1704 lines
56 KiB
Coq
1704 lines
56 KiB
Coq
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax.
|
||
Require Import common fp_red.
|
||
From Hammer Require Import Tactics.
|
||
From Equations Require Import Equations.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||
Import Psatz.
|
||
|
||
|
||
Definition ProdSpace (PA : PTm -> Prop)
|
||
(PF : PTm -> (PTm -> Prop) -> Prop) b : Prop :=
|
||
forall a PB, PA a -> PF a PB -> PB (PApp b a).
|
||
|
||
Definition SumSpace (PA : PTm -> Prop)
|
||
(PF : PTm -> (PTm -> Prop) -> Prop) t : Prop :=
|
||
(exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||
|
||
Definition BindSpace p := if p is PPi then ProdSpace else SumSpace.
|
||
|
||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||
|
||
Inductive InterpExt i (I : nat -> PTm -> Prop) : PTm -> (PTm -> Prop) -> Prop :=
|
||
| InterpExt_Ne A :
|
||
SNe A ->
|
||
⟦ A ⟧ i ;; I ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v)
|
||
|
||
| InterpExt_Bind p A B PA PF :
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF
|
||
|
||
| InterpExt_Nat :
|
||
⟦ PNat ⟧ i ;; I ↘ SNat
|
||
|
||
| InterpExt_Univ j :
|
||
j < i ->
|
||
⟦ PUniv j ⟧ i ;; I ↘ (I j)
|
||
|
||
| InterpExt_Step A A0 PA :
|
||
TRedSN A A0 ->
|
||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I ↘ PA
|
||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||
|
||
Lemma InterpExt_Univ' i I j (PF : PTm -> Prop) :
|
||
PF = I j ->
|
||
j < i ->
|
||
⟦ PUniv j ⟧ i ;; I ↘ PF.
|
||
Proof. hauto lq:on ctrs:InterpExt. Qed.
|
||
|
||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||
|
||
Equations InterpUnivN (i : nat) : PTm -> (PTm -> Prop) -> Prop by wf i lt :=
|
||
InterpUnivN i := @InterpExt i
|
||
(fun j A =>
|
||
match j <? i with
|
||
| left _ => exists PA, InterpUnivN j A PA
|
||
| right _ => False
|
||
end).
|
||
|
||
Lemma InterpExt_lt_impl i I I' A (PA : PTm -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI h.
|
||
elim : A PA /h.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on rew:off ctrs:InterpExt.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto q:on ctrs:InterpExt.
|
||
- hauto lq:on ctrs:InterpExt.
|
||
Qed.
|
||
|
||
Lemma InterpExt_lt_eq i I I' A (PA : PTm -> Prop) :
|
||
(forall j, j < i -> I j = I' j) ->
|
||
⟦ A ⟧ i ;; I ↘ PA =
|
||
⟦ A ⟧ i ;; I' ↘ PA.
|
||
Proof.
|
||
move => hI. apply propositional_extensionality.
|
||
have : forall j, j < i -> I' j = I j by sfirstorder.
|
||
firstorder using InterpExt_lt_impl.
|
||
Qed.
|
||
|
||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||
|
||
Lemma InterpUnivN_nolt i :
|
||
@InterpUnivN i = @InterpExt i (fun j (A : PTm ) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||
Proof.
|
||
simp InterpUnivN.
|
||
extensionality A. extensionality PA.
|
||
apply InterpExt_lt_eq.
|
||
hauto q:on.
|
||
Qed.
|
||
|
||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||
|
||
Lemma InterpUniv_ind
|
||
: forall (P : nat -> PTm -> (PTm -> Prop) -> Prop),
|
||
(forall i (A : PTm), SNe A -> P i A (fun a : PTm => exists v : PTm , rtc TRedSN a v /\ SNe v)) ->
|
||
(forall i (p : BTag) (A : PTm ) (B : PTm ) (PA : PTm -> Prop)
|
||
(PF : PTm -> (PTm -> Prop) -> Prop),
|
||
⟦ A ⟧ i ↘ PA ->
|
||
P i A PA ->
|
||
(forall a : PTm , PA a -> exists PB : PTm -> Prop, PF a PB) ->
|
||
(forall (a : PTm ) (PB : PTm -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
(forall (a : PTm ) (PB : PTm -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) ->
|
||
P i (PBind p A B) (BindSpace p PA PF)) ->
|
||
(forall i, P i PNat SNat) ->
|
||
(forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) ->
|
||
(forall i (A A0 : PTm ) (PA : PTm -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) ->
|
||
forall i (p : PTm ) (P0 : PTm -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0.
|
||
Proof.
|
||
move => P hSN hBind hNat hUniv hRed.
|
||
elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv.
|
||
move => A PA. move => h. set I := fun _ => _ in h.
|
||
elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto.
|
||
Qed.
|
||
|
||
Derive Dependent Inversion iinv with (forall i I (A : PTm ) PA, InterpExt i I A PA) Sort Prop.
|
||
|
||
Lemma InterpUniv_Ne i (A : PTm) :
|
||
SNe A ->
|
||
⟦ A ⟧ i ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v).
|
||
Proof. simp InterpUniv. apply InterpExt_Ne. Qed.
|
||
|
||
Lemma InterpUniv_Bind i p A B PA PF :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ↘ BindSpace p PA PF.
|
||
Proof. simp InterpUniv. apply InterpExt_Bind. Qed.
|
||
|
||
Lemma InterpUniv_Univ i j :
|
||
j < i -> ⟦ PUniv j ⟧ i ↘ (fun A => exists PA, ⟦ A ⟧ j ↘ PA).
|
||
Proof.
|
||
simp InterpUniv. simpl.
|
||
apply InterpExt_Univ'. by simp InterpUniv.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Step i A A0 PA :
|
||
TRedSN A A0 ->
|
||
⟦ A0 ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PA.
|
||
Proof. simp InterpUniv. apply InterpExt_Step. Qed.
|
||
|
||
Lemma InterpUniv_Nat i :
|
||
⟦ PNat ⟧ i ↘ SNat.
|
||
Proof. simp InterpUniv. apply InterpExt_Nat. Qed.
|
||
|
||
#[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv.
|
||
|
||
Lemma InterpExt_cumulative i j I (A : PTm ) PA :
|
||
i <= j ->
|
||
⟦ A ⟧ i ;; I ↘ PA ->
|
||
⟦ A ⟧ j ;; I ↘ PA.
|
||
Proof.
|
||
move => h h0.
|
||
elim : A PA /h0;
|
||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||
Qed.
|
||
|
||
Lemma InterpUniv_cumulative i (A : PTm) PA :
|
||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||
⟦ A ⟧ j ↘ PA.
|
||
Proof.
|
||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||
Qed.
|
||
|
||
Definition CR (P : PTm -> Prop) :=
|
||
(forall a, P a -> SN a) /\
|
||
(forall a, SNe a -> P a).
|
||
|
||
Lemma N_Exps (a b : PTm) :
|
||
rtc TRedSN a b ->
|
||
SN b ->
|
||
SN a.
|
||
Proof.
|
||
induction 1; eauto using N_Exp.
|
||
Qed.
|
||
|
||
Lemma CR_SNat : CR SNat.
|
||
Proof.
|
||
rewrite /CR.
|
||
split.
|
||
induction 1; hauto q:on ctrs:SN,SNe.
|
||
hauto lq:on ctrs:SNat.
|
||
Qed.
|
||
|
||
Lemma adequacy : forall i A PA,
|
||
⟦ A ⟧ i ↘ PA ->
|
||
CR PA /\ SN A.
|
||
Proof.
|
||
apply : InterpUniv_ind.
|
||
- hauto l:on use:N_Exps ctrs:SN,SNe.
|
||
- move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
|
||
set PBot := (VarPTm var_zero).
|
||
have hb : PA PBot by hauto q:on ctrs:SNe.
|
||
have hb' : SN PBot by hauto q:on ctrs:SN, SNe.
|
||
rewrite /CR.
|
||
repeat split.
|
||
+ case : p =>//=.
|
||
* rewrite /ProdSpace.
|
||
qauto use:SN_AppInv unfold:CR.
|
||
* hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps.
|
||
+ move => a ha.
|
||
case : p=>/=.
|
||
* rewrite /ProdSpace => a0 *.
|
||
suff : SNe (PApp a a0) by sfirstorder.
|
||
hauto q:on use:N_App.
|
||
* sfirstorder.
|
||
+ apply N_Bind=>//=.
|
||
have : SN (PApp (PAbs B) PBot).
|
||
apply : N_Exp; eauto using N_β.
|
||
hauto lq:on.
|
||
qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv.
|
||
- sfirstorder use:CR_SNat.
|
||
- hauto l:on ctrs:InterpExt rew:db:InterpUniv.
|
||
- hauto l:on ctrs:SN unfold:CR.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Steps i A A0 PA :
|
||
rtc TRedSN A A0 ->
|
||
⟦ A0 ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PA.
|
||
Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed.
|
||
|
||
Lemma InterpUniv_back_clos i (A : PTm ) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, TRedSN a b ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
move : i A PA . apply : InterpUniv_ind; eauto.
|
||
- hauto q:on ctrs:rtc.
|
||
- move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||
case : p => //=.
|
||
+ rewrite /ProdSpace.
|
||
move => hba a0 PB ha hPB.
|
||
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
|
||
apply N_AppL => //=.
|
||
hauto q:on use:adequacy.
|
||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||
- hauto lq:on ctrs:SNat.
|
||
- hauto l:on use:InterpUniv_Step.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_back_closs i (A : PTm) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
forall a b, rtc TRedSN a b ->
|
||
PA b -> PA a.
|
||
Proof.
