sp-eta-postpone/theories/logrel.v
2025-02-05 20:06:03 -05:00

346 lines
12 KiB
Coq

Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Require Import fp_red.
From Hammer Require Import Tactics.
From Equations Require Import Equations.
Require Import ssreflect ssrbool.
Require Import Logic.PropExtensionality (propositional_extensionality).
From stdpp Require Import relations (rtc(..), rtc_subrel).
Import Psatz.
Require Import Cdcl.Itauto.
Definition ProdSpace {n} (PA : PTm n -> Prop)
(PF : PTm n -> (PTm n -> Prop) -> Prop) b : Prop :=
forall a PB, PA a -> PF a PB -> PB (PApp b a).
Definition SumSpace {n} (PA : PTm n -> Prop)
(PF : PTm n -> (PTm n -> Prop) -> Prop) t : Prop :=
(exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is PPi then @ProdSpace n else SumSpace.
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) -> Prop :=
| InterpExt_Ne A :
SNe A ->
A i ;; I (fun a => exists v, rtc TRedSN a v /\ SNe v)
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a PB, PF a PB -> subst_PTm (scons a VarPTm) B i ;; I PB) ->
PBind p A B i ;; I BindSpace p PA PF
| InterpExt_Univ j :
j < i ->
PUniv j i ;; I (I j)
| InterpExt_Step A A0 PA :
TRedSN A A0 ->
A0 i ;; I PA ->
A i ;; I PA
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
Lemma InterpExt_Univ' n i I j (PF : PTm n -> Prop) :
PF = I j ->
j < i ->
PUniv j i ;; I PF.
Proof. hauto lq:on ctrs:InterpExt. Qed.
Infix "<?" := Compare_dec.lt_dec (at level 60).
Equations InterpUnivN n (i : nat) : PTm n -> (PTm n -> Prop) -> Prop by wf i lt :=
InterpUnivN n i := @InterpExt n i
(fun j A =>
match j <? i with
| left _ => exists PA, InterpUnivN n j A PA
| right _ => False
end).
Arguments InterpUnivN {n}.
Lemma InterpExt_lt_impl n i I I' A (PA : PTm n -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA ->
A i ;; I' PA.
Proof.
move => hI h.
elim : A PA /h.
- hauto q:on ctrs:InterpExt.
- hauto lq:on rew:off ctrs:InterpExt.
- hauto q:on ctrs:InterpExt.
- hauto lq:on ctrs:InterpExt.
Qed.
Lemma InterpExt_lt_eq n i I I' A (PA : PTm n -> Prop) :
(forall j, j < i -> I j = I' j) ->
A i ;; I PA =
A i ;; I' PA.
Proof.
move => hI. apply propositional_extensionality.
have : forall j, j < i -> I' j = I j by sfirstorder.
firstorder using InterpExt_lt_impl.
Qed.
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
Lemma InterpUnivN_nolt n i :
@InterpUnivN n i = @InterpExt n i (fun j (A : PTm n) => exists PA, A j PA).
Proof.
simp InterpUnivN.
extensionality A. extensionality PA.
set I0 := (fun _ => _).
set I1 := (fun _ => _).
apply InterpExt_lt_eq.
hauto q:on.
Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma InterpUniv_ind
: forall n (P : nat -> PTm n -> (PTm n -> Prop) -> Prop),
(forall i (A : PTm n), SNe A -> P i A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) ->
(forall i (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop)
(PF : PTm n -> (PTm n -> Prop) -> Prop),
A i PA ->
P i A PA ->
(forall a : PTm n, PA a -> exists PB : PTm n -> Prop, PF a PB) ->
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> subst_PTm (scons a VarPTm) B i PB) ->
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) ->
P i (PBind p A B) (BindSpace p PA PF)) ->
(forall i j : nat, j < i -> (forall A PA, A j PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, A j PA)) ->
(forall i (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> A0 i PA -> P i A0 PA -> P i A PA) ->
forall i (p : PTm n) (P0 : PTm n -> Prop), p i P0 -> P i p P0.
Proof.
move => n P hSN hBind hUniv hRed.
elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv.
move => A PA. move => h. set I := fun _ => _ in h.
elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto.
Qed.
Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop.
Lemma InterpUniv_Ne n i (A : PTm n) :
SNe A ->
A i (fun a => exists v, rtc TRedSN a v /\ SNe v).
