1335 lines
44 KiB
Coq
1335 lines
44 KiB
Coq
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||
Require Import common fp_red.
|
||
From Hammer Require Import Tactics.
|
||
From Equations Require Import Equations.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||
Import Psatz.
|
||
Require Import Cdcl.Itauto.
|
||
|
||
Definition ProdSpace {n} (PA : PTm n -> Prop)
|
||
(PF : PTm n -> (PTm n -> Prop) -> Prop) b : Prop :=
|
||
forall a PB, PA a -> PF a PB -> PB (PApp b a).
|
||
|
||
Definition SumSpace {n} (PA : PTm n -> Prop)
|
||
(PF : PTm n -> (PTm n -> Prop) -> Prop) t : Prop :=
|
||
(exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||
|
||
Definition BindSpace {n} p := if p is PPi then @ProdSpace n else SumSpace.
|
||
|
||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||
|
||
Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) -> Prop :=
|
||
| InterpExt_Ne A :
|
||
SNe A ->
|
||
⟦ A ⟧ i ;; I ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v)
|
||
|
||
| InterpExt_Bind p A B PA PF :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF
|
||
|
||
| InterpExt_Univ j :
|
||
j < i ->
|
||
⟦ PUniv j ⟧ i ;; I ↘ (I j)
|
||
|
||
| InterpExt_Step A A0 PA :
|
||
TRedSN A A0 ->
|
||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I ↘ PA
|
||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||
|
||
Lemma InterpExt_Univ' n i I j (PF : PTm n -> Prop) :
|
||
PF = I j ->
|
||
j < i ->
|
||
⟦ PUniv j ⟧ i ;; I ↘ PF.
|
||
Proof. hauto lq:on ctrs:InterpExt. Qed.
|
||
|
||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||
|
||
Equations InterpUnivN n (i : nat) : PTm n -> (PTm n -> Prop) -> Prop by wf i lt :=
|
||
InterpUnivN n i := @InterpExt n i
|
||
(fun j A =>
|
||
match j <? i with
|
||
| left _ => exists PA, InterpUnivN n j A PA
|
||
| right _ => False
|
||
end).
|
||
Arguments InterpUnivN {n}.
|
||
|
||
Lemma InterpExt_lt_impl n i I I' A (PA : PTm n -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI h.
|
||
elim : A PA /h.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on rew:off ctrs:InterpExt.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on ctrs:InterpExt.
|
||
Qed.
|
||
|
||
Lemma InterpExt_lt_eq n i I I' A (PA : PTm n -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA =
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI. apply propositional_extensionality.
|
||
have : forall j, j < i -> I' j = I j by sfirstorder.
|
||
firstorder using InterpExt_lt_impl.
|
||
Qed.
|
||
|
||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||
|
||
Lemma InterpUnivN_nolt n i :
|
||
@InterpUnivN n i = @InterpExt n i (fun j (A : PTm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||
Proof.
|
||
simp InterpUnivN.
|
||
extensionality A. extensionality PA.
|
||
set I0 := (fun _ => _).
|
||
set I1 := (fun _ => _).
|
||
apply InterpExt_lt_eq.
|
||
hauto q:on.
|
||
Qed.
|
||
|
||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||
|
||
Lemma InterpUniv_ind
|
||
: forall n (P : nat -> PTm n -> (PTm n -> Prop) -> Prop),
|
||
(forall i (A : PTm n), SNe A -> P i A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) ->
|
||
(forall i (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop)
|
||
(PF : PTm n -> (PTm n -> Prop) -> Prop),
|
||
⟦ A ⟧ i ↘ PA ->
|
||
P i A PA ->
|
||
(forall a : PTm n, PA a -> exists PB : PTm n -> Prop, PF a PB) ->
|
||
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) ->
|
||
P i (PBind p A B) (BindSpace p PA PF)) ->
|
||
(forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) ->
|
||
(forall i (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) ->
|
||
forall i (p : PTm n) (P0 : PTm n -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0.
|
||
Proof.
|
||
move => n P hSN hBind hUniv hRed.
|
||
elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv.
|
||
move => A PA. move => h. set I := fun _ => _ in h.
|
||
elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto.
|
||
Qed.
|
||
|
||
Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop.
|
||
|
||
Lemma InterpUniv_Ne n i (A : PTm n) :
|
||
SNe A ->
|
||
⟦ A ⟧ i ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v).
|
||
Proof. simp InterpUniv. apply InterpExt_Ne. Qed.
|
||
|
||
Lemma InterpUniv_Bind n i p A B PA PF :
|
||
⟦ A : PTm n ⟧ i ↘ PA ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ↘ BindSpace p PA PF.
|
||
Proof. simp InterpUniv. apply InterpExt_Bind. Qed.
|
||
|
||
Lemma InterpUniv_Univ n i j :
|
||
j < i -> ⟦ PUniv j : PTm n ⟧ i ↘ (fun A => exists PA, ⟦ A ⟧ j ↘ PA).
|
||
Proof.
|
||
simp InterpUniv. simpl.
|
||
apply InterpExt_Univ'. by simp InterpUniv.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Step i n A A0 PA :
|
||
TRedSN A A0 ->
|
||
⟦ A0 : PTm n ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PA.
|
||
Proof. simp InterpUniv. apply InterpExt_Step. Qed.
|
||
|
||
|
||
#[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv.
|
||
|
||
Lemma InterpExt_cumulative n i j I (A : PTm n) PA :
|
||
i <= j ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ j ;; I ↘ PA.
|
||
Proof.
|
||
move => h h0.
|
||
elim : A PA /h0;
|
||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||
Qed.
|
||
|
||
Lemma InterpUniv_cumulative n i (A : PTm n) PA :
|
||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||
⟦ A ⟧ j ↘ PA.
|
||
Proof.
|
||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||
Qed.
|
||
|
||
Definition CR {n} (P : PTm n -> Prop) :=
|
||
(forall a, P a -> SN a) /\
|
||
(forall a, SNe a -> P a).
|
||
|
||
Lemma N_Exps n (a b : PTm n) :
|
||
rtc TRedSN a b ->
|
||
SN b ->
|
||
SN a.
|
||
Proof.
|
||
induction 1; eauto using N_Exp.
|
||
Qed.
|
||
|
||
Lemma adequacy : forall i n A PA,
|
||
⟦ A : PTm n ⟧ i ↘ PA ->
|
||
CR PA /\ SN A.
|
||
Proof.
|
||
move => + n. apply : InterpUniv_ind.
|
||
- hauto l:on use:N_Exps ctrs:SN,SNe.
|
||
- move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
|
||
have hb : PA PBot by hauto q:on ctrs:SNe.
|
||
have hb' : SN PBot by hauto q:on ctrs:SN, SNe.
|
||
rewrite /CR.
|
||
repeat split.
|
||
+ case : p =>//=.
|
||
* rewrite /ProdSpace.
|
||
qauto use:SN_AppInv unfold:CR.
|
||
* hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps.
|
||
+ move => a ha.
|
||
case : p=>/=.