|
||
induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_case i (A : PTm) PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H \/ isnat H).
|
||
Proof.
|
||
move : i A PA. apply InterpUniv_ind => //=.
|
||
hauto lq:on ctrs:rtc use:InterpUniv_Ne.
|
||
hauto l:on use:InterpUniv_Bind.
|
||
hauto l:on use:InterpUniv_Nat.
|
||
hauto l:on use:InterpUniv_Univ.
|
||
hauto lq:on ctrs:rtc.
|
||
Qed.
|
||
|
||
Lemma redsn_preservation_mutual :
|
||
(forall (a : PTm) (s : SNe a), forall b, TRedSN a b -> False) /\
|
||
(forall (a : PTm) (s : SN a), forall b, TRedSN a b -> SN b) /\
|
||
(forall (a b : PTm) (_ : TRedSN a b), forall c, TRedSN a c -> b = c).
|
||
Proof.
|
||
apply sn_mutual; sauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Lemma redsns_preservation : forall a b, SN a -> rtc TRedSN a b -> SN b.
|
||
Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed.
|
||
|
||
#[export]Hint Resolve Sub.sne_bind_noconf Sub.sne_univ_noconf Sub.bind_univ_noconf
|
||
Sub.bind_sne_noconf Sub.univ_sne_noconf Sub.univ_bind_noconf Sub.nat_bind_noconf Sub.bind_nat_noconf Sub.sne_nat_noconf Sub.nat_sne_noconf Sub.univ_nat_noconf Sub.nat_univ_noconf: noconf.
|
||
|
||
Lemma InterpUniv_SNe_inv i (A : PTm) PA :
|
||
SNe A ->
|
||
⟦ A ⟧ i ↘ PA ->
|
||
PA = (fun a => exists v, rtc TRedSN a v /\ SNe v).
|
||
Proof.
|
||
simp InterpUniv.
|
||
hauto lq:on rew:off inv:InterpExt,SNe use:redsn_preservation_mutual.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv i p A B S :
|
||
⟦ PBind p A B ⟧ i ↘ S -> exists PA PF,
|
||
⟦ A ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, PF a PB) /\
|
||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\
|
||
S = BindSpace p PA PF.
|
||
Proof. simp InterpUniv.
|
||
inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual.
|
||
rewrite -!InterpUnivN_nolt.
|
||
sauto lq:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Nat_inv i S :
|
||
⟦ PNat ⟧ i ↘ S -> S = SNat.
|
||
Proof.
|
||
simp InterpUniv.
|
||
inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual.
|
||
sauto lq:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Univ_inv i j S :
|
||
⟦ PUniv j ⟧ i ↘ S ->
|
||
S = (fun A => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i.
|
||
Proof.
|
||
simp InterpUniv. inversion 1;
|
||
try hauto inv:SNe use:redsn_preservation_mutual.
|
||
rewrite -!InterpUnivN_nolt. sfirstorder.
|
||
subst. hauto lq:on inv:TRedSN.
|
||
Qed.
|
||
|
||
Lemma bindspace_impl p (PA PA0 : PTm -> Prop) PF PF0 b :
|
||
(forall x, if p is PPi then (PA0 x -> PA x) else (PA x -> PA0 x)) ->
|
||
(forall (a : PTm ) (PB PB0 : PTm -> Prop), PA0 a -> PF a PB -> PF0 a PB0 -> (forall x, PB x -> PB0 x)) ->
|
||
(forall a, PA a -> exists PB, PF a PB) ->
|
||
(forall a, PA0 a -> exists PB0, PF0 a PB0) ->
|
||
(BindSpace p PA PF b -> BindSpace p PA0 PF0 b).
|
||
Proof.
|
||
rewrite /BindSpace => hSA h hPF hPF0.
|
||
case : p hSA => /= hSA.
|
||
- rewrite /ProdSpace.
|
||
move => h1 a PB ha hPF'.
|
||
have {}/hPF : PA a by sfirstorder.
|
||
specialize hPF0 with (1 := ha).
|
||
hauto lq:on.
|
||
- rewrite /SumSpace.
|
||
case. sfirstorder.
|
||
move => [a0][b0][h0][h1]h2. right.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub' i (A B : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
((Sub.R A B -> forall x, PA x -> PB x) /\
|
||
(Sub.R B A -> forall x, PB x -> PA x)).
|
||
Proof.
|
||
move => hA.
|
||
move : i A PA hA B PB.
|
||
apply : InterpUniv_ind.
|
||
- move => i A hA B PB hPB. split.
|
||
+ move => hAB a ha.
|
||
have [? ?] : SN B /\ SN A by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R A H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : SNe H.
|
||
suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on.
|
||
move : hA hAB. clear. hauto lq:on db:noconf.
|
||
move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst.
|
||
tauto.
|
||
+ move => hAB a ha.
|
||
have [? ?] : SN B /\ SN A by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R H A by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : SNe H.
|
||
suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on.
|
||
move : hAB hA h0. clear. hauto lq:on db:noconf.
|
||
move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst.
|
||
tauto.
|
||
- move => i p A B PA PF hPA ihPA hTot hRes ihPF U PU hU. split.
|
||
+ have hU' : SN U by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU.
|
||
have {hU} {}h : Sub.R (PBind p A B) H
|
||
by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have{h0} : isbind H.
|
||
suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on.
|
||
have : isbind (PBind p A B) by scongruence.
|
||
move : h. clear. hauto l:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => p0 A0 B0 h0 /Sub.bind_inj.
|
||
move => [? [hA hB]] _. subst.
|
||
move /InterpUniv_Bind_inv : h0.
|
||
move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst.
|
||
move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on.
|
||
move => a PB PB' ha hPB hPB'.
|
||
move : hRes0 hPB'. repeat move/[apply].
|
||
move : ihPF hPB. repeat move/[apply].
|
||
move => h. eapply h.
|
||
apply Sub.cong => //=; eauto using DJoin.refl.
|
||
+ have hU' : SN U by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU.
|
||
have {hU} {}h : Sub.R H (PBind p A B)
|
||
by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have{h0} : isbind H.
|
||
suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on.
|
||
have : isbind (PBind p A B) by scongruence.
|
||
move : h. clear. move : (PBind p A B). hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => p0 A0 B0 h0 /Sub.bind_inj.
|
||
move => [? [hA hB]] _. subst.
|
||
move /InterpUniv_Bind_inv : h0.
|
||
move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst.
|
||
move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on.
|
||
move => a PB PB' ha hPB hPB'.
|
||
eapply ihPF; eauto.
|
||
apply Sub.cong => //=; eauto using DJoin.refl.
|
||
- move => i B PB h. split.
|
||
+ move => hAB a ha.
|
||
have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : h.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R PNat H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : isnat H.
|
||
suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by sfirstorder b:on.
|
||
have : @isnat PNat by simpl.
|
||
move : h0 hAB. clear. qauto l:on db:noconf.
|
||
case : H h1 hAB h0 => //=.
|
||
move /InterpUniv_Nat_inv. scongruence.
|
||
+ move => hAB a ha.
|
||
have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : h.
|
||
move => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
have {h}{}hAB : Sub.R H PNat by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive.
|
||
have {}h0 : isnat H.
|
||
suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by sfirstorder b:on.
|
||
have : @isnat PNat by simpl.
|
||
move : h0 hAB. clear. qauto l:on db:noconf.
|
||
case : H h1 hAB h0 => //=.
|
||
move /InterpUniv_Nat_inv. scongruence.
|
||
- move => i j jlti ih B PB hPB. split.
|
||
+ have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
move => hj.
|
||
have {hj}{}h : Sub.R (PUniv j) H by eauto using Sub.transitive, Sub.FromJoin.
|
||
have {h0} : isuniv H.
|
||
suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => j' hPB h _.
|
||
have {}h : j <= j' by hauto lq:on use: Sub.univ_inj. subst.
|
||
move /InterpUniv_Univ_inv : hPB => [? ?]. subst.
|
||
have ? : j <= i by lia.
|
||
move => A. hauto l:on use:InterpUniv_cumulative.
|
||
+ have ? : SN B by hauto l:on use:adequacy.
|
||
move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]].
|
||
move => hj.
|
||
have {hj}{}h : Sub.R H (PUniv j) by eauto using Sub.transitive, Sub.FromJoin, DJoin.symmetric.
|
||
have {h0} : isuniv H.
|
||
suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf.
|
||
case : H h1 h => //=.
|
||
move => j' hPB h _.
|
||
have {}h : j' <= j by hauto lq:on use: Sub.univ_inj.
|
||
move /InterpUniv_Univ_inv : hPB => [? ?]. subst.
|
||
move => A. hauto l:on use:InterpUniv_cumulative.
|
||
- move => i A A0 PA hr hPA ihPA B PB hPB.
|
||
have ? : SN A by sauto lq:on use:adequacy.
|
||
split.
|
||
+ move => ?.
|
||
have {}hr : Sub.R A0 A by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin.
|
||
have : Sub.R A0 B by eauto using Sub.transitive.
|
||
qauto l:on.
|
||
+ move => ?.
|
||
have {}hr : Sub.R A A0 by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin.
|
||
have : Sub.R B A0 by eauto using Sub.transitive.
|
||
qauto l:on.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub0 i (A B : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
Sub.R A B -> forall x, PA x -> PB x.
|
||
Proof.
|
||
move : InterpUniv_Sub'. repeat move/[apply].
|
||
move => [+ _]. apply.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Sub i j (A B : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ j ↘ PB ->
|
||
Sub.R A B -> forall x, PA x -> PB x.
|
||
Proof.
|
||
have [? ?] : i <= max i j /\ j <= max i j by lia.
