975 lines
26 KiB
Coq
975 lines
26 KiB
Coq
From Ltac2 Require Ltac2.
|
||
Import Ltac2.Notations.
|
||
Import Ltac2.Control.
|
||
Require Import ssreflect ssrbool.
|
||
Require Import FunInd.
|
||
Require Import Arith.Wf_nat.
|
||
Require Import Psatz.
|
||
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
|
||
From Hammer Require Import Tactics.
|
||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||
|
||
Ltac2 spec_refl () :=
|
||
List.iter
|
||
(fun a => match a with
|
||
| (i, _, _) =>
|
||
let h := Control.hyp i in
|
||
try (specialize $h with (1 := eq_refl))
|
||
end) (Control.hyps ()).
|
||
|
||
Ltac spec_refl := ltac2:(spec_refl ()).
|
||
|
||
Module ERed.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1
|
||
| PairEta a0 a1 :
|
||
R a0 a1 ->
|
||
R (PPair (PProj PL a0) (PProj PR a0)) a1
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PApp a0 b0) (PApp a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R a0 a1 ->
|
||
R b0 b1 ->
|
||
R (PPair a0 b0) (PPair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1)
|
||
| VarTm i :
|
||
R (VarPTm i) (VarPTm i).
|
||
|
||
Lemma refl n (a : PTm n) : R a a.
|
||
Proof.
|
||
elim : n / a; hauto lq:on ctrs:R.
|
||
Qed.
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppEta' n a0 a1 (u : PTm n) :
|
||
u = (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) ->
|
||
R a0 a1 ->
|
||
R u a1.
|
||
Proof. move => ->. apply AppEta. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a0 a1 ha iha m ξ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||
Proof. eauto using renaming. Qed.
|
||
|
||
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b :
|
||
R a b ->
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
|
||
Proof. hauto q:on inv:option. Qed.
|
||
|
||
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)).
|
||
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed.
|
||
|
||
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
|
||
Proof.
|
||
move => + h. move : m ρ0 ρ1. elim : n a b / h => n.
|
||
move => a0 a1 ha iha m ρ0 ρ1 hρ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : hauto lq:on ctrs:R use:morphing_up.
|
||
Qed.
|
||
|
||
Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) :
|
||
R a b ->
|
||
R (subst_PTm ρ a) (subst_PTm ρ b).
|
||
Proof.
|
||
hauto l:on use:morphing, refl.
|
||
Qed.
|
||
|
||
End ERed.
|
||
|
||
Inductive SNe {n} : PTm n -> Prop :=
|
||
| N_Var i :
|
||
SNe (VarPTm i)
|
||
| N_App a b :
|
||
SNe a ->
|
||
SN b ->
|
||
SNe (PApp a b)
|
||
| N_Proj p a :
|
||
SNe a ->
|
||
SNe (PProj p a)
|
||
with SN {n} : PTm n -> Prop :=
|
||
| N_Pair a b :
|
||
SN a ->
|
||
SN b ->
|
||
SN (PPair a b)
|
||
| N_Abs a :
|
||
SN a ->
|
||
SN (PAbs a)
|
||
| N_SNe a :
|
||
SNe a ->
|
||
SN a
|
||
| N_Exp a b :
|
||
TRedSN a b ->
|
||
SN b ->
|
||
SN a
|
||
with TRedSN {n} : PTm n -> PTm n -> Prop :=
|
||
| N_β a b :
|
||
SN b ->
|
||
TRedSN (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||
| N_AppL a0 a1 b :
|
||
TRedSN a0 a1 ->
|
||
TRedSN (PApp a0 b) (PApp a1 b)
|
||
| N_ProjPairL a b :
|
||
SN b ->
|
||
TRedSN (PProj PL (PPair a b)) a
|
||
| N_ProjPairR a b :
|
||
SN a ->
|
||
TRedSN (PProj PR (PPair a b)) b
|
||
| N_ProjCong p a b :
|
||
TRedSN a b ->
|
||
TRedSN (PProj p a) (PProj p b).
|
||
|
||
Scheme sne_ind := Induction for SNe Sort Prop
|
||
with sn_ind := Induction for SN Sort Prop
|
||
with sred_ind := Induction for TRedSN Sort Prop.
|
||
|
||
Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind.
|
||
|
||
|
||
Fixpoint ne {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => true
|
||
| PApp a b => ne a && nf b
|
||
| PAbs a => false
|
||
| PPair _ _ => false
|
||
| PProj _ a => ne a
|
||
end
|
||
with nf {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => true
|
||
| PApp a b => ne a && nf b
|
||
| PAbs a => nf a
|
||
| PPair a b => nf a && nf b
|
||
| PProj _ a => ne a
|
||
end.
