTm ξ (tstar a).
|
||
Proof.
|
||
move : m ξ.
|
||
apply tstar_ind => {}n {}a => //=.
|
||
- hauto lq:on.
|
||
- scongruence.
|
||
- move => a0 b ? h ih m ξ.
|
||
rewrite ih.
|
||
asimpl; congruence.
|
||
- qauto l:on.
|
||
- scongruence.
|
||
- hauto q:on.
|
||
- qauto l:on.
|
||
Qed.
|
||
|
||
Lemma pair n (a b : PTm n) :
|
||
tstar (PPair a b) = PPair (tstar a) (tstar b).
|
||
reflexivity. Qed.
|
||
End TStar.
|
||
|
||
Definition isPair {n} (a : PTm n) := if a is PPair _ _ then true else false.
|
||
|
||
Lemma tstar_proj n (a : PTm n) :
|
||
((~~ isPair a) /\ forall p, tstar (PProj p a) = PProj p (tstar a)) \/
|
||
exists a0 b0, a = PPair a0 b0 /\ forall p, tstar (PProj p a) = (if p is PL then (tstar a0) else (tstar b0)).
|
||
Proof. sauto lq:on. Qed.
|
||
|
||
Module ERed'.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a :
|
||
R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a
|
||
| PairEta a :
|
||
R (PPair (PProj PL a) (PProj PR a)) a
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PApp a0 b) (PApp a1 b)
|
||
| AppCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PApp a b0) (PApp a b1)
|
||
| PairCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PPair a0 b) (PPair a1 b)
|
||
| PairCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PPair a b0) (PPair a b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1).
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppEta' n a (u : PTm n) :
|
||
u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) ->
|
||
R u a.
|
||
Proof. move => ->. apply AppEta. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a m ξ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||
Proof. eauto using renaming. Qed.
|
||
|
||
End ERed'.
|
||
|
||
Module EReds.
|
||
|
||
#[local]Ltac solve_s_rec :=
|
||
move => *; eapply rtc_l; eauto;
|
||
hauto lq:on ctrs:ERed'.R.
|
||
|
||
#[local]Ltac solve_s :=
|
||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||
|
||
Lemma AbsCong n (a b : PTm (S n)) :
|
||
rtc ERed'.R a b ->
|
||
rtc ERed'.R (PAbs a) (PAbs b).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R b0 b1 ->
|
||
rtc ERed'.R (PApp a0 b0) (PApp a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R b0 b1 ->
|
||
rtc ERed'.R (PPair a0 b0) (PPair a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R (PProj p a0) (PProj p a1).
|
||
Proof. solve_s. Qed.
|
||
End EReds.
|
||
|
||
Module RReds.
|
||
|
||
#[local]Ltac solve_s_rec :=
|
||
move => *; eapply rtc_l; eauto;
|
||
hauto lq:on ctrs:RRed.R.
|
||
|
||
#[local]Ltac solve_s :=
|
||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||
|
||
Lemma AbsCong n (a b : PTm (S n)) :
|
||
rtc RRed.R a b ->
|
||
rtc RRed.R (PAbs a) (PAbs b).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R b0 b1 ->
|
||
rtc RRed.R (PApp a0 b0) (PApp a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R b0 b1 ->
|
||
rtc RRed.R (PPair a0 b0) (PPair a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R (PProj p a0) (PProj p a1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ. elim : a b /h; hauto lq:on ctrs:rtc use:RRed.renaming.
|
||
Qed.
|
||
|
||
End RReds.
|
||
|
||
|
||
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
|
||
Proof.
|
||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||
Qed.
|
||
|
||
Lemma ne_ered n (a b : PTm n) (h : ERed'.R a b ) :
|
||
(ne a -> ne b) /\ (nf a -> nf b).
|
||
Proof.
|
||
elim : n a b /h=>//=; hauto qb:on use:ne_nf_ren, ne_nf.
|
||
Qed.
|
||
|
||
Definition ishf {n} (a : PTm n) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| PAbs _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Module NeERed.