|
||
move => hPA hPB.
|
||
have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative.
|
||
have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative.
|
||
move : InterpUniv_Sub0. repeat move/[apply].
|
||
apply.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Join i (A B : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ i ↘ PB ->
|
||
DJoin.R A B ->
|
||
PA = PB.
|
||
Proof.
|
||
move => + + /[dup] /Sub.FromJoin + /DJoin.symmetric /Sub.FromJoin.
|
||
move : InterpUniv_Sub'; repeat move/[apply]. move => h.
|
||
move => h1 h2.
|
||
extensionality x.
|
||
apply propositional_extensionality.
|
||
firstorder.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Functional i (A : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ A ⟧ i ↘ PB ->
|
||
PA = PB.
|
||
Proof. hauto l:on use:InterpUniv_Join, DJoin.refl. Qed.
|
||
|
||
Lemma InterpUniv_Join' i j (A B : PTm) PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ B ⟧ j ↘ PB ->
|
||
DJoin.R A B ->
|
||
PA = PB.
|
||
Proof.
|
||
have [? ?] : i <= max i j /\ j <= max i j by lia.
|
||
move => hPA hPB.
|
||
have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative.
|
||
have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative.
|
||
eauto using InterpUniv_Join.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Functional' i j A PA PB :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
⟦ A ⟧ j ↘ PB ->
|
||
PA = PB.
|
||
Proof.
|
||
hauto l:on use:InterpUniv_Join', DJoin.refl.
|
||
Qed.
|
||
|
||
Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦PBind p A B ⟧ i ↘ P) :
|
||
exists (PA : PTm -> Prop),
|
||
⟦ A ⟧ i ↘ PA /\
|
||
(forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\
|
||
P = BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB).
|
||
Proof.
|
||
move /InterpUniv_Bind_inv : h.
|
||
move => [PA][PF][hPA][hPF][hPF']?. subst.
|
||
exists PA. repeat split => //.
|
||
- sfirstorder.
|
||
- extensionality b.
|
||
case : p => /=.
|
||
+ extensionality a.
|
||
extensionality PB.
|
||
extensionality ha.
|
||
apply propositional_extensionality.
|
||
split.
|
||
* move => h hPB. apply h.
|
||
have {}/hPF := ha.
|
||
move => [PB0 hPB0].
|
||
have {}/hPF' := hPB0 => ?.
|
||
have : PB = PB0 by hauto l:on use:InterpUniv_Functional.
|
||
congruence.
|
||
* sfirstorder.
|
||
+ rewrite /SumSpace. apply propositional_extensionality.
|
||
split; hauto q:on use:InterpUniv_Functional.
|
||
Qed.
|
||
|
||
Definition ρ_ok (Γ : list PTm) (ρ : nat -> PTm) := forall i k A PA,
|
||
lookup i Γ A ->
|
||
⟦ subst_PTm ρ A ⟧ k ↘ PA -> PA (ρ i).
|
||
|
||
Definition SemWt Γ (a A : PTm) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a).
|
||
Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70).
|
||
|
||
Definition SemEq Γ (a b A : PTm) := DJoin.R a b /\ forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a) /\ PA (subst_PTm ρ b).
|
||
Notation "Γ ⊨ a ≡ b ∈ A" := (SemEq Γ a b A) (at level 70).
|
||
|
||
Definition SemLEq Γ (A B : PTm) := Sub.R A B /\ exists i, forall ρ, ρ_ok Γ ρ -> exists S0 S1, ⟦ subst_PTm ρ A ⟧ i ↘ S0 /\ ⟦ subst_PTm ρ B ⟧ i ↘ S1.
|
||
Notation "Γ ⊨ a ≲ b" := (SemLEq Γ a b) (at level 70).
|
||
|
||
Lemma SemWt_Univ Γ (A : PTm) i :
|
||
Γ ⊨ A ∈ PUniv i <->
|
||
forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_PTm ρ A ⟧ i ↘ S.
|
||
Proof.
|
||
rewrite /SemWt.
|
||
split.
|
||
- hauto lq:on rew:off use:InterpUniv_Univ_inv.
|
||
- move => /[swap] ρ /[apply].
|
||
move => [PA hPA].
|
||
exists (S i). eexists.
|
||
split.
|
||
+ simp InterpUniv. apply InterpExt_Univ. lia.
|
||
+ simpl. eauto.
|
||
Qed.
|
||
|
||
Lemma SemEq_SemWt Γ (a b A : PTm) : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ a ∈ A /\ Γ ⊨ b ∈ A /\ DJoin.R a b.
|
||
Proof. hauto lq:on rew:off unfold:SemEq, SemWt. Qed.
|
||
|
||
Lemma SemLEq_SemWt Γ (A B : PTm) : Γ ⊨ A ≲ B -> Sub.R A B /\ exists i, Γ ⊨ A ∈ PUniv i /\ Γ ⊨ B ∈ PUniv i.
|
||
Proof. hauto q:on use:SemWt_Univ. Qed.
|
||
|
||
Lemma SemWt_SemEq Γ (a b A : PTm) : Γ ⊨ a ∈ A -> Γ ⊨ b ∈ A -> (DJoin.R a b) -> Γ ⊨ a ≡ b ∈ A.
|
||
Proof.
|
||
move => ha hb heq. split => //= ρ hρ.
|
||
have {}/ha := hρ.
|
||
have {}/hb := hρ.
|
||
move => [k][PA][hPA]hpb.
|
||
move => [k0][PA0][hPA0]hpa.
|
||
have : PA = PA0 by hauto l:on use:InterpUniv_Functional'.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SemWt_SemLEq Γ (A B : PTm) i j :
|
||
Γ ⊨ A ∈ PUniv i -> Γ ⊨ B ∈ PUniv j -> Sub.R A B -> Γ ⊨ A ≲ B.
|
||
Proof.
|
||
move => ha hb heq. split => //.
|
||
exists (Nat.max i j).
|
||
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
|
||
move => ρ hρ.
|
||
have {}/ha := hρ.
|
||
have {}/hb := hρ.
|
||
move => [k][PA][/= /InterpUniv_Univ_inv [? hPA]]hpb.
|
||
move => [k0][PA0][/= /InterpUniv_Univ_inv [? hPA0]]hpa. subst.
|
||
move : hpb => [PA]hPA'.
|
||
move : hpa => [PB]hPB'.
|
||
exists PB, PA.
|
||
split; apply : InterpUniv_cumulative; eauto.
|
||
Qed.
|
||
|
||
Lemma ρ_ok_id Γ :
|
||
ρ_ok Γ VarPTm.
|
||
Proof.
|
||
rewrite /ρ_ok.
|
||
hauto q:on use:adequacy ctrs:SNe.
|
||
Qed.
|
||
|
||
Lemma ρ_ok_cons i Γ ρ a PA A :
|
||
⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok (cons A Γ) (scons a ρ).
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
rewrite /ρ_ok.
|
||
case => [|j]; cycle 1.
|
||
- move => m PA0. asimpl => ?.
|
||
inversion 1; subst; asimpl.
|
||
hauto lq:on unfold:ρ_ok.
|
||
- move => m A0 PA0.
|
||
inversion 1; subst. asimpl => h.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'.
|
||
by subst.
|
||
Qed.
|
||
|
||
Lemma ρ_ok_cons' i Γ ρ a PA A Δ :
|
||
Δ = (cons A Γ) ->
|
||
⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok Δ (scons a ρ).
|
||
Proof. move => ->. apply ρ_ok_cons. Qed.
|
||
|
||
Lemma ρ_ok_renaming (Γ : list PTm) ρ :
|
||
forall (Δ : list PTm) ξ,
|
||
renaming_ok Γ Δ ξ ->
|
||
ρ_ok Γ ρ ->
|
||
ρ_ok Δ (funcomp ρ ξ).
|
||
Proof.
|
||
move => Δ ξ hξ hρ.
|
||
rewrite /ρ_ok => i m' A PA.
|
||
rewrite /renaming_ok in hξ.
|
||
rewrite /ρ_ok in hρ.
|
||
move => PA0 h.
|
||
rewrite /funcomp.
|
||
eapply hρ with (k := m'); eauto.
|
||
move : h. by asimpl.
|
||
Qed.
|
||
|
||
Lemma renaming_SemWt Γ a A :
|
||
Γ ⊨ a ∈ A ->
|
||
forall Δ (ξ : nat -> nat),
|
||
renaming_ok Δ Γ ξ ->
|
||
Δ ⊨ ren_PTm ξ a ∈ ren_PTm ξ A.
|
||
Proof.
|
||
rewrite /SemWt => h Δ ξ hξ ρ hρ.
|
||
have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming.
|
||
hauto q:on solve+:(by asimpl).
|
||
Qed.
|
||
|
||
Definition smorphing_ok Δ Γ ρ :=
|
||
forall ξ, ρ_ok Δ ξ -> ρ_ok Γ (funcomp (subst_PTm ξ) ρ).
|
||
|
||
Lemma smorphing_ok_refl Δ : smorphing_ok Δ Δ VarPTm.
|
||
rewrite /smorphing_ok => ξ. apply.
|
||
Qed.
|
||
|
||
Lemma smorphing_ren Ξ Δ Γ
|
||
(ρ : nat -> PTm) (ξ : nat -> nat) :
|
||
renaming_ok Ξ Δ ξ -> smorphing_ok Δ Γ ρ ->
|
||
smorphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ).
|
||
Proof.
|
||
move => hξ hρ τ.
|
||
move /ρ_ok_renaming : hξ => /[apply].
|
||
move => h.
|
||
rewrite /smorphing_ok in hρ.
|
||
asimpl.
|
||
Check (funcomp τ ξ).