|
||
* rewrite /ProdSpace => a0 *.
|
||
suff : SNe (PApp a a0) by sfirstorder.
|
||
hauto q:on use:N_App.
|
||
* sfirstorder.
|
||
+ apply N_Bind=>//=.
|
||
have : SN (PApp (PAbs B) PBot).
|
||
apply : N_Exp; eauto using N_β.
|
||
hauto lq:on.
|
||
qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv.
|
||
- hauto l:on ctrs:InterpExt rew:db:InterpUniv.
|
||
- hauto l:on ctrs:SN unfold:CR.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Steps i n A A0 PA :
|
||
rtc TRedSN A A0 ->
|
||
⟦ A0 : PTm n ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PA.
|
||
Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed.
|
||
|
||
Lemma InterpUniv_back_clos n i (A : PTm n) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, TRedSN a b ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
move : i A PA . apply : InterpUniv_ind; eauto.
|
||
- hauto q:on ctrs:rtc.
|
||
- move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||
case : p => //=.
|
||
+ rewrite /ProdSpace.
|
||
move => hba a0 PB ha hPB.
|
||
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
|
||
apply N_AppL => //=.
|
||
hauto q:on use:adequacy.
|
||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||
- hauto l:on use:InterpUniv_Step.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_back_closs n i (A : PTm n) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, rtc TRedSN a b ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos.
|
||
Qed.
|
||
|
||
|
||
Lemma InterpUniv_case n i (A : PTm n) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H).
|
||
Proof.
|
||
move : i A PA. apply InterpUniv_ind => //=.
|
||
hauto lq:on ctrs:rtc use:InterpUniv_Ne.
|
||
hauto l:on use:InterpUniv_Bind.
|
||
hauto l:on use:InterpUniv_Univ.
|
||
hauto lq:on ctrs:rtc.
|
||
Qed.
|
||
|
||
Lemma redsn_preservation_mutual n :
|
||
(forall (a : PTm n) (s : SNe a), forall b, TRedSN a b -> False) /\
|
||
(forall (a : PTm n) (s : SN a), forall b, TRedSN a b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall c, TRedSN a c -> b = c).
|
||
Proof.
|
||
move : n. apply sn_mutual; sauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Lemma redsns_preservation : forall n a b, @SN n a -> rtc TRedSN a b -> SN b.
|
||
Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed.
|
||
|
||
#[export]Hint Resolve Sub.sne_bind_noconf Sub.sne_univ_noconf Sub.bind_univ_noconf
|
||
Sub.bind_sne_noconf Sub.univ_sne_noconf Sub.univ_bind_noconf: noconf.
|
||
|
||
Lemma InterpUniv_SNe_inv n i (A : PTm n) PA :
|
||
SNe A ->
|
||
⟦ A ⟧ i ↘ PA ->
|
||
PA = (fun a => exists v, rtc TRedSN a v /\ SNe v).
|
||
Proof.
|
||
simp InterpUniv.
|
||
hauto lq:on rew:off inv:InterpExt,SNe use:redsn_preservation_mutual.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv n i p A B S :
|
||
⟦ PBind p A B ⟧ i ↘ S -> exists PA PF,
|
||
⟦ A : PTm n ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, PF a PB) /\
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\
|
||
S = BindSpace p PA PF.
|
||
Proof. simp InterpUniv.
|
||
inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual.
|
||
rewrite -!InterpUnivN_nolt.
|
||
sauto lq:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Univ_inv n i j S :
|
||
⟦ PUniv j : PTm n ⟧ i ↘ S ->
|
||
S = (fun A => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||
Proof.
|
||
simp InterpUniv. inversion 1;
|
||
try hauto inv:SNe use:redsn_preservation_mutual.
|
||
rewrite -!InterpUnivN_nolt. sfirstorder.
|
||
subst. hauto lq:on inv:TRedSN.
|
||
Qed.
|
||
|
||
Lemma bindspace_impl n p (PA PA0 : PTm n -> Prop) PF PF0 b :
|
||
(forall x, if p is PPi then (PA0 x -> PA x) else (PA x -> PA0 x)) ->
|
||
(forall (a : PTm n) (PB PB0 : PTm n -> Prop), PA0 a -> PF a PB -> PF0 a PB0 -> (forall x, PB x -> PB0 x)) ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a, PA0 a -> exists PB0, PF0 a PB0) ->
|
||
(BindSpace p PA PF b -> BindSpace p PA0 PF0 b).
|
||
Proof.
|
||
rewrite /BindSpace => hSA h hPF hPF0.
|
||
case : p hSA => /= hSA.
|
||
- rewrite /ProdSpace.
|
||
move => h1 a PB ha hPF'.
|
||
have {}/hPF : PA a by sfirstorder.
|
||
specialize hPF0 with (1 := ha).
|
||
hauto lq:on.
|
||
- rewrite /SumSpace.
|
||
case. sfirstorder.
|
||
move => [a0][b0][h0][h1]h2. right.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub' n i (A B : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
((Sub.R A B -> forall x, PA x -> PB x) /\
|
||
(Sub.R B A -> forall x, PB x -> PA x)).
|
||
Proof.
|
||
move => hA.
|
||
move : i A PA hA B PB.
|
||
apply : InterpUniv_ind.
|
||
- move => i A hA B PB hPB. split.
|
||
+ move => hAB a ha.
|
||
have [? ?] : SN B /\ SN A by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R A H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : SNe H.
|
||
suff : ~ isbind H /\ ~ isuniv H by itauto.
|
||
move : hA hAB. clear. hauto lq:on db:noconf.
|
||
move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst.
|
||
tauto.
|
||
+ move => hAB a ha.
|
||
have [? ?] : SN B /\ SN A by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R H A by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : SNe H.
|
||
suff : ~ isbind H /\ ~ isuniv H by itauto.
|
||
move : hAB hA h0. clear. hauto lq:on db:noconf.
|
||
move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst.
|
||
tauto.
|
||
- move => i p A B PA PF hPA ihPA hTot hRes ihPF U PU hU. split.
|
||
+ have hU' : SN U by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU.
|
||
have {hU} {}h : Sub.R (PBind p A B) H
|
||
by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have{h0} : isbind H.
|
||
suff : ~ SNe H /\ ~ isuniv H by itauto.
|
||
have : isbind (PBind p A B) by scongruence.
|
||
move : h. clear. hauto l:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => p0 A0 B0 h0 /Sub.bind_inj.
|
||
move => [? [hA hB]] _. subst.
|
||
move /InterpUniv_Bind_inv : h0.
|
||
move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst.
|
||
move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on.
|
||
move => a PB PB' ha hPB hPB'.
|
||
move : hRes0 hPB'. repeat move/[apply].
|
||
move : ihPF hPB. repeat move/[apply].
|
||
move => h. eapply h.
|
||
apply Sub.cong => //=; eauto using DJoin.refl.
|
||
+ have hU' : SN U by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU.
|
||
have {hU} {}h : Sub.R H (PBind p A B)
|
||
by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have{h0} : isbind H.