|
||
Inductive R_nonelim {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a0 a1 :
|
||
~~ ishf a0 ->
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1
|
||
| PairEta a0 a1 :
|
||
~~ ishf a0 ->
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PPair (PProj PL a0) (PProj PR a0)) a1
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim (PAbs a0) (PAbs a1)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_nonelim (PApp a0 b0) (PApp a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_nonelim (PPair a0 b0) (PPair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PProj p a0) (PProj p a1)
|
||
| VarTm i :
|
||
R_nonelim (VarPTm i) (VarPTm i)
|
||
with R_elim {n} : PTm n -> PTm n -> Prop :=
|
||
| NAbsCong a0 a1 :
|
||
R_nonelim a0 a1 ->
|
||
R_elim (PAbs a0) (PAbs a1)
|
||
| NAppCong a0 a1 b0 b1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_elim (PApp a0 b0) (PApp a1 b1)
|
||
| NPairCong a0 a1 b0 b1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_elim (PPair a0 b0) (PPair a1 b1)
|
||
| NProjCong p a0 a1 :
|
||
R_elim a0 a1 ->
|
||
R_elim (PProj p a0) (PProj p a1)
|
||
| NVarTm i :
|
||
R_elim (VarPTm i) (VarPTm i).
|
||
|
||
Scheme ered_elim_ind := Induction for R_elim Sort Prop
|
||
with ered_nonelim_ind := Induction for R_nonelim Sort Prop.
|
||
|
||
Combined Scheme ered_mutual from ered_elim_ind, ered_nonelim_ind.
|
||
|
||
Lemma R_elim_nf n :
|
||
(forall (a b : PTm n), R_elim a b -> nf b -> nf a) /\
|
||
(forall (a b : PTm n), R_nonelim a b -> nf b -> nf a).
|
||
Proof.
|
||
move : n. apply ered_mutual => n //=.
|
||
- move => a0 a1 b0 b1 h ih h' ih' /andP [h0 h1].
|
||
have hb0 : nf b0 by eauto.
|
||
suff : ne a0 by qauto b:on.
|
||
qauto l:on inv:R_elim.
|
||
- hauto lb:on.
|
||
- hauto lq:on inv:R_elim.
|
||
- move => a0 a1 /negP ha' ha ih ha1.
|
||
have {ih} := ih ha1.
|
||
move => ha0.
|
||
suff : ne a0 by hauto lb:on drew:off use:ne_nf_ren.
|
||
inversion ha; subst => //=.
|
||
- move => a0 a1 /negP ha' ha ih ha1.
|
||
have {}ih := ih ha1.
|
||
have : ne a0 by hauto lq:on inv:PTm.
|
||
qauto lb:on.
|
||
- move => a0 a1 b0 b1 ha iha hb ihb /andP [h0 h1].
|
||
have {}ihb := ihb h1.
|
||
have {}iha := iha ltac:(eauto using ne_nf).
|
||
suff : ne a0 by hauto lb:on.
|
||
move : ha h0. hauto lq:on inv:R_elim.
|
||
- hauto lb: on drew: off.
|
||
- hauto lq:on rew:off inv:R_elim.
|
||
Qed.
|
||
|
||
Lemma R_nonelim_nothf n (a b : PTm n) :
|
||
R_nonelim a b ->
|
||
~~ ishf a ->
|
||
R_elim a b.
|
||
Proof.
|
||
move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_elim.
|
||
Qed.
|
||
|
||
Lemma R_elim_nonelim n (a b : PTm n) :
|
||
R_elim a b ->
|
||
R_nonelim a b.
|
||
move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_nonelim.
|
||
Qed.
|
||
|
||
End NeERed.
|
||
|
||
Module Type NoForbid.
|
||
Parameter P : forall n, PTm n -> Prop.
|
||
Arguments P {n}.
|
||
|
||
Axiom P_ERed : forall n (a b : PTm n), ERed.R a b -> P a -> P b.
|
||
Axiom P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b.
|
||
Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c).
|
||
Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)).
|
||
|
||
Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
|
||
Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
|
||
Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b.
|
||
Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
|
||
Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a.
|
||
|
||
End NoForbid.
|
||
|
||
Module Type NoForbid_FactSig (M : NoForbid).
|
||
|
||
Axiom P_EReds : forall n (a b : PTm n), rtc ERed.R a b -> M.P a -> M.P b.
|
||
|
||
Axiom P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> M.P a -> M.P b.
|
||
|
||
End NoForbid_FactSig.
|
||
|
||
Module NoForbid_Fact (M : NoForbid) : NoForbid_FactSig M.
|
||
Import M.
|
||
|
||
Lemma P_EReds : forall n (a b : PTm n), rtc ERed.R a b -> P a -> P b.
|
||
Proof.
|
||
induction 1; eauto using P_ERed, rtc_l, rtc_refl.
|
||
Qed.
|
||
|
||
Lemma P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> P a -> P b.
|
||
Proof.
|
||
induction 1; eauto using P_RRed, rtc_l, rtc_refl.
|
||
Qed.