|
||
set u := funcomp _ _.
|
||
have : u = funcomp (subst_PTm (funcomp τ ξ)) ρ.
|
||
subst u. extensionality i. by asimpl.
|
||
move => ->. by apply hρ.
|
||
Qed.
|
||
|
||
Lemma smorphing_ext Δ Γ (ρ : nat -> PTm) (a : PTm) (A : PTm) :
|
||
smorphing_ok Δ Γ ρ ->
|
||
Δ ⊨ a ∈ subst_PTm ρ A ->
|
||
smorphing_ok
|
||
Δ (cons A Γ) (scons a ρ).
|
||
Proof.
|
||
move => h ha τ. move => /[dup] hτ.
|
||
move : ha => /[apply].
|
||
move => [k][PA][h0]h1.
|
||
apply h in hτ.
|
||
case => [|i]; cycle 1.
|
||
- move => k0 A0 PA0. asimpl. rewrite {2}/funcomp.
|
||
asimpl. elim /lookup_inv => //= _.
|
||
move => i0 Γ0 A1 B + [?][? ?]?. subst.
|
||
asimpl.
|
||
move : hτ; by repeat move/[apply].
|
||
- move => k0 A0 PA0. asimpl. rewrite {2}/funcomp. asimpl.
|
||
elim /lookup_inv => //=_ A1 Γ0 _ [? ?] ?. subst. asimpl.
|
||
move => *. suff : PA0 = PA by congruence.
|
||
move : h0. asimpl.
|
||
eauto using InterpUniv_Functional'.
|
||
Qed.
|
||
|
||
Lemma morphing_SemWt : forall Γ (a A : PTm ),
|
||
Γ ⊨ a ∈ A -> forall Δ (ρ : nat -> PTm ),
|
||
smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ subst_PTm ρ A.
|
||
Proof.
|
||
move => Γ a A ha Δ ρ hρ τ hτ.
|
||
have {}/hρ {}/ha := hτ.
|
||
asimpl. eauto.
|
||
Qed.
|
||
|
||
Lemma morphing_SemWt_Univ : forall Γ (a : PTm) i,
|
||
Γ ⊨ a ∈ PUniv i -> forall Δ (ρ : nat -> PTm),
|
||
smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ PUniv i.
|
||
Proof.
|
||
move => Γ a i ha Δ ρ.
|
||
have -> : PUniv i = subst_PTm ρ (PUniv i) by reflexivity.
|
||
by apply morphing_SemWt.
|
||
Qed.
|
||
|
||
Lemma weakening_Sem Γ (a : PTm) A B i
|
||
(h0 : Γ ⊨ B ∈ PUniv i)
|
||
(h1 : Γ ⊨ a ∈ A) :
|
||
(cons B Γ) ⊨ ren_PTm shift a ∈ ren_PTm shift A.
|
||
Proof.
|
||
apply : renaming_SemWt; eauto.
|
||
hauto lq:on ctrs:lookup unfold:renaming_ok.
|
||
Qed.
|
||
|
||
Lemma weakening_Sem_Univ Γ (a : PTm) B i j
|
||
(h0 : Γ ⊨ B ∈ PUniv i)
|
||
(h1 : Γ ⊨ a ∈ PUniv j) :
|
||
(cons B Γ) ⊨ ren_PTm shift a ∈ PUniv j.
|
||
Proof.
|
||
move : weakening_Sem h0 h1; repeat move/[apply]. done.
|
||
Qed.
|
||
|
||
Reserved Notation "⊨ Γ" (at level 70).
|
||
|
||
Inductive SemWff : list PTm -> Prop :=
|
||
| SemWff_nil :
|
||
⊨ nil
|
||
| SemWff_cons Γ A i :
|
||
⊨ Γ ->
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
(* -------------- *)
|
||
⊨ (cons A Γ)
|
||
where "⊨ Γ" := (SemWff Γ).
|
||
|
||
(* Semantic context wellformedness *)
|
||
Lemma SemWff_lookup Γ :
|
||
⊨ Γ ->
|
||
forall (i : nat) A, lookup i Γ A -> exists j, Γ ⊨ A ∈ PUniv j.
|
||
Proof.
|
||
move => h. elim : Γ / h.
|
||
- by inversion 1.
|
||
- move => Γ A i hΓ ihΓ hA j B.
|
||
elim /lookup_inv => //=_.
|
||
+ move => ? ? ? [*]. subst.
|
||
eauto using weakening_Sem_Univ.
|
||
+ move => i0 Γ0 A0 B0 hl ? [*]. subst.
|
||
move : ihΓ hl => /[apply]. move => [j hA0].
|
||
eauto using weakening_Sem_Univ.
|
||
Qed.
|
||
|
||
Lemma SemWt_SN Γ (a : PTm) A :
|
||
Γ ⊨ a ∈ A ->
|
||
SN a /\ SN A.
|
||
Proof.
|
||
move => h.
|
||
have {}/h := ρ_ok_id Γ => h.
|
||
have : SN (subst_PTm VarPTm A) by hauto l:on use:adequacy.
|
||
have : SN (subst_PTm VarPTm a)by hauto l:on use:adequacy.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma SemEq_SN_Join Γ (a b A : PTm) :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
SN a /\ SN b /\ SN A /\ DJoin.R a b.
|
||
Proof. hauto l:on use:SemEq_SemWt, SemWt_SN. Qed.
|
||
|
||
Lemma SemLEq_SN_Sub Γ (a b : PTm) :
|
||
Γ ⊨ a ≲ b ->
|
||
SN a /\ SN b /\ Sub.R a b.
|
||
Proof. hauto l:on use:SemLEq_SemWt, SemWt_SN. Qed.
|
||
|
||
(* Semantic typing rules *)
|
||
Lemma ST_Var' Γ (i : nat) A j :
|
||
lookup i Γ A ->
|
||
Γ ⊨ A ∈ PUniv j ->
|
||
Γ ⊨ VarPTm i ∈ A.
|
||
Proof.
|
||
move => hl /SemWt_Univ h.
|
||
rewrite /SemWt => ρ /[dup] hρ {}/h [S hS].
|
||
exists j,S.
|
||
asimpl. hauto q:on unfold:ρ_ok.
|
||
Qed.
|
||
|
||
Lemma ST_Var Γ (i : nat) A :
|
||
⊨ Γ ->
|
||
lookup i Γ A ->
|
||
Γ ⊨ VarPTm i ∈ A.
|
||
Proof. hauto l:on use:ST_Var', SemWff_lookup. Qed.
|
||
|
||
Lemma InterpUniv_Bind_nopf p i (A : PTm) B PA :
|
||
⟦ A ⟧ i ↘ PA ->
|
||
(forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||
⟦ PBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB)).
|
||
Proof.
|
||
move => h0 h1. apply InterpUniv_Bind => //=.
|
||
Qed.
|
||
|
||
|
||
Lemma ST_Bind' Γ i j p (A : PTm) (B : PTm) :
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
(cons A Γ) ⊨ B ∈ PUniv j ->
|
||
Γ ⊨ PBind p A B ∈ PUniv (max i j).
|
||
Proof.
|
||
move => /SemWt_Univ h0 /SemWt_Univ h1.
|
||
apply SemWt_Univ => ρ hρ.
|
||
move /h0 : (hρ){h0} => [S hS].
|
||
eexists => /=.
|
||
have ? : i <= Nat.max i j by lia.
|
||
apply InterpUniv_Bind_nopf; eauto.
|
||
- eauto using InterpUniv_cumulative.
|
||
- move => *. asimpl. hauto l:on use:InterpUniv_cumulative, ρ_ok_cons.
|
||
Qed.
|
||
|
||
Lemma ST_Bind Γ i p (A : PTm) (B : PTm) :
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
cons A Γ ⊨ B ∈ PUniv i ->
|
||
Γ ⊨ PBind p A B ∈ PUniv i.
|
||
Proof.
|
||
move => h0 h1.
|
||
replace i with (max i i) by lia.
|
||
move : h0 h1.
|
||
apply ST_Bind'.
|
||
Qed.
|
||
|
||
Lemma ST_Abs Γ (a : PTm) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
(cons A Γ) ⊨ a ∈ B ->
|
||
Γ ⊨ PAbs a ∈ PBind PPi A B.
|
||
Proof.
|
||
rename a into b.
|
||
move /SemWt_Univ => + hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
move => a PB ha. asimpl => hPB.
|
||
move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply].
|
||
move /hb.
|
||
intros (m & PB0 & hPB0 & hPB0').
|
||
replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'.
|
||
apply : InterpUniv_back_clos; eauto.
|
||
apply N_β'. by asimpl.
|
||
move : ha hPA. clear. hauto q:on use:adequacy.
|
||
Qed.
|
||
|
||
Lemma ST_App Γ (b a : PTm) A B :
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PApp b a ∈ subst_PTm (scons a VarPTm) B.
|
||
Proof.
|
||
move => hf hb ρ hρ.
|
||
move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf).
|
||
move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb).
|
||
simpl in hPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
move : hf (hb). move/[apply].
|
||
move : hTot hb. move/[apply].
|
||
asimpl. hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma ST_App' Γ (b a : PTm) A B U :
|
||
U = subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PApp b a ∈ U.
|
||
Proof. move => ->. apply ST_App. Qed.
|
||
|
||
Lemma ST_Pair Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PPair a b ∈ PBind PSig A B.
|
||
Proof.
|
||
move /SemWt_Univ => + ha hb ρ hρ.
|
||
move /(_ _ hρ) => [PPi hPPi].
|
||
exists i, PPi. split => //.
|
||
simpl in hPPi.