|
||
suff : ~ SNe H /\ ~ isuniv H by itauto.
|
||
have : isbind (PBind p A B) by scongruence.
|
||
move : h. clear. move : (PBind p A B). hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => p0 A0 B0 h0 /Sub.bind_inj.
|
||
move => [? [hA hB]] _. subst.
|
||
move /InterpUniv_Bind_inv : h0.
|
||
move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst.
|
||
move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on.
|
||
move => a PB PB' ha hPB hPB'.
|
||
eapply ihPF; eauto.
|
||
apply Sub.cong => //=; eauto using DJoin.refl.
|
||
- move => i j jlti ih B PB hPB. split.
|
||
+ have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
move => hj.
|
||
have {hj}{}h : Sub.R (PUniv j) H by eauto using Sub.transitive, Sub.FromJoin.
|
||
have {h0} : isuniv H.
|
||
suff : ~ SNe H /\ ~ isbind H by tauto. move : h. clear. hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => j' hPB h _.
|
||
have {}h : j <= j' by hauto lq:on use: Sub.univ_inj. subst.
|
||
move /InterpUniv_Univ_inv : hPB => [? ?]. subst.
|
||
have ? : j <= i by lia.
|
||
move => A. hauto l:on use:InterpUniv_cumulative.
|
||
+ have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
move => hj.
|
||
have {hj}{}h : Sub.R H (PUniv j) by eauto using Sub.transitive, Sub.FromJoin, DJoin.symmetric.
|
||
have {h0} : isuniv H.
|
||
suff : ~ SNe H /\ ~ isbind H by tauto. move : h. clear. hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => j' hPB h _.
|
||
have {}h : j' <= j by hauto lq:on use: Sub.univ_inj.
|
||
move /InterpUniv_Univ_inv : hPB => [? ?]. subst.
|
||
move => A. hauto l:on use:InterpUniv_cumulative.
|
||
- move => i A A0 PA hr hPA ihPA B PB hPB.
|
||
have ? : SN A by sauto lq:on use:adequacy.
|
||
split.
|
||
+ move => ?.
|
||
have {}hr : Sub.R A0 A by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin.
|
||
have : Sub.R A0 B by eauto using Sub.transitive.
|
||
qauto l:on.
|
||
+ move => ?.
|
||
have {}hr : Sub.R A A0 by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin.
|
||
have : Sub.R B A0 by eauto using Sub.transitive.
|
||
qauto l:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub0 n i (A B : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
Sub.R A B -> forall x, PA x -> PB x.
|
||
Proof.
|
||
move : InterpUniv_Sub'. repeat move/[apply].
|
||
move => [+ _]. apply.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub n i j (A B : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ j ↘ PB ->
|
||
Sub.R A B -> forall x, PA x -> PB x.
|
||
Proof.
|
||
have [? ?] : i <= max i j /\ j <= max i j by lia.
|
||
move => hPA hPB.
|
||
have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative.
|
||
have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative.
|
||
move : InterpUniv_Sub0. repeat move/[apply].
|
||
apply.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Join n i (A B : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
DJoin.R A B ->
|
||
PA = PB.
|
||
Proof.
|
||
move => + + /[dup] /Sub.FromJoin + /DJoin.symmetric /Sub.FromJoin.
|
||
move : InterpUniv_Sub'; repeat move/[apply]. move => h.
|
||
move => h1 h2.
|
||
extensionality x.
|
||
apply propositional_extensionality.
|
||
firstorder.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Functional n i (A : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PB ->
|
||
PA = PB.
|
||
Proof. hauto l:on use:InterpUniv_Join, DJoin.refl. Qed.
|
||
|
||
Lemma InterpUniv_Join' n i j (A B : PTm n) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ j ↘ PB ->
|
||
DJoin.R A B ->
|
||
PA = PB.
|
||
Proof.
|
||
have [? ?] : i <= max i j /\ j <= max i j by lia.
|
||
move => hPA hPB.
|
||
have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative.
|
||
have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative.
|
||
eauto using InterpUniv_Join.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Functional' n i j A PA PB :
|
||
⟦ A : PTm n ⟧ i ↘ PA ->
|
||
⟦ A ⟧ j ↘ PB ->
|
||
PA = PB.
|
||
Proof.
|
||
hauto l:on use:InterpUniv_Join', DJoin.refl.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦PBind p A B ⟧ i ↘ P) :
|
||
exists (PA : PTm n -> Prop),
|
||
⟦ A ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\
|
||
P = BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB).
|
||
Proof.
|
||
move /InterpUniv_Bind_inv : h.
|
||
move => [PA][PF][hPA][hPF][hPF']?. subst.
|
||
exists PA. repeat split => //.
|
||
- sfirstorder.
|
||
- extensionality b.
|
||
case : p => /=.
|
||
+ extensionality a.
|
||
extensionality PB.
|
||
extensionality ha.
|
||
apply propositional_extensionality.
|
||
split.
|
||
* move => h hPB. apply h.
|
||
have {}/hPF := ha.
|
||
move => [PB0 hPB0].
|
||
have {}/hPF' := hPB0 => ?.
|
||
have : PB = PB0 by hauto l:on use:InterpUniv_Functional.
|
||
congruence.
|
||
* sfirstorder.
|
||
+ rewrite /SumSpace. apply propositional_extensionality.
|
||
split; hauto q:on use:InterpUniv_Functional.
|
||
Qed.
|
||
|
||
Definition ρ_ok {n} (Γ : fin n -> PTm n) (ρ : fin n -> PTm 0) := forall i k PA,
|
||
⟦ subst_PTm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i).
|
||
|
||
Definition SemWt {n} Γ (a A : PTm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a).
|
||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||
|
||
Definition SemEq {n} Γ (a b A : PTm n) := DJoin.R a b /\ forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a) /\ PA (subst_PTm ρ b).
|
||
Notation "Γ ⊨ a ≡ b ∈ A" := (SemEq Γ a b A) (at level 70).
|
||
|
||
Definition SemLEq {n} Γ (A B : PTm n) := Sub.R A B /\ exists i, forall ρ, ρ_ok Γ ρ -> exists S0 S1, ⟦ subst_PTm ρ A ⟧ i ↘ S0 /\ ⟦ subst_PTm ρ B ⟧ i ↘ S1.
|
||
Notation "Γ ⊨ a ≲ b" := (SemLEq Γ a b) (at level 70).
|
||
|
||
Lemma SemWt_Univ n Γ (A : PTm n) i :
|
||
Γ ⊨ A ∈ PUniv i <->
|
||
forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_PTm ρ A ⟧ i ↘ S.
|
||
Proof.
|
||
rewrite /SemWt.
|
||
split.
|
||
- hauto lq:on rew:off use:InterpUniv_Univ_inv.
|
||
- move => /[swap] ρ /[apply].
|
||
move => [PA hPA].
|
||
exists (S i). eexists.
|
||
split.
|
||
+ simp InterpUniv. apply InterpExt_Univ. lia.
|
||
+ simpl. eauto.
