sp-eta-postpone/theories/structural.v

531 lines
19 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Lemma wff_mutual :
(forall n (Γ : fin n -> PTm n), Γ -> True) /\
(forall n Γ (a A : PTm n), Γ a A -> Γ) /\
(forall n Γ (a b A : PTm n), Γ a b A -> Γ) /\
(forall n Γ (A B : PTm n), Γ A B -> Γ).
Proof. apply wt_mutual; eauto. Qed.
#[export]Hint Constructors Wt Wff Eq : wt.
Lemma renaming_up n m (ξ : fin n -> fin m) Δ Γ A :
renaming_ok Δ Γ ξ ->
renaming_ok (funcomp (ren_PTm shift) (scons (ren_PTm ξ A) Δ)) (funcomp (ren_PTm shift) (scons A Γ)) (upRen_PTm_PTm ξ) .
Proof.
move => h i.
destruct i as [i|].
asimpl. rewrite /renaming_ok in h.
rewrite /funcomp. rewrite -h.
by asimpl.
by asimpl.
Qed.
Lemma Su_Wt n Γ a i :
Γ a @PUniv n i ->
Γ a a.
Proof. hauto lq:on ctrs:LEq, Eq. Qed.
Lemma Wt_Univ n Γ a A i
(h : Γ a A) :
Γ @PUniv n i PUniv (S i).
Proof.
hauto lq:on ctrs:Wt use:wff_mutual.
Qed.
Lemma Pi_Inv n Γ (A : PTm n) B U :
Γ PBind PPi A B U ->
exists i, Γ A PUniv i /\
funcomp (ren_PTm shift) (scons A Γ) B PUniv i /\
Γ PUniv i U.
Proof.
move E :(PBind PPi A B) => T h.
move : A B E.
elim : n Γ T U / h => //=.
- hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Sig_Inv n Γ (A : PTm n) B U :
Γ PBind PSig A B U ->
exists i, Γ A PUniv i /\
funcomp (ren_PTm shift) (scons A Γ) B PUniv i /\
Γ PUniv i U.
Proof.
move E :(PBind PSig A B) => T h.
move : A B E.
elim : n Γ T U / h => //=.
- hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma T_App' n Γ (b a : PTm n) A B U :
U = subst_PTm (scons a VarPTm) B ->
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a U.
Proof. move => ->. apply T_App. Qed.
Lemma T_Pair' n Γ (a b : PTm n) A B i U :
U = subst_PTm (scons a VarPTm) B ->
Γ a A ->
Γ b U ->
Γ PBind PSig A B (PUniv i) ->
Γ PPair a b PBind PSig A B.
Proof.
move => ->. eauto using T_Pair.
Qed.
Lemma T_Proj2' n Γ (a : PTm n) A B U :
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a PBind PSig A B ->
Γ PProj PR a U.
Proof. move => ->. apply T_Proj2. Qed.
Lemma E_Proj2' n Γ i (a b : PTm n) A B U :
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b U.
Proof.
move => ->. apply E_Proj2.
Qed.
Lemma E_Bind' n Γ i p (A0 A1 : PTm n) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i.
Proof. hauto lq:on use:E_Bind, wff_mutual. Qed.
Lemma E_App' n Γ i (b0 b1 a0 a1 : PTm n) A B U :
U = subst_PTm (scons a0 VarPTm) B ->
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 U.
Proof. move => ->. apply E_App. Qed.
Lemma E_AppAbs' n Γ (a : PTm (S n)) b A B i u U :
u = subst_PTm (scons b VarPTm) a ->
U = subst_PTm (scons b VarPTm ) B ->
Γ PBind PPi A B PUniv i ->
Γ b A ->
funcomp (ren_PTm shift) (scons A Γ) a B ->
Γ PApp (PAbs a) b u U.
move => -> ->. apply E_AppAbs. Qed.
Lemma E_ProjPair2' n Γ (a b : PTm n) A B i U :
U = subst_PTm (scons a VarPTm) B ->
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b U.
Proof. move => ->. apply E_ProjPair2. Qed.
Lemma E_AppEta' n Γ (b : PTm n) A B i u :
u = (PApp (ren_PTm shift b) (VarPTm var_zero)) ->
Γ PBind PPi A B (PUniv i) ->
Γ b PBind PPi A B ->
Γ PAbs u b PBind PPi A B.
Proof. qauto l:on use:wff_mutual, E_AppEta. Qed.
Lemma Su_Pi_Proj2' n Γ (a0 a1 A0 A1 : PTm n) B0 B1 U T :
U = subst_PTm (scons a0 VarPTm) B0 ->
T = subst_PTm (scons a1 VarPTm) B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ U T.