|
||
|
||
Lemma ne_nf n a : @ne n a -> nf a.
|
||
Proof. elim : a => //=. Qed.
|
||
|
||
Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop :=
|
||
| T_Refl :
|
||
TRedSN' a a
|
||
| T_Once b :
|
||
TRedSN a b ->
|
||
TRedSN' a b.
|
||
|
||
Lemma SN_Proj n p (a : PTm n) :
|
||
SN (PProj p a) -> SN a.
|
||
Proof.
|
||
move E : (PProj p a) => u h.
|
||
move : a E.
|
||
elim : n u / h => n //=; sauto.
|
||
Qed.
|
||
|
||
Lemma ered_sn_preservation n :
|
||
(forall (a : PTm n) (s : SNe a), forall b, ERed.R a b -> SNe b) /\
|
||
(forall (a : PTm n) (s : SN a), forall b, ERed.R a b -> SN b) /\
|
||
(forall (a b : PTm n) (_ : TRedSN a b), forall c, ERed.R a c -> exists d, TRedSN' c d /\ ERed.R b d).
|
||
Proof.
|
||
move : n. apply sn_mutual => n.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- move => a b ha iha hb ihb b0.
|
||
inversion 1; subst.
|
||
+ have /iha : (ERed.R (PProj PL a0) (PProj PL b0)) by sauto lq:on.
|
||
sfirstorder use:SN_Proj.
|
||
+ sauto lq:on.
|
||
- move => a ha iha b.
|
||
inversion 1; subst.
|
||
+ have : ERed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)).
|
||
apply ERed.AppCong; eauto using ERed.refl.
|
||
sfirstorder use:ERed.renaming.
|
||
move /iha.
|
||
admit.
|
||
+ sauto lq:on.
|
||
- sauto lq:on.
|
||
- sauto lq:on.
|
||
- move => a b ha iha c h0.
|
||
inversion h0; subst.
|
||
inversion H1; subst.
|
||
+ exists (PApp a1 b1). split. sfirstorder.
|
||
asimpl.
|
||
sauto lq:on.
|
||
+ have {}/iha := H3 => iha.
|
||
exists (subst_PTm (scons b1 VarPTm) a2).
|
||
split.
|
||
sauto lq:on.
|
||
hauto lq:on use:ERed.morphing, ERed.refl inv:option.
|
||
- sauto.
|
||
- move => a b hb ihb c.
|
||
elim /ERed.inv => //= _.
|
||
move => p a0 a1 ha [*]. subst.
|
||
elim /ERed.inv : ha => //= _.
|
||
+ move => a0 a2 ha' [*]. subst.
|
||
exists (PProj PL a1).
|
||
split. sauto.
|
||
sauto lq:on.
|
||
+ sauto lq:on rew:off.
|
||
- move => a b ha iha c.
|
||
elim /ERed.inv => //=_.
|
||
move => p a0 a1 + [*]. subst.
|
||
elim /ERed.inv => //=_.
|
||
+ move => a0 a2 h1 [*]. subst.
|
||
exists (PProj PR a1).
|
||
split. sauto.
|
||
sauto lq:on.
|
||
+ sauto lq:on.
|
||
- sauto.
|
||
Admitted.
|
||
|
||
Module RRed.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppAbs a b :
|
||
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||
|
||
| ProjPair p a b :
|
||
R (PProj p (PPair a b)) (if p is PL then a else b)
|
||
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PApp a0 b) (PApp a1 b)
|
||
| AppCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PApp a b0) (PApp a b1)
|
||
| PairCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PPair a0 b) (PPair a1 b)
|
||
| PairCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PPair a b0) (PPair a b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1).
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppAbs' n a (b : PTm n) u :
|
||
u = (subst_PTm (scons b VarPTm) a) ->
|
||
R (PApp (PAbs a) b) u.
|
||
Proof.
|
||
move => ->. by apply AppAbs. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a b m ξ /=.
|
||
apply AppAbs'. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
|
||
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
|
||
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
||
Proof.
|
||
move E : (ren_PTm ξ a) => u h.
|
||
move : n ξ a E. elim : m u b/h.
|
||
- move => n a b m ξ []//=. move => []//= t t0 [*]. subst.
|
||
eexists. split. apply AppAbs. by asimpl.
|
||
- move => n p a b m ξ []//=.
|
||
move => p0 []//=. hauto q:on ctrs:R.
|
||
- move => n a0 a1 ha iha m ξ []//=.
|
||
move => p [*]. subst.
|
||
spec_refl.
|
||
move : iha => [t [h0 h1]]. subst.
|
||
eexists. split. eauto using AbsCong.
|
||
by asimpl.