|
||
move /InterpUniv_Bind_inv_nopf : hPPi.
|
||
move => [PA [hPA [hTot ?]]]. subst=>/=.
|
||
rewrite /SumSpace. right.
|
||
exists (subst_PTm ρ a), (subst_PTm ρ b).
|
||
split.
|
||
- apply rtc_refl.
|
||
- move /ha : (hρ){ha}.
|
||
move => [m][PA0][h0]h1.
|
||
move /hb : (hρ){hb}.
|
||
move => [k][PB][h2]h3.
|
||
have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst.
|
||
split => // PB0.
|
||
move : h2. asimpl => *.
|
||
have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst.
|
||
Qed.
|
||
|
||
Lemma N_Projs p (a b : PTm) :
|
||
rtc TRedSN a b ->
|
||
rtc TRedSN (PProj p a) (PProj p b).
|
||
Proof. induction 1; hauto lq:on ctrs:rtc, TRedSN. Qed.
|
||
|
||
Lemma ST_Proj1 Γ (a : PTm) A B :
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PL a ∈ A.
|
||
Proof.
|
||
move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
case.
|
||
- move => [v [h0 h1]].
|
||
have {}h0 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL v) by hauto lq:on use:N_Projs.
|
||
have {}h1 : SNe (PProj PL v) by hauto lq:on ctrs:SNe.
|
||
hauto q:on use:InterpUniv_back_closs,adequacy.
|
||
- move => [a0 [b0 [h4 [h5 h6]]]].
|
||
exists m, S. split => //=.
|
||
have {}h4 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL (PPair a0 b0)) by eauto using N_Projs.
|
||
have ? : rtc TRedSN (PProj PL (PPair a0 b0)) a0 by hauto q:on ctrs:rtc, TRedSN use:adequacy.
|
||
have : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto q:on ctrs:rtc use:@relations.rtc_r.
|
||
move => h.
|
||
apply : InterpUniv_back_closs; eauto.
|
||
Qed.
|
||
|
||
Lemma ST_Proj2 Γ (a : PTm) A B :
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||
Proof.
|
||
move => h ρ hρ.
|
||
move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1.
|
||
move : h0 => [S][h2][h3]?. subst.
|
||
move : h1 => /=.
|
||
rewrite /SumSpace.
|
||
case.
|
||
- move => h.
|
||
move : h => [v [h0 h1]].
|
||
have hp : forall p, SNe (PProj p v) by hauto lq:on ctrs:SNe.
|
||
have hp' : forall p, rtc TRedSN (PProj p(subst_PTm ρ a)) (PProj p v) by eauto using N_Projs.
|
||
have hp0 := hp PL. have hp1 := hp PR => {hp}.
|
||
have hp0' := hp' PL. have hp1' := hp' PR => {hp'}.
|
||
have : S (PProj PL (subst_PTm ρ a)). apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy.
|
||
move /h3 => [PB]. asimpl => hPB.
|
||
do 2 eexists. split; eauto.
|
||
apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy.
|
||
- move => [a0 [b0 [h4 [h5 h6]]]].
|
||
have h3_dup := h3.
|
||
specialize h3 with (1 := h5).
|
||
move : h3 => [PB hPB].
|
||
have hr : forall p, rtc TRedSN (PProj p (subst_PTm ρ a)) (PProj p (PPair a0 b0)) by hauto l:on use: N_Projs.
|
||
have hSN : SN a0 by move : h5 h2; clear; hauto q:on use:adequacy.
|
||
have hSN' : SN b0 by hauto q:on use:adequacy.
|
||
have hrl : TRedSN (PProj PL (PPair a0 b0)) a0 by hauto lq:on ctrs:TRedSN.
|
||
have hrr : TRedSN (PProj PR (PPair a0 b0)) b0 by hauto lq:on ctrs:TRedSN.
|
||
exists m, PB.
|
||
asimpl. split.
|
||
+ have hr' : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto l:on use:@relations.rtc_r.
|
||
have : S (PProj PL (subst_PTm ρ a)) by hauto lq:on use:InterpUniv_back_closs.
|
||
move => {}/h3_dup.
|
||
move => [PB0]. asimpl => hPB0.
|
||
suff : PB = PB0 by congruence.
|
||
move : hPB. asimpl => hPB.
|
||
suff : DJoin.R (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B) (subst_PTm (scons a0 ρ) B).
|
||
move : InterpUniv_Join hPB0 hPB; repeat move/[apply]. done.
|
||
apply DJoin.cong.
|
||
apply DJoin.FromRedSNs.
|
||
hauto lq:on ctrs:rtc unfold:BJoin.R.
|
||
+ hauto lq:on use:@relations.rtc_r, InterpUniv_back_closs.
|
||
Qed.
|
||
|
||
Lemma ST_Conv' Γ (a : PTm) A B i :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
Sub.R A B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof.
|
||
move => ha /SemWt_Univ h h0.
|
||
move => ρ hρ.
|
||
have {}h0 : Sub.R (subst_PTm ρ A) (subst_PTm ρ B) by
|
||
eauto using Sub.substing.
|
||
move /ha : (hρ){ha} => [m [PA [h1 h2]]].
|
||
move /h : (hρ){h} => [S hS].
|
||
have h3 : forall x, PA x -> S x.
|
||
move : InterpUniv_Sub h0 h1 hS; by repeat move/[apply].
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma ST_Conv_E Γ (a : PTm) A B i :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
DJoin.R A B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof.
|
||
hauto l:on use:ST_Conv', Sub.FromJoin.
|
||
Qed.
|
||
|
||
Lemma ST_Conv Γ (a : PTm) A B :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ a ∈ B.
|
||
Proof. hauto l:on use:ST_Conv', SemLEq_SemWt. Qed.
|
||
|
||
Lemma SE_Refl Γ (a : PTm) A :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ a ≡ a ∈ A.
|
||
Proof. hauto lq:on unfold:SemWt,SemEq use:DJoin.refl. Qed.
|
||
|
||
Lemma SE_Symmetric Γ (a b : PTm) A :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ b ≡ a ∈ A.
|
||
Proof. hauto q:on unfold:SemEq. Qed.
|
||
|
||
Lemma SE_Transitive Γ (a b c : PTm) A :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ b ≡ c ∈ A ->
|
||
Γ ⊨ a ≡ c ∈ A.
|
||
Proof.
|
||
move => ha hb.
|
||
apply SemEq_SemWt in ha, hb.
|
||
have ? : SN b by hauto l:on use:SemWt_SN.
|
||
apply SemWt_SemEq; try tauto.
|
||
hauto l:on use:DJoin.transitive.
|
||
Qed.
|
||
|
||
Definition Γ_sub' Γ Δ := forall ρ, ρ_ok Δ ρ -> ρ_ok Γ ρ.
|
||
|
||
Definition Γ_eq' Γ Δ := forall ρ, ρ_ok Δ ρ <-> ρ_ok Γ ρ.
|
||
|
||
Lemma Γ_sub'_refl Γ : Γ_sub' Γ Γ.
|
||
rewrite /Γ_sub'. sfirstorder b:on. Qed.
|
||
|
||
Lemma Γ_sub'_cons Γ Δ A B i j :
|
||
Sub.R B A ->
|
||
Γ_sub' Γ Δ ->
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
Δ ⊨ B ∈ PUniv j ->
|
||
Γ_sub' (cons A Γ) (cons B Δ).
|
||
Proof.
|
||
move => hsub hsub' hA hB ρ hρ.
|
||
move => k k' A0 PA.
|
||
have hρ_inv : ρ_ok Δ (funcomp ρ shift).
|
||
move : hρ. clear.
|
||
move => hρ i.
|
||
(* specialize (hρ (shift i)). *)
|
||
move => k A PA.
|
||
move /there. move /(_ B).
|
||
rewrite /ρ_ok in hρ.
|
||
move /hρ. asimpl. by apply.
|
||
elim /lookup_inv => //=hl.
|
||
move => A1 Γ0 ? [? ?] ?. subst.
|
||
- asimpl.
|
||
move => h.
|
||
have {}/hsub' hρ' := hρ_inv.
|
||
move /SemWt_Univ : (hA) (hρ')=> /[apply].
|
||
move => [S]hS.
|
||
move /SemWt_Univ : (hB) (hρ_inv)=>/[apply].
|
||
move => [S1]hS1.
|
||
move /(_ var_zero j (ren_PTm shift B) S1) : hρ (hS1). asimpl.
|
||
move => /[apply].
|
||
move /(_ ltac:(apply here)).
|
||
move => *.
|
||
suff : forall x, S1 x -> PA x by firstorder.
|
||
apply : InterpUniv_Sub; eauto.
|
||
by apply Sub.substing.
|
||
- rewrite /Γ_sub' in hsub'.
|
||
asimpl.
|
||
move => i0 Γ0 A1 B0 hi0 ? [? ?]?. subst.
|
||
move /(_ (funcomp ρ shift) hρ_inv) in hsub'.
|
||
move : hsub' hi0 => /[apply]. move => /[apply]. by asimpl.
|
||
Qed.
|
||
|
||
Lemma Γ_sub'_SemWt Γ Δ a A :
|
||
Γ_sub' Γ Δ ->
|
||
Γ ⊨ a ∈ A ->
|
||
Δ ⊨ a ∈ A.
|
||
Proof.
|
||
move => hs ha ρ hρ.
|
||
have {}/hs hρ' := hρ.
|
||
hauto l:on.
|
||
Qed.
|
||
|
||
Lemma Γ_eq_sub Γ Δ : Γ_eq' Γ Δ <-> Γ_sub' Γ Δ /\ Γ_sub' Δ Γ.
|
||
Proof. rewrite /Γ_eq' /Γ_sub'. hauto l:on. Qed.