|
||
Qed.
|
||
|
||
Lemma SemEq_SemWt n Γ (a b A : PTm n) : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ a ∈ A /\ Γ ⊨ b ∈ A /\ DJoin.R a b.
|
||
Proof. hauto lq:on rew:off unfold:SemEq, SemWt. Qed.
|
||
|
||
Lemma SemLEq_SemWt n Γ (A B : PTm n) : Γ ⊨ A ≲ B -> Sub.R A B /\ exists i, Γ ⊨ A ∈ PUniv i /\ Γ ⊨ B ∈ PUniv i.
|
||
Proof. hauto q:on use:SemWt_Univ. Qed.
|
||
|
||
Lemma SemWt_SemEq n Γ (a b A : PTm n) : Γ ⊨ a ∈ A -> Γ ⊨ b ∈ A -> (DJoin.R a b) -> Γ ⊨ a ≡ b ∈ A.
|
||
Proof.
|
||
move => ha hb heq. split => //= ρ hρ.
|
||
have {}/ha := hρ.
|
||
have {}/hb := hρ.
|
||
move => [k][PA][hPA]hpb.
|
||
move => [k0][PA0][hPA0]hpa.
|
||
have : PA = PA0 by hauto l:on use:InterpUniv_Functional'.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SemWt_SemLEq n Γ (A B : PTm n) i j :
|
||
Γ ⊨ A ∈ PUniv i -> Γ ⊨ B ∈ PUniv j -> Sub.R A B -> Γ ⊨ A ≲ B.
|
||
Proof.
|
||
move => ha hb heq. split => //.
|
||
exists (Nat.max i j).
|
||
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
|
||
move => ρ hρ.
|
||
have {}/ha := hρ.
|
||
have {}/hb := hρ.
|
||
move => [k][PA][/= /InterpUniv_Univ_inv [? hPA]]hpb.
|
||
move => [k0][PA0][/= /InterpUniv_Univ_inv [? hPA0]]hpa. subst.
|
||
move : hpb => [PA]hPA'.
|
||
move : hpa => [PB]hPB'.
|
||
exists PB, PA.
|
||
split; apply : InterpUniv_cumulative; eauto.
|
||
Qed.
|
||
|
||
(* Semantic context wellformedness *)
|
||
Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ PUniv j.
|
||
Notation "⊨ Γ" := (SemWff Γ) (at level 70).
|
||
|
||
Lemma ρ_ok_bot n (Γ : fin n -> PTm n) :
|
||
ρ_ok Γ (fun _ => PBot).
|
||
Proof.
|
||
rewrite /ρ_ok.
|
||
hauto q:on use:adequacy ctrs:SNe.
|
||
Qed.
|
||
|
||
Lemma ρ_ok_cons n i (Γ : fin n -> PTm n) ρ a PA A :
|
||
⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok (funcomp (ren_PTm shift) (scons A Γ)) (scons a ρ).
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
rewrite /ρ_ok.
|
||
move => j.
|
||
destruct j as [j|].
|
||
- move => m PA0. asimpl => ?.
|
||
asimpl.
|
||
firstorder.
|
||
- move => m PA0. asimpl => h3.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
|
||
by subst.
|
||
Qed.
|
||
|
||
Lemma ρ_ok_cons' n i (Γ : fin n -> PTm n) ρ a PA A Δ :
|
||
Δ = (funcomp (ren_PTm shift) (scons A Γ)) ->
|
||
⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok Δ (scons a ρ).
|
||
Proof. move => ->. apply ρ_ok_cons. Qed.
|
||
|
||
Lemma ρ_ok_renaming n m (Γ : fin n -> PTm n) ρ :
|
||
forall (Δ : fin m -> PTm m) ξ,
|
||
renaming_ok Γ Δ ξ ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok Δ (funcomp ρ ξ).
|
||
Proof.
|
||
move => Δ ξ hξ hρ.
|
||
rewrite /ρ_ok => i m' PA.
|
||
rewrite /renaming_ok in hξ.
|
||
rewrite /ρ_ok in hρ.
|
||
move => h.
|
||
rewrite /funcomp.
|
||
apply hρ with (k := m').
|
||
move : h. rewrite -hξ.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming_SemWt {n} Γ a A :
|
||
Γ ⊨ a ∈ A ->
|
||
forall {m} Δ (ξ : fin n -> fin m),
|
||
renaming_ok Δ Γ ξ ->
|
||
Δ ⊨ ren_PTm ξ a ∈ ren_PTm ξ A.
|
||
Proof.
|
||
rewrite /SemWt => h m Δ ξ hξ ρ hρ.
|
||
have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming.
|
||
hauto q:on solve+:(by asimpl).
|
||
Qed.
|
||
|
||
Lemma weakening_Sem n Γ (a : PTm n) A B i
|
||
(h0 : Γ ⊨ B ∈ PUniv i)
|
||
(h1 : Γ ⊨ a ∈ A) :
|
||
funcomp (ren_PTm shift) (scons B Γ) ⊨ ren_PTm shift a ∈ ren_PTm shift A.
|
||
Proof.
|
||
apply : renaming_SemWt; eauto.
|
||
hauto lq:on inv:option unfold:renaming_ok.
|
||
Qed.
|
||
|
||
Lemma SemWt_SN n Γ (a : PTm n) A :
|
||
Γ ⊨ a ∈ A ->
|
||
SN a /\ SN A.
|
||
Proof.
|
||
move => h.
|
||
have {}/h := ρ_ok_bot _ Γ => h.
|
||
have h0 : SN (subst_PTm (fun _ : fin n => (PBot : PTm 0)) A) by hauto l:on use:adequacy.
|
||
have h1 : SN (subst_PTm (fun _ : fin n => (PBot : PTm 0)) a)by hauto l:on use:adequacy.
|
||
move {h}. hauto l:on use:sn_unmorphing.
|
||
Qed.
|
||
|
||
Lemma SemEq_SN_Join n Γ (a b A : PTm n) :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
SN a /\ SN b /\ SN A /\ DJoin.R a b.
|
||
Proof. hauto l:on use:SemEq_SemWt, SemWt_SN. Qed.
|
||
|
||
Lemma SemLEq_SN_Sub n Γ (a b : PTm n) :
|
||
Γ ⊨ a ≲ b ->
|
||
SN a /\ SN b /\ Sub.R a b.
|
||
Proof. hauto l:on use:SemLEq_SemWt, SemWt_SN. Qed.
|
||
|
||
(* Structural laws for Semantic context wellformedness *)
|
||
Lemma SemWff_nil : SemWff null.
|
||
Proof. case. Qed.
|
||
|
||
Lemma SemWff_cons n Γ (A : PTm n) i :
|
||
⊨ Γ ->
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
(* -------------- *)
|
||
⊨ funcomp (ren_PTm shift) (scons A Γ).
|
||
Proof.
|
||
move => h h0.
|
||
move => j. destruct j as [j|].
|
||
- move /(_ j) : h => [k hk].
|
||
exists k. change (PUniv k) with (ren_PTm shift (PUniv k : PTm n)).