|
||
- move => n a0 a1 b ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a b0 b1 h ih m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a0 a1 b ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n a b0 b1 h ih m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
- move => n p a0 a1 ha iha m ξ []//=.
|
||
hauto lq:on ctrs:R.
|
||
Qed.
|
||
|
||
End RRed.
|
||
|
||
|
||
|
||
Function tstar {n} (a : PTm n) :=
|
||
match a with
|
||
| VarPTm i => a
|
||
| PAbs a => PAbs (tstar a)
|
||
| PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a)
|
||
| PApp a b => PApp (tstar a) (tstar b)
|
||
| PPair a b => PPair (tstar a) (tstar b)
|
||
| PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b)
|
||
| PProj p a => PProj p (tstar a)
|
||
end.
|
||
|
||
Module TStar.
|
||
Lemma renaming n m (ξ : fin n -> fin m) (a : PTm n) :
|
||
tstar (ren_PTm ξ a) = ren_PTm ξ (tstar a).
|
||
Proof.
|
||
move : m ξ.
|
||
apply tstar_ind => {}n {}a => //=.
|
||
- hauto lq:on.
|
||
- scongruence.
|
||
- move => a0 b ? h ih m ξ.
|
||
rewrite ih.
|
||
asimpl; congruence.
|
||
- qauto l:on.
|
||
- scongruence.
|
||
- hauto q:on.
|
||
- qauto l:on.
|
||
Qed.
|
||
|
||
Lemma pair n (a b : PTm n) :
|
||
tstar (PPair a b) = PPair (tstar a) (tstar b).
|
||
reflexivity. Qed.
|
||
End TStar.
|
||
|
||
Definition isPair {n} (a : PTm n) := if a is PPair _ _ then true else false.
|
||
|
||
Lemma tstar_proj n (a : PTm n) :
|
||
((~~ isPair a) /\ forall p, tstar (PProj p a) = PProj p (tstar a)) \/
|
||
exists a0 b0, a = PPair a0 b0 /\ forall p, tstar (PProj p a) = (if p is PL then (tstar a0) else (tstar b0)).
|
||
Proof. sauto lq:on. Qed.
|
||
|
||
Module ERed'.
|
||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a :
|
||
R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a
|
||
| PairEta a :
|
||
R (PPair (PProj PL a) (PProj PR a)) a
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R a0 a1 ->
|
||
R (PAbs a0) (PAbs a1)
|
||
| AppCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PApp a0 b) (PApp a1 b)
|
||
| AppCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PApp a b0) (PApp a b1)
|
||
| PairCong0 a0 a1 b :
|
||
R a0 a1 ->
|
||
R (PPair a0 b) (PPair a1 b)
|
||
| PairCong1 a b0 b1 :
|
||
R b0 b1 ->
|
||
R (PPair a b0) (PPair a b1)
|
||
| ProjCong p a0 a1 :
|
||
R a0 a1 ->
|
||
R (PProj p a0) (PProj p a1).
|
||
|
||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||
|
||
Lemma AppEta' n a (u : PTm n) :
|
||
u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) ->
|
||
R u a.
|
||
Proof. move => ->. apply AppEta. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ.
|
||
elim : n a b /h.
|
||
|
||
move => n a m ξ /=.
|
||
eapply AppEta'; eauto. by asimpl.
|
||
all : qauto ctrs:R.
|
||
Qed.
|
||
|
||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||
Proof. eauto using renaming. Qed.
|
||
|
||
(* Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : *)
|
||
(* R a b -> *)
|
||
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
|
||
(* (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). *)
|
||
(* Proof. hauto q:on inv:option. Qed. *)
|
||
|
||
(* Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : *)
|
||
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
|
||
(* (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). *)
|
||
(* Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. *)
|
||
|
||
(* Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : *)
|
||
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
|
||
(* R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). *)
|
||
(* Proof. *)
|
||
(* move => + h. move : m ρ0 ρ1. elim : n a b / h => n. *)
|
||
(* move => a0 a1 ha iha m ρ0 ρ1 hρ /=. *)
|
||
(* eapply AppEta'; eauto. by asimpl. *)
|
||
(* all : hauto lq:on ctrs:R use:morphing_up. *)
|
||
(* Qed. *)
|
||
|
||
(* Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : *)
|
||
(* R a b -> *)
|
||
(* R (subst_PTm ρ a) (subst_PTm ρ b). *)
|
||
(* Proof. *)
|
||
(* hauto l:on use:morphing, refl. *)
|
||
(* Qed. *)
|
||
|
||
End ERed'.
|
||
|
||
Module EReds.
|
||
|
||
#[local]Ltac solve_s_rec :=
|
||
move => *; eapply rtc_l; eauto;
|
||
hauto lq:on ctrs:ERed'.R.