|
||
|
||
Lemma Γ_eq'_cons Γ Δ A B i j :
|
||
DJoin.R B A ->
|
||
Γ_eq' Γ Δ ->
|
||
Γ ⊨ A ∈ PUniv i ->
|
||
Δ ⊨ B ∈ PUniv j ->
|
||
Γ_eq' (cons A Γ) (cons B Δ).
|
||
Proof.
|
||
move => h.
|
||
have {h} [h0 h1] : Sub.R A B /\ Sub.R B A by hauto lq:on use:Sub.FromJoin, DJoin.symmetric.
|
||
repeat rewrite ->Γ_eq_sub.
|
||
hauto l:on use:Γ_sub'_cons.
|
||
Qed.
|
||
|
||
Lemma Γ_eq'_refl Γ : Γ_eq' Γ Γ.
|
||
Proof. rewrite /Γ_eq'. firstorder. Qed.
|
||
|
||
Lemma SE_Bind' Γ i j p (A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ A0 ≡ A1 ∈ PUniv i ->
|
||
cons A0 Γ ⊨ B0 ≡ B1 ∈ PUniv j ->
|
||
Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv (max i j).
|
||
Proof.
|
||
move => hA hB.
|
||
apply SemEq_SemWt in hA, hB.
|
||
apply SemWt_SemEq; last by hauto l:on use:DJoin.BindCong.
|
||
hauto l:on use:ST_Bind'.
|
||
apply ST_Bind'; first by tauto.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (cons A0 Γ) ρ by hauto l:on.
|
||
move : hρ.
|
||
suff : Γ_sub' (A0 :: Γ) (A1 :: Γ) by hauto l:on unfold:Γ_sub'.
|
||
apply : Γ_sub'_cons.
|
||
apply /Sub.FromJoin /DJoin.symmetric. tauto.
|
||
apply Γ_sub'_refl. hauto lq:on.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SE_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ A0 ≡ A1 ∈ PUniv i ->
|
||
cons A0 Γ ⊨ B0 ≡ B1 ∈ PUniv i ->
|
||
Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||
Proof.
|
||
move => *. replace i with (max i i) by lia. auto using SE_Bind'.
|
||
Qed.
|
||
|
||
Lemma SE_Abs Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
cons A Γ ⊨ a ≡ b ∈ B ->
|
||
Γ ⊨ PAbs a ≡ PAbs b ∈ PBind PPi A B.
|
||
Proof.
|
||
move => hPi /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.AbsCong, ST_Abs.
|
||
Qed.
|
||
|
||
Lemma SBind_inv1 Γ i p (A : PTm) B :
|
||
Γ ⊨ PBind p A B ∈ PUniv i ->
|
||
Γ ⊨ A ∈ PUniv i.
|
||
move /SemWt_Univ => h. apply SemWt_Univ.
|
||
hauto lq:on rew:off use:InterpUniv_Bind_inv.
|
||
Qed.
|
||
|
||
Lemma SE_AppEta Γ (b : PTm) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
Γ ⊨ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B.
|
||
Proof.
|
||
move => h0 h1. apply SemWt_SemEq; eauto.
|
||
apply : ST_Abs; eauto.
|
||
have hA : Γ ⊨ A ∈ PUniv i by eauto using SBind_inv1.
|
||
eapply ST_App' with (A := ren_PTm shift A)(B:= ren_PTm (upRen_PTm_PTm shift) B). asimpl. by rewrite subst_scons_id.
|
||
2 : {
|
||
apply : ST_Var'.
|
||
apply here.
|
||
apply : weakening_Sem_Univ; eauto.
|
||
}
|
||
change (PBind PPi (ren_PTm shift A) (ren_PTm (upRen_PTm_PTm shift) B)) with
|
||
(ren_PTm shift (PBind PPi A B)).
|
||
apply : weakening_Sem; eauto.
|
||
hauto q:on ctrs:rtc,RERed.R.
|
||
Qed.
|
||
|
||
Lemma SE_AppAbs Γ (a : PTm) b A B i:
|
||
Γ ⊨ PBind PPi A B ∈ PUniv i ->
|
||
Γ ⊨ b ∈ A ->
|
||
(cons A Γ) ⊨ a ∈ B ->
|
||
Γ ⊨ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B.
|
||
Proof.
|
||
move => h h0 h1. apply SemWt_SemEq; eauto using ST_App, ST_Abs.
|
||
move => ρ hρ.
|
||
have {}/h0 := hρ.
|
||
move => [k][PA][hPA]hb.
|
||
move : ρ_ok_cons hPA hb (hρ); repeat move/[apply].
|
||
move => {}/h1.
|
||
by asimpl.
|
||
apply DJoin.FromRRed0.
|
||
apply RRed.AppAbs.
|
||
Qed.
|
||
|
||
Lemma SE_Conv' Γ (a b : PTm) A B i :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ B ∈ PUniv i ->
|
||
Sub.R A B ->
|
||
Γ ⊨ a ≡ b ∈ B.
|
||
Proof.
|
||
move /SemEq_SemWt => [ha][hb]he hB hAB.
|
||
apply SemWt_SemEq; eauto using ST_Conv'.
|
||
Qed.
|
||
|
||
Lemma SE_Conv Γ (a b : PTm) A B :
|
||
Γ ⊨ a ≡ b ∈ A ->
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ a ≡ b ∈ B.
|
||
Proof.
|
||
move => h /SemLEq_SemWt [h0][h1][ha]hb.
|
||
eauto using SE_Conv'.
|
||
Qed.
|
||
|
||
Lemma SBind_inst Γ p i (A : PTm) B (a : PTm) :
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ PBind p A B ∈ PUniv i ->
|
||
Γ ⊨ subst_PTm (scons a VarPTm) B ∈ PUniv i.
|
||
Proof.
|
||
move => ha /SemWt_Univ hb.
|
||
apply SemWt_Univ.
|
||
move => ρ hρ.
|
||
have {}/hb := hρ.
|
||
asimpl. move => /= [S hS].
|
||
move /InterpUniv_Bind_inv_nopf : hS.
|
||
move => [PA][hPA][hPF]?. subst.
|
||
have {}/ha := hρ.
|
||
move => [k][PA0][hPA0]ha.
|
||
have ? : PA0 = PA by hauto l:on use:InterpUniv_Functional'. subst.
|
||
have {}/hPF := ha.
|
||
move => [PB]. asimpl.
|
||
hauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SE_Pair Γ (a0 a1 b0 b1 : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A ->
|
||
Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
||
Γ ⊨ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B.
|
||
Proof.
|
||
move => h /SemEq_SemWt [ha0][ha1]hae /SemEq_SemWt [hb0][hb1]hbe.
|
||
apply SemWt_SemEq; eauto using ST_Pair, DJoin.PairCong, SBind_inst, DJoin.cong, ST_Conv_E, ST_Pair.
|
||
Qed.
|
||
|
||
Lemma SE_Proj1 Γ (a b : PTm) A B :
|
||
Γ ⊨ a ≡ b ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PL a ≡ PProj PL b ∈ A.
|
||
Proof.
|
||
move => /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj1.
|
||
Qed.
|
||
|
||
Lemma SE_Proj2 Γ i (a b : PTm ) A B :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ≡ b ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||
Proof.
|
||
move => hS.
|
||
move => /SemEq_SemWt [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj2.
|
||
have h : Γ ⊨ PProj PR b ∈ subst_PTm (scons (PProj PL b) VarPTm) B by eauto using ST_Proj2.
|
||
apply : ST_Conv_E. apply h.
|
||
apply : SBind_inst. eauto using ST_Proj1.
|
||
eauto.
|
||
hauto lq:on use: DJoin.cong, DJoin.ProjCong.
|
||
Qed.
|
||
|
||
|
||
Lemma ST_Nat Γ i :
|
||
Γ ⊨ PNat ∈ PUniv i.
|
||
Proof.
|
||
move => ?. apply SemWt_Univ. move => ρ hρ.
|
||
eexists. by apply InterpUniv_Nat.
|
||
Qed.
|
||
|
||
Lemma ST_Zero Γ :
|
||
Γ ⊨ PZero ∈ PNat.
|
||
Proof.
|
||
move => ρ hρ. exists 0, SNat. simpl. split.
|
||
apply InterpUniv_Nat.
|
||
apply S_Zero.
|
||
Qed.
|
||
|
||
Lemma ST_Suc Γ (a : PTm) :
|
||
Γ ⊨ a ∈ PNat ->
|
||
Γ ⊨ PSuc a ∈ PNat.
|
||
Proof.
|
||
move => ha ρ.
|
||
move : ha => /[apply] /=.
|
||
move => [k][PA][h0 h1].
|
||
move /InterpUniv_Nat_inv : h0 => ?. subst.
|
||
exists 0, SNat. split. apply InterpUniv_Nat.
|
||
eauto using S_Suc.
|
||
Qed.
|
||
|
||
|
||
Lemma sn_unmorphing' : (forall (a : PTm) (s : SN a), forall (ρ : nat -> PTm) b, a = subst_PTm ρ b -> SN b).
|
||
Proof. hauto l:on use:sn_unmorphing. Qed.
|
||
|
||
Lemma sn_bot_up (a : PTm) i (ρ : nat -> PTm) :
|
||
SN (subst_PTm (scons (VarPTm i) ρ) a) -> SN (subst_PTm (up_PTm_PTm ρ) a).
|
||
rewrite /up_PTm_PTm.
|
||
move => h. eapply sn_unmorphing' with (ρ := (scons (VarPTm i) VarPTm)); eauto.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma sn_bot_up2 (a : PTm) j i (ρ : nat -> PTm) :
|
||
SN ((subst_PTm (scons (VarPTm j) (scons (VarPTm i) ρ)) a)) -> SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) a).