Proof. move => -> ->. apply Su_Pi_Proj2. Qed.
Lemma Su_Sig_Proj2' n Γ (a0 a1 A0 A1 : PTm n) B0 B1 U T :
U = subst_PTm (scons a0 VarPTm) B0 ->
T = subst_PTm (scons a1 VarPTm) B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ U T.
Proof. move => -> ->. apply Su_Sig_Proj2. Qed.
Lemma renaming :
(forall n (Γ : fin n -> PTm n), Γ -> True) /\
(forall n Γ (a A : PTm n), Γ a A -> forall m Δ (ξ : fin n -> fin m), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ a ren_PTm ξ A) /\
(forall n Γ (a b A : PTm n), Γ a b A -> forall m Δ (ξ : fin n -> fin m), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ a ren_PTm ξ b ren_PTm ξ A) /\
(forall n Γ (A B : PTm n), Γ A B -> forall m Δ (ξ : fin n -> fin m), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ A ren_PTm ξ B).
Proof.
apply wt_mutual => //=; eauto 3 with wt.
- move => n Γ i _ m Δ ξ .
rewrite .
by apply T_Var.
- hauto lq:on rew:off ctrs:Wt, Wff use:renaming_up.
- move => n Γ a A B i hP ihP ha iha m Δ ξ .
apply : T_Abs; eauto.
move : ihP() (); repeat move/[apply]. move/Pi_Inv.
hauto lq:on rew:off ctrs:Wff,Wt use:renaming_up.
- move => *. apply : T_App'; eauto. by asimpl.
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ξ .
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
- move => n Γ a A B ha iha m Δ ξ . apply : T_Proj2'; eauto. by asimpl.
- hauto lq:on ctrs:Wt,LEq.
- hauto lq:on ctrs:Eq.
- hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up.
- move => n Γ a b A B i hPi ihPi ha iha m Δ ξ .
move : ihPi () (). repeat move/[apply].
move => /Pi_Inv [j][h0][h1]h2.
have ? : Δ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) PUniv j by qauto l:on ctrs:Wt.
move {hPi}.
apply : E_Abs; eauto. qauto l:on ctrs:Wff use:renaming_up.
- move => *. apply : E_App'; eauto. by asimpl.
- move => n Γ a0 a1 b0 b1 A B i hA ihA ha iha hb ihb m Δ ξ .
apply : E_Pair; eauto.
move : ihb . repeat move/[apply].
by asimpl.
- move => *. apply : E_Proj2'; eauto. by asimpl.
- qauto l:on ctrs:Eq, LEq.
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ξ .
move : ihP () (). repeat move/[apply].
move /Pi_Inv.
move => [j][h0][h1]h2.
have ? : Δ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) PUniv j by qauto l:on ctrs:Wt.
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
hauto lq:on ctrs:Wff use:renaming_up.
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ .
move : {hP} ihP () (). repeat move/[apply].
move /Sig_Inv => [i0][h0][h1]h2.
have ? : Δ PBind PSig (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) PUniv i0 by qauto l:on ctrs:Wt.
apply : E_ProjPair1; eauto.
move : ihb . repeat move/[apply]. by asimpl.
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ .
apply : E_ProjPair2'; eauto. by asimpl.
move : ihb ; repeat move/[apply]. by asimpl.
- move => *.
apply : E_AppEta'; eauto. by asimpl.
- qauto l:on use:E_PairEta.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- hauto lq:on ctrs:Wff use:renaming_up, Su_Pi.
- hauto lq:on ctrs:Wff use:Su_Sig, renaming_up.
- hauto q:on ctrs:LEq.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
Qed.
Definition morphing_ok {n m} Δ Γ (ρ : fin n -> PTm m) :=
forall i, Δ ρ i subst_PTm ρ (Γ i).
Lemma morphing_ren n m p Ξ Δ Γ
(ρ : fin n -> PTm m) (ξ : fin m -> fin p) :
Ξ ->
renaming_ok Ξ Δ ξ -> morphing_ok Δ Γ ρ ->
morphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ).
Proof.
move => hρ.
move => i.
rewrite {1}/funcomp.
have -> :
subst_PTm (funcomp (ren_PTm ξ) ρ) (Γ i) =
ren_PTm ξ (subst_PTm ρ (Γ i)) by asimpl.
eapply renaming; eauto.
Qed.