|
||
eauto using weakening_Sem.
|
||
- hauto q:on use:weakening_Sem.
|
||
Qed.
|
||
|
||
(* Semantic typing rules *)
|
||
Lemma ST_Var n Γ (i : fin n) :
|
||
⊨ Γ ->
|
||
Γ ⊨ VarPTm i ∈ Γ i.
|
||
Proof.
|
||
move /(_ i) => [j /SemWt_Univ h].
|
||
rewrite /SemWt => ρ /[dup] hρ {}/h [S hS].
|
||
exists j, S.
|
||
asimpl. firstorder.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_nopf n p i (A : PTm n) B PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
(forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB)).
|
||
Proof.
|
||
move => h0 h1. apply InterpUniv_Bind => //=.
|
||
Qed.
|
||
|
||
|
||
Lemma ST_Bind' n Γ i j p (A : PTm n) (B : PTm (S n)) :
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊨ B ∈ PUniv j ->
|
||
Γ ⊨ PBind p A B ∈ PUniv (max i j).
|
||
Proof.
|
||
move => /SemWt_Univ h0 /SemWt_Univ h1.
|
||
apply SemWt_Univ => ρ hρ.
|
||
move /h0 : (hρ){h0} => [S hS].
|
||
eexists => /=.
|
||
have ? : i <= Nat.max i j by lia.
|
||
apply InterpUniv_Bind_nopf; eauto.
|
||
- eauto using InterpUniv_cumulative.
|
||
- move => *. asimpl. hauto l:on use:InterpUniv_cumulative, ρ_ok_cons.
|
||
Qed.
|
||
|
||
Lemma ST_Bind n Γ i p (A : PTm n) (B : PTm (S n)) :
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊨ B ∈ PUniv i ->
|
||
Γ ⊨ PBind p A B ∈ PUniv i.
|
||
Proof.
|
||
move => h0 h1.
|
||
replace i with (max i i) by lia.
|
||
move : h0 h1.
|
||
apply ST_Bind'.
|
||
Qed.
|
||
|
||
Lemma ST_Abs n Γ (a : PTm (S n)) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊨ a ∈ B ->
|
||
Γ ⊨ PAbs a ∈ PBind PPi A B.
|
||
Proof.
|
||
rename a into b.
|
||
move /SemWt_Univ => + hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
move => a PB ha. asimpl => hPB.
|
||
move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply].
|
||
move /hb.
|
||
intros (m & PB0 & hPB0 & hPB0').
|
||
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
|
||
apply : InterpUniv_back_clos; eauto.
|
||
apply N_β'. by asimpl.
|
||
move : ha hPA. clear. hauto q:on use:adequacy.
|
||
Qed.
|
||
|
||
Lemma ST_App n Γ (b a : PTm n) A B :
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PApp b a ∈ subst_PTm (scons a VarPTm) B.
|
||
Proof.
|
||
move => hf hb ρ hρ.
|
||
move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf).
|
||
move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb).
|
||
simpl in hPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
move : hf (hb). move/[apply].
|
||
move : hTot hb. move/[apply].
|
||
asimpl. hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma ST_App' n Γ (b a : PTm n) A B U :
|
||
U = subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PApp b a ∈ U.
|
||
Proof. move => ->. apply ST_App. Qed.
|
||
|
||
Lemma ST_Pair n Γ (a b : PTm n) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PPair a b ∈ PBind PSig A B.
|
||
Proof.
|
||
move /SemWt_Univ => + ha hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
rewrite /SumSpace. right.
|
||
exists (subst_PTm ρ a), (subst_PTm ρ b).
|
||
split.
|
||
- apply rtc_refl.
|
||
- move /ha : (hρ){ha}.
|
||
move => [m][PA0][h0]h1.
|
||
move /hb : (hρ){hb}.
|
||
move => [k][PB][h2]h3.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
split => // PB0.
|
||
move : h2. asimpl => *.
|
||
have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst.
|
||
Qed.
|
||
|
||
Lemma N_Projs n p (a b : PTm n) :
|
||
rtc TRedSN a b ->
|
||
rtc TRedSN (PProj p a) (PProj p b).
|
||
Proof. induction 1; hauto lq:on ctrs:rtc, TRedSN. Qed.
|
||
|
||
Lemma ST_Proj1 n Γ (a : PTm n) A B :
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PL a ∈ A.
|
||
Proof.
|
||
move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
case.
|
||
- move => [v [h0 h1]].
|
||
have {}h0 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL v) by hauto lq:on use:N_Projs.
|
||
have {}h1 : SNe (PProj PL v) by hauto lq:on ctrs:SNe.
|
||
hauto q:on use:InterpUniv_back_closs,adequacy.
|
||
- move => [a0 [b0 [h4 [h5 h6]]]].
|
||
exists m, S. split => //=.
|
||
have {}h4 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL (PPair a0 b0)) by eauto using N_Projs.
|
||
have ? : rtc TRedSN (PProj PL (PPair a0 b0)) a0 by hauto q:on ctrs:rtc, TRedSN use:adequacy.
|
||
have : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto q:on ctrs:rtc use:@relations.rtc_r.
|
||
move => h.
|
||
apply : InterpUniv_back_closs; eauto.
|
||
Qed.
|
||
|
||
Lemma ST_Proj2 n Γ (a : PTm n) A B :
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||
Proof.
|
||
move => h ρ hρ.
|
||
move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
case.
|
||
- move => h.
|
||
move : h => [v [h0 h1]].
|
||
have hp : forall p, SNe (PProj p v) by hauto lq:on ctrs:SNe.
|
||
have hp' : forall p, rtc TRedSN (PProj p(subst_PTm ρ a)) (PProj p v) by eauto using N_Projs.
|
||
have hp0 := hp PL. have hp1 := hp PR => {hp}.
|
||
have hp0' := hp' PL. have hp1' := hp' PR => {hp'}.
|
||
have : S (PProj PL (subst_PTm ρ a)). apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy.
|
||
move /h3 => [PB]. asimpl => hPB.
|
||
do 2 eexists. split; eauto.
|
||
apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy.
|
||
- move => [a0 [b0 [h4 [h5 h6]]]].
|
||
have h3_dup := h3.
|
||
specialize h3 with (1 := h5).
|
||
move : h3 => [PB hPB].
|
||
have hr : forall p, rtc TRedSN (PProj p (subst_PTm ρ a)) (PProj p (PPair a0 b0)) by hauto l:on use: N_Projs.
|
||
have hSN : SN a0 by move : h5 h2; clear; hauto q:on use:adequacy.
|
||
have hSN' : SN b0 by hauto q:on use:adequacy.
|
||
have hrl : TRedSN (PProj PL (PPair a0 b0)) a0 by hauto lq:on ctrs:TRedSN.
|
||
have hrr : TRedSN (PProj PR (PPair a0 b0)) b0 by hauto lq:on ctrs:TRedSN.
|
||
exists m, PB.
|
||
asimpl. split.
