sp-eta-postpone/theories/typing.v

152 lines
4.6 KiB
Coq

Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
| T_Var n Γ (i : fin n) :
Γ ->
Γ VarPTm i Γ i
| T_Bind n Γ i j p (A : PTm n) (B : PTm (S n)) :
Γ A PUniv i ->
funcomp (ren_PTm shift) (scons A Γ) B PUniv j ->
Γ PBind p A B PUniv (max i j)
| T_Abs n Γ (a : PTm (S n)) A B i :
Γ PBind PPi A B (PUniv i) ->
funcomp (ren_PTm shift) (scons A Γ) a B ->
Γ PAbs a PBind PPi A B
| T_App n Γ (b a : PTm n) A B :
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair n Γ (a b : PTm n) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B
| T_Proj1 n Γ (a : PTm n) A B :
Γ a PBind PSig A B ->
Γ PProj PL a A
| T_Proj2 n Γ (a : PTm n) A B :
Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ n Γ i :
Γ ->
Γ PUniv i : PTm n PUniv (S i)
| T_Conv n Γ (a : PTm n) A B :
Γ a A ->
Γ A B ->
Γ a B
with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop :=
| E_Refl n Γ (a : PTm n) A :
Γ a A ->
Γ a a A
| E_Symmetric n Γ (a b : PTm n) A :
Γ a b A ->
Γ b a A
| E_Transitive n Γ (a b c : PTm n) A :
Γ a b A ->
Γ b c A ->
Γ a c A
| E_Bind n Γ i j p (A0 A1 : PTm n) B0 B1 :
Γ ->
Γ A0 A1 PUniv i ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv j ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv (max i j)
| E_Abs n Γ (a b : PTm (S n)) A B i :
Γ PBind PPi A B (PUniv i) ->
funcomp (ren_PTm shift) (scons A Γ) a b B ->
Γ PAbs a PAbs b PBind PPi A B
| E_App n Γ i (b0 b1 a0 a1 : PTm n) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Pair n Γ (a0 a1 b0 b1 : PTm n) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B
| E_Proj1 n Γ (a b : PTm n) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A
| E_Proj2 n Γ i (a b : PTm n) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_Conv n Γ (a b : PTm n) A B :
Γ a b A ->
Γ A B ->
Γ a b B
with LEq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
| Su_Transitive n Γ (A B C : PTm n) :
Γ A B ->
Γ B C ->
Γ A C
| Su_Univ n Γ i j :
i <= j ->
Γ PUniv i : PTm n PUniv j
| Su_Bind n Γ p (A0 A1 : PTm n) B0 B1 :
Γ A1 A0 ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 ->
Γ PBind p A0 B0 PBind p A1 B1
| Su_Eq n Γ (A : PTm n) B i :
Γ A B PUniv i ->
Γ A B
| Su_Bind_Proj1 n Γ p (A0 A1 : PTm n) B0 B1 :
Γ PBind p A0 B0 PBind p A1 B1 ->
Γ A1 A0
| Su_Bind_Proj2 n Γ p (a0 a1 A0 A1 : PTm n) B0 B1 :
Γ PBind p A0 B0 PBind p A1 B1 ->
Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : forall {n}, (fin n -> PTm n) -> Prop :=
| Wff_Nil :
null
| Wff_Cons n Γ (A : PTm n) i :
Γ ->
Γ A PUniv i ->
(* -------------------------------- *)
funcomp (ren_PTm shift) (scons A Γ)
where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
Scheme wf_ind := Induction for Wff Sort Prop
with wt_ind := Induction for Wt Sort Prop
with eq_ind := Induction for Eq Sort Prop
with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
(* Lemma lem : *)
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...). *)
(* Proof. apply wt_mutual. ... *)