sp-eta-postpone/theories/executable_correct.v
2025-03-04 22:30:21 -05:00

271 lines
10 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
Require Import ssreflect ssrbool.
From stdpp Require Import relations (rtc(..)).
From Hammer Require Import Tactics.
Scheme algo_ind := Induction for algo_dom Sort Prop
with algor_ind := Induction for algo_dom_r Sort Prop.
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
Proof. hauto l:on rew:db:check_equal. Qed.
Lemma check_equal_abs_neu a u neu h : check_equal (PAbs a) u (A_AbsNeu a u neu h) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_neu_abs a u neu h : check_equal u (PAbs a) (A_NeuAbs a u neu h) = check_equal_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_pair_pair a0 b0 a1 b1 a h :
check_equal (PPair a0 b0) (PPair a1 b1) (A_PairPair a0 a1 b0 b1 a h) =
check_equal_r a0 a1 a && check_equal_r b0 b1 h.
Proof. hauto l:on rew:db:check_equal. Qed.
Lemma check_equal_pair_neu a0 a1 u neu h h'
: check_equal (PPair a0 a1) u (A_PairNeu a0 a1 u neu h h') = check_equal_r a0 (PProj PL u) h && check_equal_r a1 (PProj PR u) h'.
Proof.
case : u neu h h' => //=; simp check_equal tm_to_eq_view.
Qed.
Lemma check_equal_neu_pair a0 a1 u neu h h'
: check_equal u (PPair a0 a1) (A_NeuPair a0 a1 u neu h h') = check_equal_r (PProj PL u) a0 h && check_equal_r (PProj PR u) a1 h'.
Proof.
case : u neu h h' => //=; simp check_equal tm_to_eq_view.
Qed.
Lemma check_equal_bind_bind p0 A0 B0 p1 A1 B1 h0 h1 :
check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) (A_BindCong p0 p1 A0 A1 B0 B1 h0 h1) =
BTag_eqdec p0 p1 && check_equal_r A0 A1 h0 && check_equal_r B0 B1 h1.
Proof. hauto lq:on. Qed.
Lemma check_equal_proj_proj p0 u0 p1 u1 neu0 neu1 h :
check_equal (PProj p0 u0) (PProj p1 u1) (A_ProjCong p0 p1 u0 u1 neu0 neu1 h) =
PTag_eqdec p0 p1 && check_equal u0 u1 h.
Proof. hauto lq:on. Qed.
Lemma check_equal_app_app u0 a0 u1 a1 hu0 hu1 hdom hdom' :
check_equal (PApp u0 a0) (PApp u1 a1) (A_AppCong u0 u1 a0 a1 hu0 hu1 hdom hdom') =
check_equal u0 u1 hdom && check_equal_r a0 a1 hdom'.
Proof. hauto lq:on. Qed.
Lemma check_equal_ind_ind P0 u0 b0 c0 P1 u1 b1 c1 neu0 neu1 domP domu domb domc :
check_equal (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
(A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP domu domb domc) =
check_equal_r P0 P1 domP && check_equal u0 u1 domu && check_equal_r b0 b1 domb && check_equal_r c0 c1 domc.
Proof. hauto lq:on. Qed.
Lemma hred_none a : HRed.nf a -> hred a = None.
Proof.
destruct (hred a) eqn:eq;
sfirstorder use:hred_complete, hred_sound.
Qed.
Lemma coqeqr_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
Lemma coqeq_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1;
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
Qed.
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
Proof.
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
simp check_equal.
destruct (fancy_hred a).
simp check_equal.
destruct (fancy_hred b).
simp check_equal. hauto lq:on.
exfalso. hauto l:on use:hred_complete.
exfalso. hauto l:on use:hred_complete.
Qed.
Lemma check_equal_hredl a b a' ha doma :
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
Proof.
simp check_equal.
destruct (fancy_hred a).
- hauto q:on unfold:HRed.nf.
- simp check_equal.
destruct s as [x ?]. have ? : x = a' by eauto using hred_deter. subst.
simpl.
simp check_equal.
f_equal.
apply PropExtensionality.proof_irrelevance.
Qed.
Lemma check_equal_hredr a b b' hu r a0 :
check_equal_r a b (A_HRedR a b b' hu r a0) =
check_equal_r a b' a0.
Proof.
simp check_equal.
destruct (fancy_hred a).
- rewrite check_equal_r_clause_1_equation_1.
destruct (fancy_hred b) as [|[b'' hb']].
+ hauto lq:on unfold:HRed.nf.
+ have ? : (b'' = b') by eauto using hred_deter. subst.
rewrite check_equal_r_clause_1_equation_1. simpl.
simp check_equal. destruct (fancy_hred a). simp check_equal.
f_equal; apply PropExtensionality.proof_irrelevance.
simp check_equal. exfalso. sfirstorder use:hne_no_hred, hf_no_hred.
