113 lines
3 KiB
Coq
113 lines
3 KiB
Coq
Require Import Autosubst2.fintype Autosubst2.syntax Autosubst2.core ssreflect.
|
||
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
Import Ltac2.Control.
|
||
From Hammer Require Import Tactics.
|
||
|
||
|
||
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) :=
|
||
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i).
|
||
|
||
Lemma up_injective n m (ξ : fin n -> fin m) :
|
||
(forall i j, ξ i = ξ j -> i = j) ->
|
||
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j.
|
||
Proof.
|
||
sblast inv:option.
|
||
Qed.
|
||
|
||
Local Ltac2 rec solve_anti_ren () :=
|
||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||
intro $x;
|
||
lazy_match! Constr.type (Control.hyp x) with
|
||
| fin _ -> _ _ => (ltac1:(case;hauto lq:on rew:off use:up_injective))
|
||
| _ => solve_anti_ren ()
|
||
end.
|
||
|
||
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||
|
||
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
(forall i j, ξ i = ξ j -> i = j) ->
|
||
ren_PTm ξ a = ren_PTm ξ b ->
|
||
a = b.
|
||
Proof.
|
||
move : m ξ b. elim : n / a => //; try solve_anti_ren.
|
||
Qed.
|
||
|
||
Inductive HF : Set :=
|
||
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
||
|
||
Definition ishf {n} (a : PTm n) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| PAbs _ => true
|
||
| PUniv _ => true
|
||
| PBind _ _ _ => true
|
||
| PNat => true
|
||
| PSuc _ => true
|
||
| PZero => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition toHF {n} (a : PTm n) :=
|
||
match a with
|
||
| PPair _ _ => H_Pair
|
||
| PAbs _ => H_Abs
|
||
| PUniv _ => H_Univ
|
||
| PBind p _ _ => H_Bind p
|
||
| PNat => H_Nat
|
||
| PSuc _ => H_Suc
|
||
| PZero => H_Zero
|
||
| _ => H_Bot
|
||
end.
|
||
|
||
Fixpoint ishne {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm _ => true
|
||
| PApp a _ => ishne a
|
||
| PProj _ a => ishne a
|
||
| PBot => true
|
||
| PInd _ n _ _ => ishne n
|
||
| _ => false
|
||
end.
|
||
|
||
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
|
||
|
||
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
|
||
|
||
Definition ispair {n} (a : PTm n) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition isnat {n} (a : PTm n) := if a is PNat then true else false.
|
||
|
||
Definition iszero {n} (a : PTm n) := if a is PZero then true else false.
|
||
|
||
Definition issuc {n} (a : PTm n) := if a is PSuc _ then true else false.
|
||
|
||
Definition isabs {n} (a : PTm n) :=
|
||
match a with
|
||
| PAbs _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
ishf (ren_PTm ξ a) = ishf a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
isabs (ren_PTm ξ a) = isabs a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
ispair (ren_PTm ξ a) = ispair a.
|
||
Proof. case : a => //=. Qed.
|
||
|
||
Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
ishne (ren_PTm ξ a) = ishne a.
|
||
Proof. move : m ξ. elim : n / a => //=. Qed.
|
||
|
||
Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A :
|
||
renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift.
|
||
Proof. sfirstorder. Qed.
|