|
||
+ have hr' : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto l:on use:@relations.rtc_r.
|
||
have : S (PProj PL (subst_PTm ρ a)) by hauto lq:on use:InterpUniv_back_closs.
|
||
move => {}/h3_dup.
|
||
move => [PB0]. asimpl => hPB0.
|
||
suff : PB = PB0 by congruence.
|
||
move : hPB. asimpl => hPB.
|
||
suff : DJoin.R (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B) (subst_PTm (scons a0 ρ) B).
|
||
move : InterpUniv_Join hPB0 hPB; repeat move/[apply]. done.
|
||
apply DJoin.cong.
|
||
apply DJoin.FromRedSNs.
|
||
hauto lq:on ctrs:rtc unfold:BJoin.R.
|
||
+ hauto lq:on use:@relations.rtc_r, InterpUniv_back_closs.
|
||
Qed.
|
||
|
||
Lemma ST_Conv' n Γ (a : PTm n) A B i :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
Sub.R A B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof.
|
||
move => ha /SemWt_Univ h h0.
|
||
move => ρ hρ.
|
||
have {}h0 : Sub.R (subst_PTm ρ A) (subst_PTm ρ B) by
|
||
eauto using Sub.substing.
|
||
move /ha : (hρ){ha} => [m [PA [h1 h2]]].
|
||
move /h : (hρ){h} => [S hS].
|
||
have h3 : forall x, PA x -> S x.
|
||
move : InterpUniv_Sub h0 h1 hS; by repeat move/[apply].
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma ST_Conv_E n Γ (a : PTm n) A B i :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
DJoin.R A B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof.
|
||
hauto l:on use:ST_Conv', Sub.FromJoin.
|
||
Qed.
|
||
|
||
Lemma ST_Conv n Γ (a : PTm n) A B :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof. hauto l:on use:ST_Conv', SemLEq_SemWt. Qed.
|
||
|
||
Lemma SE_Refl n Γ (a : PTm n) A :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ a ≡ a ∈ A.
|
||
Proof. hauto lq:on unfold:SemWt,SemEq use:DJoin.refl. Qed.
|
||
|
||
Lemma SE_Symmetric n Γ (a b : PTm n) A :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ b ≡ a ∈ A.
|
||
Proof. hauto q:on unfold:SemEq. Qed.
|
||
|
||
Lemma SE_Transitive n Γ (a b c : PTm n) A :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ b ≡ c ∈ A ->
|
||
Γ ⊨ a ≡ c ∈ A.
|
||
Proof.
|
||
move => ha hb.
|
||
apply SemEq_SemWt in ha, hb.
|
||
have ? : SN b by hauto l:on use:SemWt_SN.
|
||
apply SemWt_SemEq; try tauto.
|
||
hauto l:on use:DJoin.transitive.
|
||
Qed.
|
||
|
||
Definition Γ_eq {n} (Γ Δ : fin n -> PTm n) := forall i, DJoin.R (Γ i) (Δ i).
|
||
|
||
Lemma Γ_eq_ρ_ok n Γ Δ (ρ : fin n -> PTm 0) : Γ_eq Γ Δ -> ⊨ Γ -> ρ_ok Γ ρ -> ρ_ok Δ ρ.
|
||
Proof.
|
||
move => hΓΔ hΓ h.
|
||
move => i k PA hPA.
|
||
move : hΓ. rewrite /SemWff. move /(_ i) => [j].
|
||
move => hΓ.
|
||
rewrite SemWt_Univ in hΓ.
|
||
have {}/hΓ := h.
|
||
move => [S hS].
|
||
move /(_ i) in h. suff : PA = S by qauto l:on.
|
||
move : InterpUniv_Join' hPA hS. repeat move/[apply].
|
||
apply. move /(_ i) /DJoin.symmetric in hΓΔ.
|
||
hauto l:on use: DJoin.substing.
|
||
Qed.
|
||
|
||
Definition Γ_sub {n} (Γ Δ : fin n -> PTm n) := forall i, Sub.R (Γ i) (Δ i).
|
||
|
||
Lemma Γ_sub_ρ_ok n Γ Δ (ρ : fin n -> PTm 0) : Γ_sub Γ Δ -> ⊨ Γ -> ρ_ok Γ ρ -> ρ_ok Δ ρ.
|
||
Proof.
|
||
move => hΓΔ hΓ h.
|
||
move => i k PA hPA.
|
||
move : hΓ. rewrite /SemWff. move /(_ i) => [j].
|
||
move => hΓ.
|
||
rewrite SemWt_Univ in hΓ.
|
||
have {}/hΓ := h.
|
||
move => [S hS].
|
||
move /(_ i) in h. suff : forall x, S x -> PA x by qauto l:on.
|
||
move : InterpUniv_Sub hS hPA. repeat move/[apply].
|
||
apply. by apply Sub.substing.
|
||
Qed.
|
||
|
||
Lemma Γ_sub_refl n (Γ : fin n -> PTm n) :
|
||
Γ_sub Γ Γ.
|
||
Proof. sfirstorder use:Sub.refl. Qed.
|
||
|
||
Lemma Γ_sub_cons n (Γ Δ : fin n -> PTm n) A B :
|
||
Sub.R A B ->
|
||
Γ_sub Γ Δ ->
|
||
Γ_sub (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Δ)).
|
||
Proof.
|
||
move => h h0.
|
||
move => i.
|
||
destruct i as [i|].
|
||
rewrite /funcomp. substify. apply Sub.substing. by asimpl.
|
||
rewrite /funcomp.
|
||
asimpl. substify. apply Sub.substing. by asimpl.
|
||
Qed.
|
||
|
||
Lemma Γ_sub_cons' n (Γ : fin n -> PTm n) A B :
|
||
Sub.R A B ->
|
||
Γ_sub (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Γ)).
|
||
Proof. eauto using Γ_sub_refl ,Γ_sub_cons. Qed.
|
||
|
||
Lemma Γ_eq_refl n (Γ : fin n -> PTm n) :
|
||
Γ_eq Γ Γ.
|
||
Proof. sfirstorder use:DJoin.refl. Qed.
|
||
|
||
Lemma Γ_eq_cons n (Γ Δ : fin n -> PTm n) A B :
|
||
DJoin.R A B ->
|
||
Γ_eq Γ Δ ->
|
||
Γ_eq (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Δ)).
|
||
Proof.
|
||
move => h h0.
|
||
move => i.
|
||
destruct i as [i|].
|
||
rewrite /funcomp. substify. apply DJoin.substing. by asimpl.
|
||
rewrite /funcomp.
|
||
asimpl. substify. apply DJoin.substing. by asimpl.
|
||
Qed.
|
||
Lemma Γ_eq_cons' n (Γ : fin n -> PTm n) A B :
|
||
DJoin.R A B ->
|
||
Γ_eq (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Γ)).
|
||
Proof. eauto using Γ_eq_refl ,Γ_eq_cons. Qed.