|
||
End NoForbid_Fact.
|
||
|
||
Module SN_NoForbid : NoForbid.
|
||
Definition P := @SN.
|
||
Arguments P {n}.
|
||
|
||
Lemma P_ERed : forall n (a b : PTm n), ERed.R a b -> P a -> P b.
|
||
Proof. sfirstorder use:ered_sn_preservation. Qed.
|
||
|
||
Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b.
|
||
Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed.
|
||
|
||
Lemma P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c).
|
||
Proof. sfirstorder use:PProjPair_imp. Qed.
|
||
|
||
Lemma P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)).
|
||
Proof. sfirstorder use:PProjAbs_imp. Qed.
|
||
|
||
Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
|
||
Proof. sfirstorder use:SN_AppInv. Qed.
|
||
|
||
Lemma P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b.
|
||
move => n a b. move E : (PPair a b) => u h.
|
||
move : a b E. elim : n u / h; sauto lq:on rew:off. Qed.
|
||
|
||
Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
|
||
Proof. sfirstorder use:SN_ProjInv. Qed.
|
||
|
||
Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
|
||
Proof.
|
||
move => n a. move E : (PAbs a) => u h.
|
||
move : E. move : a.
|
||
induction h; sauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Lemma P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a.
|
||
Proof. hauto lq:on use:sn_antirenaming, sn_renaming. Qed.
|
||
|
||
End SN_NoForbid.
|
||
|
||
Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
||
Import M MFacts.
|
||
#[local]Hint Resolve P_ERed P_RRed P_AppPair P_ProjAbs : forbid.
|
||
|
||
Lemma η_split n (a0 a1 : PTm n) :
|
||
ERed.R a0 a1 ->
|
||
P a0 ->
|
||
exists b, rtc RRed.R a0 b /\ NeERed.R_nonelim b a1.
|
||
Proof.
|
||
move => h. elim : n a0 a1 /h .
|
||
- move => n a0 a1 ha ih /[dup] hP.
|
||
move /P_AbsInv /P_AppInv => [/P_renaming ha0 _].
|
||
have {ih} := ih ha0.
|
||
move => [b [ih0 ih1]].
|
||
case /orP : (orNb (ishf b)).
|
||
exists (PAbs (PApp (ren_PTm shift b) (VarPTm var_zero))).
|
||
split. apply RReds.AbsCong. apply RReds.AppCong; auto using rtc_refl.
|
||
by eauto using RReds.renaming.
|
||
apply NeERed.AppEta=>//.
|
||
sfirstorder use:NeERed.R_nonelim_nothf.
|
||
|
||
case : b ih0 ih1 => //=.
|
||
+ move => p ih0 ih1 _.
|
||
set q := PAbs _.
|
||
suff : rtc RRed.R q (PAbs p) by sfirstorder.
|
||
subst q.
|
||
apply : rtc_r.
|
||
apply RReds.AbsCong. apply RReds.AppCong.
|
||
by eauto using RReds.renaming.
|
||
apply rtc_refl.
|
||
apply : RRed.AbsCong => /=.
|
||
apply RRed.AppAbs'. by asimpl.
|
||
(* violates SN *)
|
||
+ move => p p0 h. exfalso.
|
||
have : P (PApp (ren_PTm shift a0) (VarPTm var_zero))
|
||
by sfirstorder use:P_AbsInv.
|
||
|
||
have : rtc RRed.R (PApp (ren_PTm shift a0) (VarPTm var_zero))
|
||
(PApp (ren_PTm shift (PPair p p0)) (VarPTm var_zero))
|
||
by hauto lq:on use:RReds.AppCong, RReds.renaming, rtc_refl.
|
||
|
||
move : P_RReds. repeat move/[apply] => /=.
|
||
hauto l:on use:P_AppPair.
|
||
- move => n a0 a1 h ih /[dup] hP.
|
||
move /P_PairInv => [/P_ProjInv + _].
|
||
move : ih => /[apply].
|
||
move => [b [ih0 ih1]].
|
||
case /orP : (orNb (ishf b)).
|
||
exists (PPair (PProj PL b) (PProj PR b)).
|
||
split. sfirstorder use:RReds.PairCong,RReds.ProjCong.
|
||
hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf.
|
||
|
||
case : b ih0 ih1 => //=.
|
||
(* violates SN *)
|
||
+ move => p ?. exfalso.
|
||
have {}hP : P (PProj PL a0) by sfirstorder use:P_PairInv.
|
||
have : rtc RRed.R (PProj PL a0) (PProj PL (PAbs p))
|
||
by eauto using RReds.ProjCong.