Proof. simp InterpUniv. apply InterpExt_Ne. Qed.
Lemma InterpUniv_Bind n i p A B PA PF :
A : PTm n i PA ->
(forall a, PA a -> exists PB, PF a PB) ->
(forall a PB, PF a PB -> subst_PTm (scons a VarPTm) B i PB) ->
PBind p A B i BindSpace p PA PF.
Proof. simp InterpUniv. apply InterpExt_Bind. Qed.
Lemma InterpUniv_Univ n i j :
j < i -> PUniv j : PTm n i (fun A => exists PA, A j PA).
Proof.
simp InterpUniv. simpl.
apply InterpExt_Univ'. by simp InterpUniv.
Qed.
Lemma InterpUniv_Step i n A A0 PA :
TRedSN A A0 ->
A0 : PTm n i PA ->
A i PA.
Proof. simp InterpUniv. apply InterpExt_Step. Qed.
#[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv.
Lemma InterpExt_cumulative n i j I (A : PTm n) PA :
i <= j ->
A i ;; I PA ->
A j ;; I PA.
Proof.
move => h h0.
elim : A PA /h0;
hauto l:on ctrs:InterpExt solve+:(by lia).
Qed.
Lemma InterpUniv_cumulative n i (A : PTm n) PA :
A i PA -> forall j, i <= j ->
A j PA.
Proof.
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
Qed.
Definition CR {n} (P : PTm n -> Prop) :=
(forall a, P a -> SN a) /\
(forall a, SNe a -> P a).
Lemma N_Exps n (a b : PTm n) :
rtc TRedSN a b ->
SN b ->
SN a.
Proof.
induction 1; eauto using N_Exp.
Qed.
Lemma adequacy : forall i n A PA,
A : PTm n i PA ->
CR PA /\ SN A.
Proof.
move => + n. apply : InterpUniv_ind.
- hauto l:on use:N_Exps ctrs:SN,SNe.
- move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
have hb : PA PBot by hauto q:on ctrs:SNe.
have hb' : SN PBot by hauto q:on ctrs:SN, SNe.
rewrite /CR.
repeat split.
+ case : p =>//=.
* rewrite /ProdSpace.
qauto use:SN_AppInv unfold:CR.
* hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps.
+ move => a ha.
case : p=>/=.
* rewrite /ProdSpace => a0 *.
suff : SNe (PApp a a0) by sfirstorder.
hauto q:on use:N_App.
* sfirstorder.
+ apply N_Bind=>//=.
have : SN (PApp (PAbs B) PBot).
apply : N_Exp; eauto using N_β.
hauto lq:on.
qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv.
- hauto l:on ctrs:InterpExt rew:db:InterpUniv.
- hauto l:on ctrs:SN unfold:CR.
Qed.
Lemma InterpUniv_Steps i n A A0 PA :
rtc TRedSN A A0 ->
A0 : PTm n i PA ->
A i PA.
Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed.
Lemma InterpUniv_back_clos n i (A : PTm n) PA :
A i PA ->
forall a b, TRedSN a b ->
PA b -> PA a.
Proof.
move : i A PA . apply : InterpUniv_ind; eauto.
- hauto q:on ctrs:rtc.
- move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
case : p => //=.
+ rewrite /ProdSpace.
move => hba a0 PB ha hPB.
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
apply N_AppL => //=.
hauto q:on use:adequacy.
+ hauto lq:on ctrs:rtc unfold:SumSpace.
- hauto l:on use:InterpUniv_Step.
Qed.
Lemma InterpUniv_back_closs n i (A : PTm n) PA :
A i PA ->
forall a b, rtc TRedSN a b ->
PA b -> PA a.
Proof.
induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos.
Qed.
Lemma InterpUniv_case n i (A : PTm n) PA :
A i PA ->
exists H, rtc TRedSN A H /\ H i PA /\ (SNe H \/ isbind H \/ isuniv H).
Proof.
move : i A PA. apply InterpUniv_ind => //=.
hauto lq:on ctrs:rtc use:InterpUniv_Ne.
hauto l:on use:InterpUniv_Bind.
hauto l:on use:InterpUniv_Univ.
hauto lq:on ctrs:rtc.
Qed.