Lemma morphing_ext n m Δ Γ (ρ : fin n -> PTm m) (a : PTm m) (A : PTm n) :
morphing_ok Δ Γ ρ ->
Δ a subst_PTm ρ A ->
morphing_ok
Δ (funcomp (ren_PTm shift) (scons A Γ)) (scons a ρ).
Proof.
move => h ha i. destruct i as [i|]; by asimpl.
Qed.
Lemma T_Var' n Γ (i : fin n) U :
U = Γ i ->
Γ ->
Γ VarPTm i U.
Proof. move => ->. apply T_Var. Qed.
Lemma renaming_wt : forall n Γ (a A : PTm n), Γ a A -> forall m Δ (ξ : fin n -> fin m), Δ -> renaming_ok Δ Γ ξ -> Δ ren_PTm ξ a ren_PTm ξ A.
Proof. sfirstorder use:renaming. Qed.
Lemma renaming_wt' : forall n m Δ Γ a A (ξ : fin n -> fin m) u U,
u = ren_PTm ξ a -> U = ren_PTm ξ A ->
Γ a A -> Δ ->
renaming_ok Δ Γ ξ -> Δ u U.
Proof. hauto use:renaming_wt. Qed.
Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A :
renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift.
Proof. sfirstorder. Qed.
Lemma morphing_up n m Γ Δ (ρ : fin n -> PTm m) (A : PTm n) k :
morphing_ok Γ Δ ρ ->
Γ subst_PTm ρ A PUniv k ->
morphing_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) (funcomp (ren_PTm shift) (scons A Δ)) (up_PTm_PTm ρ).
Proof.
move => h h1 [:hp]. apply morphing_ext.
rewrite /morphing_ok.
move => i.
rewrite {2}/funcomp.
apply : renaming_wt'; eauto. by asimpl.
abstract : hp. qauto l:on ctrs:Wff use:wff_mutual.
eauto using renaming_shift.
apply : T_Var';eauto. rewrite /funcomp. by asimpl.
Qed.
Lemma Wff_Cons' n Γ (A : PTm n) i :
Γ A PUniv i ->
(* -------------------------------- *)
funcomp (ren_PTm shift) (scons A Γ).
Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed.
Lemma weakening_wt : forall n Γ (a A B : PTm n) i,
Γ B PUniv i ->
Γ a A ->
funcomp (ren_PTm shift) (scons B Γ) ren_PTm shift a ren_PTm shift A.
Proof.
move => n Γ a A B i hB ha.
apply : renaming_wt'; eauto.
apply : Wff_Cons'; eauto.
apply : renaming_shift; eauto.
Qed.
Lemma weakening_wt' : forall n Γ (a A B : PTm n) i U u,
u = ren_PTm shift a ->
U = ren_PTm shift A ->
Γ B PUniv i ->
Γ a A ->
funcomp (ren_PTm shift) (scons B Γ) u U.
Proof. move => > -> ->. apply weakening_wt. Qed.
Lemma morphing :
(forall n (Γ : fin n -> PTm n), Γ -> True) /\
(forall n Γ (a A : PTm n), Γ a A -> forall m Δ (ρ : fin n -> PTm m), Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ a subst_PTm ρ A) /\
(forall n Γ (a b A : PTm n), Γ a b A -> forall m Δ (ρ : fin n -> PTm m), Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ a subst_PTm ρ b subst_PTm ρ A) /\
(forall n Γ (A B : PTm n), Γ A B -> forall m Δ (ρ : fin n -> PTm m), Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ A subst_PTm ρ B).
Proof.
apply wt_mutual => //=.
- hauto lq:on use:morphing_up, Wff_Cons', T_Bind.
- move => n Γ a A B i hP ihP ha iha m Δ ρ hρ.
move : ihP () (hρ); repeat move/[apply].
move /Pi_Inv => [j][h0][h1]h2. move {hP}.
have ? : Δ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv i by hauto lq:on ctrs:Wt.
apply : T_Abs; eauto.
apply : iha.
hauto lq:on use:Wff_Cons', Pi_Inv.
apply : morphing_up; eauto.
- move => *; apply : T_App'; eauto; by asimpl.
- move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ρ hρ .
eapply T_Pair' with (U := subst_PTm ρ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
- hauto lq:on use:T_Proj1.
- move => *. apply : T_Proj2'; eauto. by asimpl.
- hauto lq:on ctrs:Wt,LEq.
- qauto l:on ctrs:Wt.
- hauto lq:on ctrs:Eq.
- hauto lq:on ctrs:Eq.
- hauto lq:on ctrs:Eq.
- hauto lq:on rew:off use:E_Bind', Wff_Cons, morphing_up.