|
||
|
||
Lemma SE_Bind' n Γ i j p (A0 A1 : PTm n) B0 B1 :
|
||
⊨ Γ ->
|
||
Γ ⊨ A0 ≡ A1 ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A0 Γ) ⊨ B0 ≡ B1 ∈ PUniv j ->
|
||
Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv (max i j).
|
||
Proof.
|
||
move => hΓ hA hB.
|
||
apply SemEq_SemWt in hA, hB.
|
||
apply SemWt_SemEq; last by hauto l:on use:DJoin.BindCong.
|
||
hauto l:on use:ST_Bind'.
|
||
apply ST_Bind'; first by tauto.
|
||
have hΓ' : ⊨ funcomp (ren_PTm shift) (scons A1 Γ) by hauto l:on use:SemWff_cons.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (funcomp (ren_PTm shift) (scons A0 Γ)) ρ by hauto l:on.
|
||
move : Γ_eq_ρ_ok hΓ' hρ; repeat move/[apply]. apply.
|
||
hauto lq:on use:Γ_eq_cons'.
|
||
Qed.
|
||
|
||
Lemma SE_Bind n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||
⊨ Γ ->
|
||
Γ ⊨ A0 ≡ A1 ∈ PUniv i ->
|
||
funcomp (ren_PTm shift) (scons A0 Γ) ⊨ B0 ≡ B1 ∈ PUniv i ->
|
||
Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||
Proof.
|
||
move => *. replace i with (max i i) by lia. auto using SE_Bind'.
|
||
Qed.
|
||
|
||
Lemma SE_Abs n Γ (a b : PTm (S n)) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊨ a ≡ b ∈ B ->
|
||
Γ ⊨ PAbs a ≡ PAbs b ∈ PBind PPi A B.
|
||
Proof.
|
||
move => hPi /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.AbsCong, ST_Abs.
|
||
Qed.
|
||
|
||
Lemma SBind_inv1 n Γ i p (A : PTm n) B :
|
||
Γ ⊨ PBind p A B ∈ PUniv i ->
|
||
Γ ⊨ A ∈ PUniv i.
|
||
move /SemWt_Univ => h. apply SemWt_Univ.
|
||
hauto lq:on rew:off use:InterpUniv_Bind_inv.
|
||
Qed.
|
||
|
||
Lemma SE_AppEta n Γ (b : PTm n) A B i :
|
||
⊨ Γ ->
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B.
|
||
Proof.
|
||
move => hΓ h0 h1. apply SemWt_SemEq; eauto.
|
||
apply : ST_Abs; eauto.
|
||
have hA : Γ ⊨ A ∈ PUniv i by eauto using SBind_inv1.
|
||
eapply ST_App' with (A := ren_PTm shift A)(B:= ren_PTm (upRen_PTm_PTm shift) B). by asimpl.
|
||
2 : {
|
||
apply ST_Var.
|
||
eauto using SemWff_cons.
|
||
}
|
||
change (PBind PPi (ren_PTm shift A) (ren_PTm (upRen_PTm_PTm shift) B)) with
|
||
(ren_PTm shift (PBind PPi A B)).
|
||
apply : weakening_Sem; eauto.
|
||
hauto q:on ctrs:rtc,RERed.R.
|
||
Qed.
|
||
|
||
Lemma SE_AppAbs n Γ (a : PTm (S n)) b A B i:
|
||
Γ ⊨ PBind PPi A B ∈ PUniv i ->
|
||
Γ ⊨ b ∈ A ->
|
||
funcomp (ren_PTm shift) (scons A Γ) ⊨ a ∈ B ->
|
||
Γ ⊨ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B.
|
||
Proof.
|
||
move => h h0 h1. apply SemWt_SemEq; eauto using ST_App, ST_Abs.
|
||
move => ρ hρ.
|
||
have {}/h0 := hρ.
|
||
move => [k][PA][hPA]hb.
|
||
move : ρ_ok_cons hPA hb (hρ); repeat move/[apply].
|
||
move => {}/h1.
|
||
by asimpl.
|
||
apply DJoin.FromRRed0.
|
||
apply RRed.AppAbs.
|
||
Qed.
|
||
|
||
Lemma SE_Conv' n Γ (a b : PTm n) A B i :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
Sub.R A B ->
|
||
Γ ⊨ a ≡ b ∈ B.
|
||
Proof.
|
||
move /SemEq_SemWt => [ha][hb]he hB hAB.
|
||
apply SemWt_SemEq; eauto using ST_Conv'.
|
||
Qed.
|
||
|
||
Lemma SE_Conv n Γ (a b : PTm n) A B :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ a ≡ b ∈ B.
|
||
Proof.
|
||
move => h /SemLEq_SemWt [h0][h1][ha]hb.
|
||
eauto using SE_Conv'.
|
||
Qed.
|
||
|
||
Lemma SBind_inst n Γ p i (A : PTm n) B (a : PTm n) :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PBind p A B ∈ PUniv i ->
|
||
Γ ⊨ subst_PTm (scons a VarPTm) B ∈ PUniv i.
|
||
Proof.
|
||
move => ha /SemWt_Univ hb.
|
||
apply SemWt_Univ.
|
||
move => ρ hρ.
|
||
have {}/hb := hρ.
|
||
asimpl. move => /= [S hS].
|
||
move /InterpUniv_Bind_inv_nopf : hS.
|
||
move => [PA][hPA][hPF]?. subst.
|
||
have {}/ha := hρ.
|
||
move => [k][PA0][hPA0]ha.
|
||
have ? : PA0 = PA by hauto l:on use:InterpUniv_Functional'. subst.
|
||
have {}/hPF := ha.
|
||
move => [PB]. asimpl.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SE_Pair n Γ (a0 a1 b0 b1 : PTm n) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A ->
|
||
Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
||
Γ ⊨ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B.
|
||
Proof.
|
||
move => h /SemEq_SemWt [ha0][ha1]hae /SemEq_SemWt [hb0][hb1]hbe.
|
||
apply SemWt_SemEq; eauto using ST_Pair, DJoin.PairCong, SBind_inst, DJoin.cong, ST_Conv_E, ST_Pair.
|
||
Qed.
|
||
|
||
Lemma SE_Proj1 n Γ (a b : PTm n) A B :
|
||
Γ ⊨ a ≡ b ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PL a ≡ PProj PL b ∈ A.
|
||
Proof.
|
||
move => /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj1.
|
||
Qed.
|
||
|
||
Lemma SE_Proj2 n Γ i (a b : PTm n) A B :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ≡ b ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||
Proof.
|
||
move => hS.
|
||
move => /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj2.
|
||
have h : Γ ⊨ PProj PR b ∈ subst_PTm (scons (PProj PL b) VarPTm) B by eauto using ST_Proj2.
|
||
apply : ST_Conv_E. apply h.
|
||
apply : SBind_inst. eauto using ST_Proj1.
|
||
eauto.
|
||
hauto lq:on use: DJoin.cong, DJoin.ProjCong.
|
||
Qed.
|
||
|
||
Lemma SE_ProjPair1 n Γ (a b : PTm n) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PProj PL (PPair a b) ≡ a ∈ A.