- simp check_equal. exfalso.
sfirstorder use:hne_no_hred, hf_no_hred.
Qed.
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf : ce_prop.
Lemma coqeq_neuneu u0 u1 :
ishne u0 -> ishne u1 -> u0 u1 -> u0 u1.
Proof.
inversion 3; subst => //=.
Qed.
Lemma check_equal_sound :
(forall a b (h : algo_dom a b), check_equal a b h -> a b) /\
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a b).
Proof.
apply algo_dom_mutual.
- move => a b h.
move => h0.
rewrite check_equal_abs_abs.
constructor. tauto.
- move => a u i h0 ih h.
apply CE_AbsNeu => //.
apply : ih. simp check_equal tm_to_eq_view in h.
have h1 : check_equal (PAbs a) u (A_AbsNeu a u i h0) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h0 by clear; case : u i h0 => //=.
hauto lq:on.
- move => a u i h ih h0.
apply CE_NeuAbs=>//.
apply ih.
by rewrite check_equal_neu_abs in h0.
- move => a0 a1 b0 b1 a ha h.
move => h0.
rewrite check_equal_pair_pair. move /andP => [h1 h2].
sauto lq:on.
- move => a0 a1 u neu h ih h' ih' he.
rewrite check_equal_pair_neu in he.
apply CE_PairNeu => //; hauto lqb:on.
- move => a0 a1 u i a ha a2 hb.
rewrite check_equal_neu_pair => *.
apply CE_NeuPair => //; hauto lqb:on.
- sfirstorder.
- hauto l:on use:CE_SucSuc.
- move => i j /sumboolP.
hauto lq:on use:CE_UnivCong.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
rewrite check_equal_bind_bind in h2.
move : h2.
move /andP => [/andP [h20 h21] h3].
move /sumboolP : h20 => ?. subst.
hauto l:on use:CE_BindCong.
- sfirstorder.
- move => i j /sumboolP ?. subst.
apply : CE_NeuNeu. apply CE_VarCong.
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
apply CE_NeuNeu.
rewrite check_equal_proj_proj in he.
move /andP : he => [/sumboolP ? h1]. subst.
sauto lq:on use:coqeq_neuneu.
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
rewrite check_equal_app_app in hE.
move /andP : hE => [h0 h1].
sauto lq:on use:coqeq_neuneu.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
sauto lq:on use:coqeq_neuneu.
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
rewrite check_equal_nfnf in ih.
tauto.
- move => a a' b ha doma ih hE.
rewrite check_equal_hredl in hE. sauto lq:on.
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
sauto lq:on rew:off.
Qed.
Lemma hreds_nf_refl a b :
HRed.nf a ->
rtc HRed.R a b ->
a = b.
Proof. inversion 2; sfirstorder. Qed.
Lemma check_equal_complete :
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a b) /\
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a b).
Proof.
apply algo_dom_mutual.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- hauto q:on inv:CoqEq, CoqEq_Neu b:on rew:db:ce_prop.
- move => i j.
move => h0 h1.
have ? : i = j by sauto lq:on. subst.
simp check_equal in h0.
set x := (nat_eqdec j j).
destruct x as [].
sauto q:on.
sfirstorder.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
rewrite check_equal_bind_bind.
move /negP.
move /nandP.
case. move /nandP.
case. move => h. have : p0 <> p1 by sauto lqb:on.
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
- simp check_equal. done.
- move => i j. simp check_equal.
case : nat_eqdec => //=. sauto lq:on.
- move => p0 p1 u0 u1 neu0 neu1 h ih.
rewrite check_equal_proj_proj.
move /negP /nandP. case.
case : PTag_eqdec => //=. sauto lq:on.
sauto lqb:on.
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
rewrite check_equal_app_app.
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move => + h.
inversion h; subst.
inversion H; subst.
move /negP /nandP.
case. move/nandP.
case. move/nandP.
case. qauto b:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
- move => a b h ih.
rewrite check_equal_nfnf.
move : ih => /[apply].
move => + h0.
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
inversion h0; subst.
hauto l:on use:hreds_nf_refl.
- move => a a' b h dom.
simp ce_prop => /[apply].
move => + h1. inversion h1; subst.
inversion H; subst.
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
+ have ? : y = a' by eauto using hred_deter. subst.
sauto lq:on.
- move => a b b' u hr dom ihdom.
rewrite check_equal_hredr.
move => + h. inversion h; subst.
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
move => {}/ihdom.
inversion H0; subst.
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
sfirstorder unfold:HRed.nf.
+ sauto lq:on use:hred_deter.
Qed.