122 lines
3.2 KiB
Coq
122 lines
3.2 KiB
Coq
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect.
|
||
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
Import Ltac2.Control.
|
||
From Hammer Require Import Tactics.
|
||
|
||
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
||
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
||
| there i Γ A B :
|
||
lookup i Γ A ->
|
||
lookup (S i) (cons B Γ) (ren_PTm shift A).
|
||
|
||
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
|
||
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
|
||
|
||
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
|
||
|
||
Lemma up_injective (ξ : nat -> nat) :
|
||
ren_inj ξ ->
|
||
ren_inj (upRen_PTm_PTm ξ).
|
||
Proof.
|
||
move => h i j.
|
||
case : i => //=; case : j => //=.
|
||
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
|
||
Qed.
|
||
|
||
Local Ltac2 rec solve_anti_ren () :=
|
||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||
intro $x;
|
||
lazy_match! Constr.type (Control.hyp x) with
|
||
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
|
||
| _ => solve_anti_ren ()
|
||
end.
|
||
|
||
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||
|
||
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
|
||
ren_inj ξ ->
|
||
ren_PTm ξ a = ren_PTm ξ b ->
|
||
a = b.
|
||
Proof.
|
||
move : ξ b. elim : a => //; try solve_anti_ren.
|
||
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
|
||
Qed.
|
||
|
||
Inductive HF : Set :=
|
||
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
||
|
||
Definition ishf (a : PTm) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| PAbs _ => true
|
||
| PUniv _ => true
|
||
| PBind _ _ _ => true
|
||
| PNat => true
|
||
| PSuc _ => true
|
||
| PZero => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition toHF (a : PTm) :=
|
||
match a with
|
||
| PPair _ _ => H_Pair
|
||
| PAbs _ => H_Abs
|
||
| PUniv _ => H_Univ
|
||
| PBind p _ _ => H_Bind p
|
||
| PNat => H_Nat
|
||
| PSuc _ => H_Suc
|
||
| PZero => H_Zero
|
||
| _ => H_Bot
|
||
end.
|
||
|
||
Fixpoint ishne (a : PTm) :=
|
||
match a with
|
||
| VarPTm _ => true
|
||
| PApp a _ => ishne a
|
||
| PProj _ a => ishne a
|
||
| PInd _ n _ _ => ishne n
|
||
| _ => false
|
||
end.
|
||
|
||
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
|
||
|
||
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
|
||
|
||
Definition ispair (a : PTm) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition isnat (a : PTm) := if a is PNat then true else false.
|
||
|
||
Definition iszero (a : PTm) := if a is PZero then true else false.
|
||
|
||
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
|
||
|
||
Definition isabs (a : PTm) :=
|
||
match a with
|
||
| PAbs _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
||
ishf (ren_PTm ξ a) = ishf a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
|
||
isabs (ren_PTm ξ a) = isabs a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
|
||
ispair (ren_PTm ξ a) = ispair a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
|
||
ishne (ren_PTm ξ a) = ishne a.
|
||
Proof. move : ξ. elim : a => //=. Qed.
|
||
|
||
Lemma renaming_shift Γ (ρ : nat -> PTm) A :
|
||
renaming_ok (cons A Γ) Γ shift.
|
||
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
|