108 lines
2.8 KiB
Coq
108 lines
2.8 KiB
Coq
Require Import Autosubst2.fintype Autosubst2.syntax ssreflect.
|
|
From Ltac2 Require Ltac2.
|
|
Import Ltac2.Notations.
|
|
Import Ltac2.Control.
|
|
From Hammer Require Import Tactics.
|
|
|
|
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) :=
|
|
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i).
|
|
|
|
Lemma up_injective n m (ξ : fin n -> fin m) :
|
|
(forall i j, ξ i = ξ j -> i = j) ->
|
|
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j.
|
|
Proof.
|
|
sblast inv:option.
|
|
Qed.
|
|
|
|
Local Ltac2 rec solve_anti_ren () :=
|
|
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
|
intro $x;
|
|
lazy_match! Constr.type (Control.hyp x) with
|
|
| fin _ -> _ _ => (ltac1:(case;hauto lq:on rew:off use:up_injective))
|
|
| _ => solve_anti_ren ()
|
|
end.
|
|
|
|
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
|
|
|
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) :
|
|
(forall i j, ξ i = ξ j -> i = j) ->
|
|
ren_PTm ξ a = ren_PTm ξ b ->
|
|
a = b.
|
|
Proof.
|
|
move : m ξ b. elim : n / a => //; try solve_anti_ren.
|
|
Qed.
|
|
|
|
Inductive HF : Set :=
|
|
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
|
|
|
Definition ishf {n} (a : PTm n) :=
|
|
match a with
|
|
| PPair _ _ => true
|
|
| PAbs _ => true
|
|
| PUniv _ => true
|
|
| PBind _ _ _ => true
|
|
| PNat => true
|
|
| PSuc _ => true
|
|
| PZero => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition toHF {n} (a : PTm n) :=
|
|
match a with
|
|
| PPair _ _ => H_Pair
|
|
| PAbs _ => H_Abs
|
|
| PUniv _ => H_Univ
|
|
| PBind p _ _ => H_Bind p
|
|
| PNat => H_Nat
|
|
| PSuc _ => H_Suc
|
|
| PZero => H_Zero
|
|
| _ => H_Bot
|
|
end.
|
|
|
|
Fixpoint ishne {n} (a : PTm n) :=
|
|
match a with
|
|
| VarPTm _ => true
|
|
| PApp a _ => ishne a
|
|
| PProj _ a => ishne a
|
|
| PBot => true
|
|
| PInd _ n _ _ => ishne n
|
|
| _ => false
|
|
end.
|
|
|
|
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
|
|
|
|
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
|
|
|
|
Definition ispair {n} (a : PTm n) :=
|
|
match a with
|
|
| PPair _ _ => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition isnat {n} (a : PTm n) := if a is PNat then true else false.
|
|
|
|
Definition iszero {n} (a : PTm n) := if a is PZero then true else false.
|
|
|
|
Definition issuc {n} (a : PTm n) := if a is PSuc _ then true else false.
|
|
|
|
Definition isabs {n} (a : PTm n) :=
|
|
match a with
|
|
| PAbs _ => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
|
ishf (ren_PTm ξ a) = ishf a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
|
isabs (ren_PTm ξ a) = isabs a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
|
ispair (ren_PTm ξ a) = ispair a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
|
ishne (ren_PTm ξ a) = ishne a.
|
|
Proof. move : m ξ. elim : n / a => //=. Qed.
|