- move => n Γ a b A B i hPi ihPi ha iha m Δ ρ hρ.
move : ihPi () (hρ). repeat move/[apply].
move => /Pi_Inv [j][h0][h1]h2.
have ? : Δ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv j by qauto l:on ctrs:Wt.
move {hPi}.
apply : E_Abs; eauto. qauto l:on ctrs:Wff use:morphing_up.
- move => *. apply : E_App'; eauto. by asimpl.
- move => n Γ a0 a1 b0 b1 A B i hA ihA ha iha hb ihb m Δ ρ hρ.
apply : E_Pair; eauto.
move : ihb hρ. repeat move/[apply].
by asimpl.
- hauto q:on ctrs:Eq.
- move => *. apply : E_Proj2'; eauto. by asimpl.
- qauto l:on ctrs:Eq, LEq.
- move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ρ hρ.
move : ihP (hρ) (). repeat move/[apply].
move /Pi_Inv.
move => [j][h0][h1]h2.
have ? : Δ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv j by qauto l:on ctrs:Wt.
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
hauto lq:on ctrs:Wff use:morphing_up.
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hρ.
move : {hP} ihP (hρ) (). repeat move/[apply].
move /Sig_Inv => [i0][h0][h1]h2.
have ? : Δ PBind PSig (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv i0 by qauto l:on ctrs:Wt.
apply : E_ProjPair1; eauto.
move : ihb hρ . repeat move/[apply]. by asimpl.
- move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hρ.
apply : E_ProjPair2'; eauto. by asimpl.
move : ihb hρ ; repeat move/[apply]. by asimpl.
- move => *.
apply : E_AppEta'; eauto. by asimpl.
- qauto l:on use:E_PairEta.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- hauto lq:on ctrs:Wff use:morphing_up, Su_Pi.
- hauto lq:on ctrs:Wff use:Su_Sig, morphing_up.
- hauto q:on ctrs:LEq.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
Qed.
Lemma morphing_wt : forall n Γ (a A : PTm n), Γ a A -> forall m Δ (ρ : fin n -> PTm m), Δ -> morphing_ok Δ Γ ρ -> Δ subst_PTm ρ a subst_PTm ρ A.
Proof. sfirstorder use:morphing. Qed.
Lemma morphing_wt' : forall n m Δ Γ a A (ρ : fin n -> PTm m) u U,
u = subst_PTm ρ a -> U = subst_PTm ρ A ->
Γ a A -> Δ ->
morphing_ok Δ Γ ρ -> Δ u U.
Proof. hauto use:morphing_wt. Qed.
Lemma morphing_id : forall n (Γ : fin n -> PTm n), Γ -> morphing_ok Γ Γ VarPTm.
Proof.
move => n Γ .
rewrite /morphing_ok.
move => i. asimpl. by apply T_Var.
Qed.
Lemma substing_wt : forall n Γ (a : PTm (S n)) (b A : PTm n) B,
funcomp (ren_PTm shift) (scons A Γ) a B ->
Γ b A ->
Γ subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm) B.
Proof.
move => n Γ a b A B ha hb [:]. apply : morphing_wt; eauto.
abstract : . sfirstorder use:wff_mutual.
apply morphing_ext; last by asimpl.
by apply morphing_id.
Qed.
(* Could generalize to all equal contexts *)
Lemma ctx_eq_subst_one n (A0 A1 : PTm n) i j Γ a A :
funcomp (ren_PTm shift) (scons A0 Γ) a A ->
Γ A0 PUniv i ->
Γ A1 PUniv j ->
Γ A1 A0 ->
funcomp (ren_PTm shift) (scons A1 Γ) a A.
Proof.
move => h0 h1 h2 h3.
replace a with (subst_PTm VarPTm a); last by asimpl.
replace A with (subst_PTm VarPTm A); last by asimpl.
have ? : Γ by sfirstorder use:wff_mutual.
apply : morphing_wt; eauto.
apply : Wff_Cons'; eauto.
move => k. destruct k as [k|].
- asimpl.
eapply weakening_wt' with (a := VarPTm k);eauto using T_Var.
by substify.
- move => [:hΓ'].
apply : T_Conv.
apply T_Var.
abstract : hΓ'.
eauto using Wff_Cons'.
rewrite /funcomp. asimpl. substify. asimpl.
renamify.
eapply renaming; eauto.
apply : renaming_shift; eauto.
Qed.
Lemma bind_inst n Γ p (A : PTm n) B i a0 a1 :
Γ PBind p A B PUniv i ->
Γ a0 a1 A ->
Γ subst_PTm (scons a0 VarPTm) B subst_PTm (scons a1 VarPTm) B.