Lemma redsn_preservation_mutual n :
(forall (a : PTm n) (s : SNe a), forall b, TRedSN a b -> False) /\
(forall (a : PTm n) (s : SN a), forall b, TRedSN a b -> SN b) /\
(forall (a b : PTm n) (_ : TRedSN a b), forall c, TRedSN a c -> b = c).
Proof.
move : n. apply sn_mutual; sauto lq:on rew:off.
Qed.
Lemma redsns_preservation : forall n a b, @SN n a -> rtc TRedSN a b -> SN b.
Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed.
#[export]Hint Resolve DJoin.sne_bind_noconf DJoin.sne_univ_noconf DJoin.bind_univ_noconf : noconf.
Lemma InterpUniv_SNe_inv n i (A : PTm n) PA :
SNe A ->
A i PA ->
PA = (fun a => exists v, rtc TRedSN a v /\ SNe v).
Proof.
simp InterpUniv.
hauto lq:on rew:off inv:InterpExt,SNe use:redsn_preservation_mutual.
Qed.
Lemma InterpUniv_Bind_inv n i p A B S :
PBind p A B i S -> exists PA PF,
A : PTm n i PA /\
(forall a, PA a -> exists PB, PF a PB) /\
(forall a PB, PF a PB -> subst_PTm (scons a VarPTm) B i PB) /\
S = BindSpace p PA PF.
Proof. simp InterpUniv.
inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual.
rewrite -!InterpUnivN_nolt.
sauto lq:on.
Qed.
Lemma InterpUniv_Univ_inv n i j S :
PUniv j : PTm n i S ->
S = (fun A => exists PA, A j PA) /\ j < i.
Proof.
simp InterpUniv. inversion 1;
try hauto inv:SNe use:redsn_preservation_mutual.
rewrite -!InterpUnivN_nolt. sfirstorder.
subst. hauto lq:on inv:TRedSN.
Qed.
Lemma InterpUniv_Join n i (A B : PTm n) PA PB :
A i PA ->
B i PB ->
DJoin.R A B ->
PA = PB.
Proof.
move => hA.
move : i A PA hA B PB.
apply : InterpUniv_ind.
- move => i A hA B PB hPB hAB.
have [*] : SN B /\ SN A by hauto l:on use:adequacy.
move /InterpUniv_case : hPB.
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
have {hAB} {}h : DJoin.R A H by eauto using DJoin.transitive.
have {}h0 : SNe H.
suff : ~ isbind H /\ ~ isuniv H by itauto.
move : h hA. clear. hauto lq:on db:noconf.
hauto lq:on use:InterpUniv_SNe_inv.
- move => i p A B PA PF hPA ihPA hTot hRes ihPF U PU hU.
have hU' : SN U by hauto l:on use:adequacy.
move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU.
have {hU} {}h : DJoin.R (PBind p A B) H by eauto using DJoin.transitive.
have{h0} : isbind H.
suff : ~ SNe H /\ ~ isuniv H by itauto.
have : isbind (PBind p A B) by scongruence.
hauto l:on use: DJoin.sne_bind_noconf, DJoin.bind_univ_noconf, DJoin.symmetric.
case : H h1 h => //=.
move => p0 A0 B0 h0 /DJoin.bind_inj.
move => [? [hA hB]] _. subst.
admit.
- move => i j jlti ih B PB hPB.
have ? : SN B by hauto l:on use:adequacy.
move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]].
move => hj.
have {hj}{}h : DJoin.R (PUniv j) H by eauto using DJoin.transitive.
have {h0} : isuniv H.
suff : ~ SNe H /\ ~ isbind H by tauto.
hauto l:on use: DJoin.sne_univ_noconf, DJoin.bind_univ_noconf, DJoin.symmetric.
case : H h1 h => //=.
move => j' hPB h _.
have {}h : j' = j by admit. subst.
hauto lq:on use:InterpUniv_Univ_inv.
- move => i A A0 PA hr hPA ihPA B PB hPB hAB.
have /DJoin.symmetric ? : DJoin.R A A0 by hauto lq:on rew:off ctrs:rtc use:DJoin.FromRedSNs.
have ? : SN A0 by hauto l:on use:adequacy.
have ? : SN A by eauto using N_Exp.
have : DJoin.R A0 B by eauto using DJoin.transitive.
eauto.
Admitted.