|
||
rewrite /up_PTm_PTm.
|
||
move => h. eapply sn_unmorphing' with (ρ := (scons (VarPTm j) (scons (VarPTm i) VarPTm))); eauto.
|
||
by asimpl.
|
||
Qed.
|
||
|
||
Lemma SNat_SN (a : PTm) : SNat a -> SN a.
|
||
induction 1; hauto lq:on ctrs:SN. Qed.
|
||
|
||
Lemma ST_Ind Γ P (a : PTm) b c i :
|
||
(cons PNat Γ) ⊨ P ∈ PUniv i ->
|
||
Γ ⊨ a ∈ PNat ->
|
||
Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||
(cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||
Γ ⊨ PInd P a b c ∈ subst_PTm (scons a VarPTm) P.
|
||
Proof.
|
||
move => hA hc ha hb ρ hρ.
|
||
move /(_ ρ hρ) : ha => [m][PA][ha0]ha1.
|
||
move /(_ ρ hρ) : hc => [n][PA0][/InterpUniv_Nat_inv ->].
|
||
simpl.
|
||
(* Use localiaztion to block asimpl from simplifying pind *)
|
||
set x := PInd _ _ _ _. asimpl. subst x. move : {a} (subst_PTm ρ a) .
|
||
move : (subst_PTm ρ b) ha1 => {}b ha1.
|
||
move => u hu.
|
||
have hρb : ρ_ok (cons PNat Γ) (scons (VarPTm var_zero) ρ) by apply : ρ_ok_cons; hauto lq:on ctrs:SNat, SNe use:(@InterpUniv_Nat 0).
|
||
have hρbb : ρ_ok (cons P (cons PNat Γ)) (scons (VarPTm var_zero) (scons (VarPTm var_zero) ρ)).
|
||
move /SemWt_Univ /(_ _ hρb) : hA => [S ?].
|
||
apply : ρ_ok_cons; eauto. sauto lq:on use:adequacy.
|
||
|
||
(* have snP : SN P by hauto l:on use:SemWt_SN. *)
|
||
have snb : SN b by hauto q:on use:adequacy.
|
||
have snP : SN (subst_PTm (up_PTm_PTm ρ) P)
|
||
by eapply sn_bot_up; move : hA hρb => /[apply]; hauto lq:on use:adequacy.
|
||
have snc : SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c)
|
||
by apply: sn_bot_up2; move : hb hρbb => /[apply]; hauto lq:on use:adequacy.
|
||
|
||
elim : u /hu.
|
||
+ exists m, PA. split.
|
||
* move : ha0. by asimpl.
|
||
* apply : InterpUniv_back_clos; eauto.
|
||
apply N_IndZero; eauto.
|
||
+ move => a snea.
|
||
have hρ' : ρ_ok (cons PNat Γ) (scons a ρ)by
|
||
apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat.
|
||
move /SemWt_Univ : (hA) hρ' => /[apply].
|
||
move => [S0 hS0].
|
||
exists i, S0. split=>//.
|
||
eapply adequacy; eauto.
|
||
apply N_Ind; eauto.
|
||
+ move => a ha [j][S][h0]h1.
|
||
have hρ' : ρ_ok (cons PNat Γ) (scons (PSuc a) ρ)by
|
||
apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat.
|
||
move /SemWt_Univ : (hA) (hρ') => /[apply].
|
||
move => [S0 hS0].
|
||
exists i, S0. split => //.
|
||
apply : InterpUniv_back_clos; eauto.
|
||
apply N_IndSuc; eauto using SNat_SN.
|
||
move : (PInd (subst_PTm (up_PTm_PTm ρ) P) a b
|
||
(subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c)) h1.
|
||
move => r hr.
|
||
have hρ'' : ρ_ok
|
||
(cons P (cons PNat Γ)) (scons r (scons a ρ)) by
|
||
eauto using ρ_ok_cons, (InterpUniv_Nat 0).
|
||
move : hb hρ'' => /[apply].
|
||
move => [k][PA1][h2]h3.
|
||
move : h2. asimpl => ?.
|
||
have ? : PA1 = S0 by eauto using InterpUniv_Functional'.
|
||
by subst.
|
||
+ move => a a' hr ha' [k][PA1][h0]h1.
|
||
have : ρ_ok (cons PNat Γ) (scons a ρ)
|
||
by apply : ρ_ok_cons; hauto l:on use:S_Red,(InterpUniv_Nat 0).
|
||
move /SemWt_Univ : hA => /[apply]. move => [PA2]h2.
|
||
exists i, PA2. split => //.
|
||
apply : InterpUniv_back_clos; eauto.
|
||
apply N_IndCong; eauto.
|
||
suff : PA1 = PA2 by congruence.
|
||
move : h0 h2. move : InterpUniv_Join'; repeat move/[apply]. apply.
|
||
apply DJoin.FromRReds.
|
||
apply RReds.FromRPar.
|
||
apply RPar.morphing; last by apply RPar.refl.
|
||
eapply LoReds.FromSN_mutual in hr.
|
||
move /LoRed.ToRRed /RPar.FromRRed in hr.
|
||
hauto lq:on inv:nat use:RPar.refl.
|
||
Qed.
|
||
|
||
Lemma SE_SucCong Γ (a b : PTm) :
|
||
Γ ⊨ a ≡ b ∈ PNat ->
|
||
Γ ⊨ PSuc a ≡ PSuc b ∈ PNat.
|
||
Proof.
|
||
move /SemEq_SemWt => [ha][hb]he.
|
||
apply SemWt_SemEq; eauto using ST_Suc.
|
||
hauto q:on use:REReds.suc_inv, REReds.SucCong.
|
||
Qed.
|
||
|
||
Lemma SE_IndCong Γ P0 P1 (a0 a1 : PTm ) b0 b1 c0 c1 i :
|
||
cons PNat Γ ⊨ P0 ≡ P1 ∈ PUniv i ->
|
||
Γ ⊨ a0 ≡ a1 ∈ PNat ->
|
||
Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
||
cons P0 (cons PNat Γ) ⊨ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
||
Γ ⊨ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0.
|
||
Proof.
|
||
move /SemEq_SemWt=>[hP0][hP1]hPe.
|
||
move /SemEq_SemWt=>[ha0][ha1]hae.
|
||
move /SemEq_SemWt=>[hb0][hb1]hbe.
|
||
move /SemEq_SemWt=>[hc0][hc1]hce.
|
||
apply SemWt_SemEq; eauto using ST_Ind, DJoin.IndCong.
|
||
apply ST_Conv_E with (A := subst_PTm (scons a1 VarPTm) P1) (i := i);
|
||
last by eauto using DJoin.cong', DJoin.symmetric.
|
||
apply : ST_Ind; eauto. eapply ST_Conv_E with (i := i); eauto.
|
||
apply : morphing_SemWt_Univ; eauto.
|
||
apply smorphing_ext. rewrite /smorphing_ok.
|
||
move => ξ. rewrite /funcomp. by asimpl.
|
||
by apply ST_Zero.
|
||
by apply DJoin.substing.
|
||
eapply ST_Conv_E with (i := i); eauto.
|
||
apply : Γ_sub'_SemWt; eauto.
|
||
apply : Γ_sub'_cons; eauto using DJoin.symmetric, Sub.FromJoin.
|
||
apply : Γ_sub'_cons; eauto using Sub.refl, Γ_sub'_refl, (@ST_Nat _ 0).
|
||
apply : weakening_Sem_Univ; eauto. move : hP1.
|
||
move /morphing_SemWt. apply. apply smorphing_ext.
|
||
have -> : (funcomp VarPTm shift) = funcomp (ren_PTm shift) (VarPTm) by asimpl.
|
||
apply : smorphing_ren; eauto using smorphing_ok_refl. hauto l:on inv:option.
|
||
apply ST_Suc. apply ST_Var' with (j := 0). apply here.
|
||
apply ST_Nat.
|
||
apply DJoin.renaming. by apply DJoin.substing.
|
||
apply : morphing_SemWt_Univ; eauto.
|
||
apply smorphing_ext; eauto using smorphing_ok_refl.
|
||
Qed.
|
||
|
||
Lemma SE_IndZero Γ P i (b : PTm) c :
|
||
(cons PNat Γ) ⊨ P ∈ PUniv i ->
|
||
Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||
(cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||
Γ ⊨ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P.
|
||
Proof.
|
||
move => hP hb hc.
|
||
apply SemWt_SemEq; eauto using ST_Zero, ST_Ind.
|
||
apply DJoin.FromRRed0. apply RRed.IndZero.
|
||
Qed.
|
||
|
||
Lemma SE_IndSuc Γ P (a : PTm) b c i :
|
||
(cons PNat Γ) ⊨ P ∈ PUniv i ->
|
||
Γ ⊨ a ∈ PNat ->
|
||
Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||
(cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||
Γ ⊨ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P.
|
||
Proof.
|
||
move => hP ha hb hc.
|
||
apply SemWt_SemEq; eauto using ST_Suc, ST_Ind.
|
||
set Δ := (X in X ⊨ _ ∈ _) in hc.
|
||
have : smorphing_ok Γ Δ (scons (PInd P a b c) (scons a VarPTm)).
|
||
apply smorphing_ext. apply smorphing_ext. apply smorphing_ok_refl.
|
||
done. eauto using ST_Ind.
|
||
move : morphing_SemWt hc; repeat move/[apply].
|
||
by asimpl.
|
||
apply DJoin.FromRRed0.
|
||
apply RRed.IndSuc.
|
||
Qed.
|
||
|
||
Lemma SE_ProjPair1 Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PProj PL (PPair a b) ≡ a ∈ A.