|
||
move : P_RReds hP. repeat move/[apply] => /=.
|
||
sfirstorder use:P_ProjAbs.
|
||
+ move => t0 t1 ih0 h1 _.
|
||
exists (PPair t0 t1).
|
||
split => //=.
|
||
apply RReds.PairCong.
|
||
apply : rtc_r; eauto using RReds.ProjCong.
|
||
apply RRed.ProjPair.
|
||
apply : rtc_r; eauto using RReds.ProjCong.
|
||
apply RRed.ProjPair.
|
||
- hauto lq:on ctrs:NeERed.R_nonelim use:RReds.AbsCong, P_AbsInv.
|
||
- move => n a0 a1 b0 b1 ha iha hb ihb.
|
||
move => /[dup] hP /P_AppInv [hP0 hP1].
|
||
have {iha} [a2 [iha0 iha1]] := iha hP0.
|
||
have {ihb} [b2 [ihb0 ihb1]] := ihb hP1.
|
||
case /orP : (orNb (ishf a2)) => [h|].
|
||
+ exists (PApp a2 b2). split; first by eauto using RReds.AppCong.
|
||
hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf.
|
||
+ case : a2 iha0 iha1 => //=.
|
||
* move => p h0 h1 _.
|
||
inversion h1; subst.
|
||
** exists (PApp a2 b2).
|
||
split.
|
||
apply : rtc_r.
|
||
apply RReds.AppCong; eauto.
|
||
apply RRed.AppAbs'. by asimpl.
|
||
hauto lq:on ctrs:NeERed.R_nonelim.
|
||
** hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.AppCong.
|
||
(* Impossible *)
|
||
* move => u0 u1 h. exfalso.
|
||
have : rtc RRed.R (PApp a0 b0) (PApp (PPair u0 u1) b0)
|
||
by hauto lq:on ctrs:rtc use:RReds.AppCong.
|
||
move : P_RReds hP; repeat move/[apply].
|
||
sfirstorder use:P_AppPair.
|
||
- hauto lq:on ctrs:NeERed.R_nonelim use:RReds.PairCong, P_PairInv.
|
||
- move => n p a0 a1 ha ih /[dup] hP /P_ProjInv.
|
||
move : ih => /[apply]. move => [a2 [iha0 iha1]].
|
||
case /orP : (orNb (ishf a2)) => [h|].
|
||
exists (PProj p a2).
|
||
split. eauto using RReds.ProjCong.
|
||
qauto l:on ctrs:NeERed.R_nonelim, NeERed.R_elim use:NeERed.R_nonelim_nothf.
|
||
|
||
case : a2 iha0 iha1 => //=.
|
||
+ move => u iha0. exfalso.
|
||
have : rtc RRed.R (PProj p a0) (PProj p (PAbs u))
|
||
by sfirstorder use:RReds.ProjCong ctrs:rtc.
|
||
move : P_RReds hP. repeat move/[apply].
|
||
sfirstorder use:P_ProjAbs.
|
||
+ move => u0 u1 iha0 iha1 _.
|
||
inversion iha1; subst.
|
||
* exists (PProj p a2). split.
|
||
apply : rtc_r.
|
||
apply RReds.ProjCong; eauto.
|
||
clear. hauto l:on inv:PTag.
|
||
hauto lq:on ctrs:NeERed.R_nonelim.
|
||
* hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.ProjCong.
|
||
- hauto lq:on ctrs:rtc, NeERed.R_nonelim.
|
||
Qed.
|
||
|
||
End UniqueNF.
|
||
|
||
Lemma η_nf_to_ne n (a0 a1 : PTm n) :
|
||
ERed'.R a0 a1 -> nf a0 -> ~~ ne a0 -> ne a1 ->
|
||
(a0 = PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) \/
|
||
(a0 = PPair (PProj PL a1) (PProj PR a1)).
|
||
Proof.
|
||
move => h.
|
||
elim : n a0 a1 /h => n /=.
|
||
- sfirstorder use:ne_ered.
|
||
- hauto l:on use:ne_ered.
|
||
- scongruence use:ne_ered.
|
||
- hauto qb:on use:ne_ered, ne_nf.
|
||
- move => a b0 b1 h0 ih0 /andP [h1 h2] h3 /andP [h4 h5].
|
||
have {h3} : ~~ ne a by sfirstorder b:on.
|
||
by move /negP.
|
||
- hauto lqb:on.
|
||
- sfirstorder b:on.
|
||
- scongruence b:on.
|
||
Qed.
|