sp-eta-postpone/theories/executable.v
2025-02-19 18:03:32 -05:00

145 lines
3.4 KiB
Coq

From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax
common typing preservation admissible fp_red structural soundness.
Require Import algorithmic.
From stdpp Require Import relations (rtc(..), nsteps(..)).
Require Import ssreflect ssrbool.
Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
| A_AbsAbs a b :
algo_dom a b ->
(* --------------------- *)
algo_dom (PAbs a) (PAbs b)
| A_AbsNeu a u :
ishne u ->
algo_dom a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
(* --------------------- *)
algo_dom (PAbs a) u
| A_NeuAbs a u :
ishne u ->
algo_dom (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
(* --------------------- *)
algo_dom u (PAbs a)
| A_PairPair a0 a1 b0 b1 :
algo_dom a0 a1 ->
algo_dom b0 b1 ->
(* ---------------------------- *)
algo_dom (PPair a0 b0) (PPair a1 b1)
| A_PairNeu a0 a1 u :
ishne u ->
algo_dom a0 (PProj PL u) ->
algo_dom a1 (PProj PR u) ->
(* ----------------------- *)
algo_dom (PPair a0 a1) u
| A_NeuPair a0 a1 u :
ishne u ->
algo_dom (PProj PL u) a0 ->
algo_dom (PProj PR u) a1 ->
(* ----------------------- *)
algo_dom u (PPair a0 a1)
| A_UnivCong i j :
(* -------------------------- *)
algo_dom (PUniv i) (PUniv j)
| A_BindCong p0 p1 A0 A1 B0 B1 :
algo_dom A0 A1 ->
algo_dom B0 B1 ->
(* ---------------------------- *)
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
| A_VarCong i j :
(* -------------------------- *)
algo_dom (VarPTm i) (VarPTm j)
| A_ProjCong p0 p1 u0 u1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
(* --------------------- *)
algo_dom (PProj p0 u0) (PProj p1 u1)
| A_AppCong u0 u1 a0 a1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
algo_dom a0 a1 ->
(* ------------------------- *)
algo_dom (PApp u0 a0) (PApp u1 a1)
| A_HRedL a a' b :
HRed.R a a' ->
algo_dom a' b ->
(* ----------------------- *)
algo_dom a b
| A_HRedR a b b' :
ishne a \/ ishf a ->
HRed.R b b' ->
algo_dom a b' ->
(* ----------------------- *)
algo_dom a b.
Definition fin_eq {n} (i j : fin n) : bool.
Proof.
induction n.
- by exfalso.
- refine (match i , j with
| None, None => true
| Some i, Some j => IHn i j
| _, _ => false
end).
Defined.
Lemma fin_eq_dec {n} (i j : fin n) :
Bool.reflect (i = j) (fin_eq i j).
Proof.
revert i j. induction n.
- destruct i.
- destruct i; destruct j.
+ specialize (IHn f f0).
inversion IHn; subst.
simpl. rewrite -H.
apply ReflectT.
reflexivity.
simpl. rewrite -H.
apply ReflectF.
injection. tauto.
+ by apply ReflectF.
+ by apply ReflectF.
+ by apply ReflectT.
Defined.
Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
bool by struct h :=
check_equal a b h with (@idP (ishne a || ishf a)) := {
| Bool.ReflectT _ _ => _
| Bool.ReflectF _ _ => _
}.
(* check_equal (VarPTm i) (VarPTm j) h := fin_eq i j; *)
(* check_equal (PAbs a) (PAbs b) h := check_equal a b _; *)
(* check_equal (PPair a0 b0) (PPair a1 b1) h := *)
(* check_equal a0 b0 _ && check_equal a1 b1 _; *)
(* check_equal (PUniv i) (PUniv j) _ := _; *)
Next Obligation.
simpl.
intros ih.
Admitted.
Search (Bool.reflect (is_true _) _).
Check idP.
Definition metric {n} k (a b : PTm n) :=
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\
nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.
Search (nat -> nat -> bool).