Proof.
move => h h0.
have {}h : Γ PBind p A B PBind p A B by eauto using E_Refl, Su_Eq.
case : p h => //=; hauto l:on use:Su_Pi_Proj2, Su_Sig_Proj2.
Qed.
Lemma regularity :
(forall n (Γ : fin n -> PTm n), Γ -> forall i, exists j, Γ Γ i PUniv j) /\
(forall n Γ (a A : PTm n), Γ a A -> exists i, Γ A PUniv i) /\
(forall n Γ (a b A : PTm n), Γ a b A -> Γ a A /\ Γ b A /\ exists i, Γ A PUniv i) /\
(forall n Γ (A B : PTm n), Γ A B -> exists i, Γ A PUniv i /\ Γ B PUniv i).
Proof.
apply wt_mutual => //=; eauto with wt.
- move => n Γ A i ihΓ hA _ j.
destruct j as [j|].
have := ihΓ j.
move => [j0 hj].
exists j0. apply : renaming_wt' => //=; eauto using renaming_shift.
reflexivity. econstructor; eauto.
exists i. rewrite {2}/funcomp. simpl.
apply : renaming_wt'; eauto. reflexivity.
econstructor; eauto.
apply : renaming_shift; eauto.
- move => n Γ b a A B hb [i ihb] ha [j iha].
move /Pi_Inv : ihb => [k][h0][h1]h2.
move : substing_wt ha h1; repeat move/[apply].
move => h. exists k.
move : h. by asimpl.
- hauto lq:on use:Sig_Inv.
- move => n Γ a A B ha [i /Sig_Inv[j][h0][h1]h2].
exists j. have : Γ PProj PL a A by qauto use:T_Proj1.
move : substing_wt h1; repeat move/[apply].
by asimpl.
- sfirstorder.
- sfirstorder.
- sfirstorder.
- move => n Γ i p A0 A1 B0 B1 ihΓ hA0
[i0 ihA0] hA [ihA [ihA' [i1 ihA'']]].
move => hB [ihB0 [ihB1 [i2 ihB2]]].
repeat split => //=.
qauto use:T_Bind.
apply T_Bind; eauto.
apply : ctx_eq_subst_one; eauto using Su_Eq, E_Symmetric.
eauto using T_Univ.
- hauto lq:on ctrs:Wt,Eq.
- move => n Γ i b0 b1 a0 a1 A B hP _ hb [ihb0 [ihb1 [i0 ihb2]]]
ha [iha0 [iha1 [i1 iha2]]].
repeat split.
qauto use:T_App.
apply : T_Conv; eauto.
qauto use:T_App.
move /E_Symmetric in ha.
by eauto using bind_inst.
hauto lq:on ctrs:Wt,Eq,LEq lq:on use:Pi_Inv, substing_wt.
- hauto lq:on use:bind_inst db:wt.
- hauto lq:on use:Sig_Inv db:wt.
- move => n Γ i a b A B hS _ hab [iha][ihb][j]ihs.
repeat split => //=; eauto with wt.
apply : T_Conv; eauto with wt.
move /E_Symmetric /E_Proj1 in hab.
eauto using bind_inst.
move /T_Proj1 in iha.
hauto lq:on ctrs:Wt,Eq,LEq use:Sig_Inv, substing_wt.
- hauto lq:on ctrs:Wt.
- hauto q:on use:substing_wt db:wt.
- hauto l:on use:bind_inst db:wt.
- move => n Γ b A B i ihΓ hP _ hb [i0 ihb].
repeat split => //=; eauto with wt.
have {}hb : funcomp (ren_PTm shift) (scons A Γ) ren_PTm shift b ren_PTm shift (PBind PPi A B)
by hauto lq:on use:weakening_wt, Pi_Inv.
apply : T_Abs; eauto.
apply : T_App'; eauto; rewrite-/ren_PTm.
by asimpl.
apply T_Var. sfirstorder use:wff_mutual.
- hauto lq:on ctrs:Wt.
- move => n Γ A B C hA [i [ihA0 ihA1]] hC [j [ihC0 ihC1]].
have ? : Γ by sfirstorder use:wff_mutual.
exists (max i j).
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
qauto l:on use:T_Conv, Su_Univ.
- move => n Γ i j *. exists (S (max i j)).
have [? ?] : S i <= S (Nat.max i j) /\ S j <= S (Nat.max i j) by lia.
hauto lq:on ctrs:Wt,LEq.
- best use:bind_inst.
- admit.
- sfirstorder.
- admit.
- admit.
- admit.
- admit.
Admitted.