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
apply SemWt_SemEq; eauto using ST_Proj1, ST_Pair.
|
||
apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
Qed.
|
||
|
||
Lemma SE_ProjPair2 Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ A ->
|
||
Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B ->
|
||
Γ ⊨ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B.
|
||
Proof.
|
||
move => h0 h1 h2.
|
||
apply SemWt_SemEq; eauto using ST_Proj2, ST_Pair.
|
||
apply : ST_Conv_E. apply : ST_Proj2; eauto. apply : ST_Pair; eauto.
|
||
hauto l:on use:SBind_inst.
|
||
apply DJoin.cong. apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
apply DJoin.FromRRed0. apply RRed.ProjPair.
|
||
Qed.
|
||
|
||
Lemma SE_PairEta Γ (a : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ (PUniv i) ->
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B.
|
||
Proof.
|
||
move => h0 h. apply SemWt_SemEq; eauto.
|
||
apply : ST_Pair; eauto using ST_Proj1, ST_Proj2.
|
||
rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R.
|
||
Qed.
|
||
|
||
Lemma SE_PairExt Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PSig A B ∈ PUniv i ->
|
||
Γ ⊨ a ∈ PBind PSig A B ->
|
||
Γ ⊨ b ∈ PBind PSig A B ->
|
||
Γ ⊨ PProj PL a ≡ PProj PL b ∈ A ->
|
||
Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||
Γ ⊨ a ≡ b ∈ PBind PSig A B.
|
||
Proof.
|
||
move => h0 ha hb h1 h2.
|
||
suff h : Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B /\
|
||
Γ ⊨ PPair (PProj PL b) (PProj PR b) ≡ b ∈ PBind PSig A B /\
|
||
Γ ⊨ PPair (PProj PL a) (PProj PR a) ≡ PPair (PProj PL b) (PProj PR b) ∈ PBind PSig A B
|
||
by decompose [and] h; eauto using SE_Transitive, SE_Symmetric.
|
||
eauto 20 using SE_PairEta, SE_Symmetric, SE_Pair.
|
||
Qed.
|
||
|
||
Lemma SE_FunExt Γ (a b : PTm) A B i :
|
||
Γ ⊨ PBind PPi A B ∈ PUniv i ->
|
||
Γ ⊨ a ∈ PBind PPi A B ->
|
||
Γ ⊨ b ∈ PBind PPi A B ->
|
||
A :: Γ ⊨ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B ->
|
||
Γ ⊨ a ≡ b ∈ PBind PPi A B.
|
||
Proof.
|
||
move => hpi ha hb he.
|
||
move : SE_Abs (hpi) he. repeat move/[apply]. move => he.
|
||
have /SE_Symmetric : Γ ⊨ PAbs (PApp (ren_PTm shift a) (VarPTm var_zero)) ≡ a ∈ PBind PPi A B by eauto using SE_AppEta.
|
||
have : Γ ⊨ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B by eauto using SE_AppEta.
|
||
eauto using SE_Transitive.
|
||
Qed.
|
||
|
||
Lemma SE_Nat Γ (a b : PTm) :
|
||
Γ ⊨ a ≡ b ∈ PNat ->
|
||
Γ ⊨ PSuc a ≡ PSuc b ∈ PNat.
|
||
Proof.
|
||
move /SemEq_SemWt => [ha][hb]hE.
|
||
apply SemWt_SemEq; eauto using ST_Suc.
|
||
eauto using DJoin.SucCong.
|
||
Qed.
|
||
|
||
Lemma SE_App Γ i (b0 b1 a0 a1 : PTm) A B :
|
||
Γ ⊨ PBind PPi A B ∈ (PUniv i) ->
|
||
Γ ⊨ b0 ≡ b1 ∈ PBind PPi A B ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A ->
|
||
Γ ⊨ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||
Proof.
|
||
move => hPi.
|
||
move => /SemEq_SemWt [hb0][hb1]hb /SemEq_SemWt [ha0][ha1]ha.
|
||
apply SemWt_SemEq; eauto using DJoin.AppCong, ST_App.
|
||
apply : ST_Conv_E; eauto using ST_App, DJoin.cong, DJoin.symmetric, SBind_inst.
|
||
Qed.
|
||
|
||
Lemma SSu_Eq Γ (A B : PTm) i :
|
||
Γ ⊨ A ≡ B ∈ PUniv i ->
|
||
Γ ⊨ A ≲ B.
|
||
Proof. move /SemEq_SemWt => h.
|
||
qauto l:on use:SemWt_SemLEq, Sub.FromJoin.
|
||
Qed.
|
||
|
||
Lemma SSu_Transitive Γ (A B C : PTm) :
|
||
Γ ⊨ A ≲ B ->
|
||
Γ ⊨ B ≲ C ->
|
||
Γ ⊨ A ≲ C.
|
||
Proof.
|
||
move => ha hb.
|
||
apply SemLEq_SemWt in ha, hb.
|
||
have ? : SN B by hauto l:on use:SemWt_SN.
|
||
move : ha => [ha0 [i [ha1 ha2]]]. move : hb => [hb0 [j [hb1 hb2]]].
|
||
qauto l:on use:SemWt_SemLEq, Sub.transitive.
|
||
Qed.
|
||
|
||
Lemma ST_Univ' Γ i j :
|
||
i < j ->
|
||
Γ ⊨ PUniv i ∈ PUniv j.
|
||
Proof.
|
||
move => ?.
|
||
apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ.
|
||
Qed.
|
||
|
||
Lemma ST_Univ Γ i :
|
||
Γ ⊨ PUniv i ∈ PUniv (S i).
|
||
Proof.
|
||
apply ST_Univ'. lia.
|
||
Qed.
|
||
|
||
Lemma SSu_Univ Γ i j :
|
||
i <= j ->
|
||
Γ ⊨ PUniv i ≲ PUniv j.
|
||
Proof.
|
||
move => h. apply : SemWt_SemLEq; eauto using ST_Univ.
|
||
sauto lq:on.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi Γ (A0 A1 : PTm ) B0 B1 :
|
||
Γ ⊨ A1 ≲ A0 ->
|
||
cons A0 Γ ⊨ B0 ≲ B1 ->
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1.
|
||
Proof.
|
||
move => hA hB.
|
||
have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1
|
||
by hauto l:on use:SemLEq_SN_Sub.
|
||
apply SemLEq_SemWt in hA, hB.
|
||
move : hA => [hA0][i][hA1]hA2.
|
||
move : hB => [hB0][j][hB1]hB2.
|
||
apply : SemWt_SemLEq; last by hauto l:on use:Sub.PiCong.
|
||
hauto l:on use:ST_Bind'.
|
||
apply ST_Bind'; eauto.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (cons A0 Γ) ρ by hauto l:on.
|
||
move : hρ. suff : Γ_sub' (A0 :: Γ) (A1 :: Γ)
|
||
by hauto l:on unfold:Γ_sub'.
|
||
apply : Γ_sub'_cons; eauto. apply Γ_sub'_refl.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig Γ (A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ A0 ≲ A1 ->
|
||
cons A1 Γ ⊨ B0 ≲ B1 ->
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1.
|
||
Proof.
|
||
move => hA hB.
|
||
have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1
|
||
by hauto l:on use:SemLEq_SN_Sub.
|
||
apply SemLEq_SemWt in hA, hB.
|
||
move : hA => [hA0][i][hA1]hA2.
|
||
move : hB => [hB0][j][hB1]hB2.
|
||
apply : SemWt_SemLEq; last by hauto l:on use:Sub.SigCong.
|
||
2 : { hauto l:on use:ST_Bind'. }
|
||
apply ST_Bind'; eauto.
|
||
move => ρ hρ.
|
||
suff : ρ_ok (cons A1 Γ) ρ by hauto l:on.
|
||
move : hρ. suff : Γ_sub' (A1 :: Γ) (A0 :: Γ) by hauto l:on.
|
||
apply : Γ_sub'_cons; eauto.
|
||
apply Γ_sub'_refl.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
Γ ⊨ A1 ≲ A0.
|
||
Proof.
|
||
move /SemLEq_SemWt => [h0][h1][h2]he.
|
||
apply : SemWt_SemLEq; eauto using SBind_inv1.
|
||
hauto lq:on rew:off use:Sub.bind_inj.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||
Γ ⊨ A0 ≲ A1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [h0][h1][h2]he.
|
||
apply : SemWt_SemLEq; eauto using SBind_inv1.
|
||
hauto lq:on rew:off use:Sub.bind_inj.
|
||
Qed.
|
||
|
||
Lemma SSu_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A1 ->
|
||
Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]].
|
||
move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha.
|
||
apply : SemWt_SemLEq; eauto using SBind_inst;
|
||
last by hauto l:on use:Sub.cong.
|
||
apply SBind_inst with (p := PPi) (A := A0); eauto.
|
||
apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1.
|
||
Qed.
|
||
|
||
Lemma SSu_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
|
||
Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||
Γ ⊨ a0 ≡ a1 ∈ A0 ->
|
||
Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1.
|
||
Proof.
|
||
move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]].
|
||
move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha.
|
||
apply : SemWt_SemLEq; eauto using SBind_inst;
|
||
last by hauto l:on use:Sub.cong.
|
||
apply SBind_inst with (p := PSig) (A := A1); eauto.
|
||
apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1.
|
||
Qed.
|
||
|
||
#[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv
|
||
SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2
|
||
SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta ST_Nat ST_Ind ST_Suc ST_Zero SE_IndCong SE_SucCong SE_IndZero SE_IndSuc SE_SucCong SE_PairExt SE_FunExt : sem.
|