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
apply SemWt_SemEq; eauto using ST_Proj1, ST_Pair.
|
||
apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
Qed.
|
||
|
||
Lemma SE_ProjPair2 n Γ (a b : PTm n) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B.
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
apply SemWt_SemEq; eauto using ST_Proj2, ST_Pair.
|
||
apply : ST_Conv_E. apply : ST_Proj2; eauto. apply : ST_Pair; eauto.
|
||
hauto l:on use:SBind_inst.
|
||
apply DJoin.cong. apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
Qed.
|
||
|
||
Lemma SE_PairEta n Γ (a : PTm n) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B.
|
||
Proof.
|
||
move => h0 h. apply SemWt_SemEq; eauto.
|
||
apply : ST_Pair; eauto using ST_Proj1, ST_Proj2.
|
||
rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R.
|
||
Qed.
|
||
|
||
Lemma SE_App n Γ i (b0 b1 a0 a1 : PTm n) A B :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊨ b0 ≡ b1 ∈ PBind PPi A B ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A ->
|
||
Γ ⊨ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||
Proof.
|
||
move => hPi.
|
||
move => /SemEq_SemWt [hb0][hb1]hb /SemEq_SemWt [ha0][ha1]ha.
|
||
apply SemWt_SemEq; eauto using DJoin.AppCong, ST_App.
|
||
apply : ST_Conv_E; eauto using ST_App, DJoin.cong, DJoin.symmetric, SBind_inst.
|
||
Qed.
|
||
|
||
Lemma SSu_Eq n Γ (A B : PTm n) i :
|
||
Γ ⊨ A ≡ B ∈ PUniv i ->
|
||
Γ ⊨ A ≲ B.
|
||
Proof. move /SemEq_SemWt => h.
|
||
qauto l:on use:SemWt_SemLEq, Sub.FromJoin.
|
||
Qed.
|
||
|
||
Lemma SSu_Transitive n Γ (A B C : PTm n) :
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ B ≲ C ->
|
||
Γ ⊨ A ≲ C.
|
||
Proof.
|
||
move => ha hb.
|
||
apply SemLEq_SemWt in ha, hb.
|
||
have ? : SN B by hauto l:on use:SemWt_SN.
|
||
move : ha => [ha0 [i [ha1 ha2]]]. move : hb => [hb0 [j [hb1 hb2]]].
|
||
qauto l:on use:SemWt_SemLEq, Sub.transitive.
|
||
Qed.
|
||
|
||
Lemma ST_Univ' n Γ i j :
|
||
i < j ->
|
||
Γ ⊨ PUniv i : PTm n ∈ PUniv j.
|
||
Proof.
|
||
move => ?.
|
||
apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ.
|
||
Qed.
|
||
|
||
Lemma ST_Univ n Γ i :
|
||
Γ ⊨ PUniv i : PTm n ∈ PUniv (S i).
|
||
Proof.
|
||
apply ST_Univ'. lia.
|
||
Qed.
|
||
|
||
Lemma SSu_Univ n Γ i j :
|
||
i <= j ->
|
||
Γ ⊨ PUniv i : PTm n ≲ PUniv j.
|
||
Proof.
|
||
move => h. apply : SemWt_SemLEq; eauto using ST_Univ.
|
||
sauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi n Γ (A0 A1 : PTm n) B0 B1 :
|
||
⊨ Γ ->
|
||
Γ ⊨ A1 ≲ A0 ->
|
||
funcomp (ren_PTm shift) (scons A0 Γ) ⊨ B0 ≲ B1 ->
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1.
|
||
Proof.
|
||
move => hΓ hA hB.
|
||
have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1
|
||
by hauto l:on use:SemLEq_SN_Sub.
|
||
apply SemLEq_SemWt in hA, hB.
|
||
move : hA => [hA0][i][hA1]hA2.
|
||
move : hB => [hB0][j][hB1]hB2.
|
||
apply : SemWt_SemLEq; last by hauto l:on use:Sub.PiCong.
|
||
hauto l:on use:ST_Bind'.
|
||
apply ST_Bind'; eauto.
|
||
have hΓ' : ⊨ funcomp (ren_PTm shift) (scons A1 Γ) by hauto l:on use:SemWff_cons.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (funcomp (ren_PTm shift) (scons A0 Γ)) ρ by hauto l:on.
|
||
move : Γ_sub_ρ_ok hΓ' hρ; repeat move/[apply]. apply.
|
||
hauto lq:on use:Γ_sub_cons'.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig n Γ (A0 A1 : PTm n) B0 B1 :
|
||
⊨ Γ ->
|
||
Γ ⊨ A0 ≲ A1 ->
|
||
funcomp (ren_PTm shift) (scons A1 Γ) ⊨ B0 ≲ B1 ->
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1.
|
||
Proof.
|
||
move => hΓ hA hB.
|
||
have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1
|
||
by hauto l:on use:SemLEq_SN_Sub.
|
||
apply SemLEq_SemWt in hA, hB.
|
||
move : hA => [hA0][i][hA1]hA2.
|
||
move : hB => [hB0][j][hB1]hB2.
|
||
apply : SemWt_SemLEq; last by hauto l:on use:Sub.SigCong.
|
||
2 : { hauto l:on use:ST_Bind'. }
|
||
apply ST_Bind'; eauto.
|
||
have hΓ' : ⊨ funcomp (ren_PTm shift) (scons A1 Γ) by hauto l:on use:SemWff_cons.
|
||
have hΓ'' : ⊨ funcomp (ren_PTm shift) (scons A0 Γ) by hauto l:on use:SemWff_cons.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (funcomp (ren_PTm shift) (scons A1 Γ)) ρ by hauto l:on.
|
||
apply : Γ_sub_ρ_ok; eauto.
|
||
hauto lq:on use:Γ_sub_cons'.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi_Proj1 n Γ (A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
Γ ⊨ A1 ≲ A0.
|
||
Proof.
|
||
move /SemLEq_SemWt => [h0][h1][h2]he.
|
||
apply : SemWt_SemLEq; eauto using SBind_inv1.
|
||
hauto lq:on rew:off use:Sub.bind_inj.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig_Proj1 n Γ (A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||
Γ ⊨ A0 ≲ A1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [h0][h1][h2]he.
|
||
apply : SemWt_SemLEq; eauto using SBind_inv1.
|
||
hauto lq:on rew:off use:Sub.bind_inj.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A1 ->
|
||
Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]].
|
||
move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha.
|
||
apply : SemWt_SemLEq; eauto using SBind_inst;
|
||
last by hauto l:on use:Sub.cong.
|
||
apply SBind_inst with (p := PPi) (A := A0); eauto.
|
||
apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 :
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A0 ->
|
||
Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]].
|
||
move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha.
|
||
apply : SemWt_SemLEq; eauto using SBind_inst;
|
||
last by hauto l:on use:Sub.cong.
|
||
apply SBind_inst with (p := PSig) (A := A1); eauto.
|
||
apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1.
|
||
Qed.
|
||
|
||
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
||
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
||
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta : sem.
|