|
||
|
||
#[local]Ltac solve_s :=
|
||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||
|
||
Lemma AbsCong n (a b : PTm (S n)) :
|
||
rtc ERed'.R a b ->
|
||
rtc ERed'.R (PAbs a) (PAbs b).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R b0 b1 ->
|
||
rtc ERed'.R (PApp a0 b0) (PApp a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R b0 b1 ->
|
||
rtc ERed'.R (PPair a0 b0) (PPair a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||
rtc ERed'.R a0 a1 ->
|
||
rtc ERed'.R (PProj p a0) (PProj p a1).
|
||
Proof. solve_s. Qed.
|
||
End EReds.
|
||
|
||
Module RReds.
|
||
|
||
#[local]Ltac solve_s_rec :=
|
||
move => *; eapply rtc_l; eauto;
|
||
hauto lq:on ctrs:RRed.R.
|
||
|
||
#[local]Ltac solve_s :=
|
||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||
|
||
Lemma AbsCong n (a b : PTm (S n)) :
|
||
rtc RRed.R a b ->
|
||
rtc RRed.R (PAbs a) (PAbs b).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R b0 b1 ->
|
||
rtc RRed.R (PApp a0 b0) (PApp a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R b0 b1 ->
|
||
rtc RRed.R (PPair a0 b0) (PPair a1 b1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||
rtc RRed.R a0 a1 ->
|
||
rtc RRed.R (PProj p a0) (PProj p a1).
|
||
Proof. solve_s. Qed.
|
||
|
||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||
rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b).
|
||
Proof.
|
||
move => h. move : m ξ. elim : a b /h; hauto lq:on ctrs:rtc use:RRed.renaming.
|
||
Qed.
|
||
|
||
End RReds.
|
||
|
||
|
||
Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||
(ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)).
|
||
Proof.
|
||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||
Qed.
|
||
|
||
Lemma ne_ered n (a b : PTm n) (h : ERed'.R a b ) :
|
||
(ne a -> ne b) /\ (nf a -> nf b).
|
||
Proof.
|
||
elim : n a b /h=>//=; hauto qb:on use:ne_nf_ren, ne_nf.
|
||
Qed.
|
||
|
||
Definition ishf {n} (a : PTm n) :=
|
||
match a with
|
||
| PPair _ _ => true
|
||
| PAbs _ => true
|
||
| _ => false
|
||
end.
|
||
|
||
Module NeERed.
|
||
Inductive R_nonelim {n} : PTm n -> PTm n -> Prop :=
|
||
(****************** Eta ***********************)
|
||
| AppEta a0 a1 :
|
||
~~ ishf a0 ->
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1
|
||
| PairEta a0 a1 :
|
||
~~ ishf a0 ->
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PPair (PProj PL a0) (PProj PR a0)) a1
|
||
(*************** Congruence ********************)
|
||
| AbsCong a0 a1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim (PAbs a0) (PAbs a1)
|
||
| AppCong a0 a1 b0 b1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_nonelim (PApp a0 b0) (PApp a1 b1)
|
||
| PairCong a0 a1 b0 b1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_nonelim (PPair a0 b0) (PPair a1 b1)
|
||
| ProjCong p a0 a1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim (PProj p a0) (PProj p a1)
|
||
| VarTm i :
|
||
R_nonelim (VarPTm i) (VarPTm i)
|
||
with R_elim {n} : PTm n -> PTm n -> Prop :=
|
||
| NAbsCong a0 a1 :
|
||
R_nonelim a0 a1 ->
|
||
R_elim (PAbs a0) (PAbs a1)
|
||
| NAppCong a0 a1 b0 b1 :
|
||
R_elim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_elim (PApp a0 b0) (PApp a1 b1)
|
||
| NPairCong a0 a1 b0 b1 :
|
||
R_nonelim a0 a1 ->
|
||
R_nonelim b0 b1 ->
|
||
R_elim (PPair a0 b0) (PPair a1 b1)
|
||
| NProjCong p a0 a1 :
|
||
R_elim a0 a1 ->
|
||
R_elim (PProj p a0) (PProj p a1)
|
||
| NVarTm i :
|
||
R_elim (VarPTm i) (VarPTm i).
|
||
|
||
Scheme ered_elim_ind := Induction for R_elim Sort Prop
|
||
with ered_nonelim_ind := Induction for R_nonelim Sort Prop.
|
||
|
||
Combined Scheme ered_mutual from ered_elim_ind, ered_nonelim_ind.
|
||
|
||
Lemma R_elim_nf n :
|
||
(forall (a b : PTm n), R_elim a b -> nf b -> nf a) /\
|
||
(forall (a b : PTm n), R_nonelim a b -> nf b -> nf a).
|
||
Proof.
|
||
move : n. apply ered_mutual => n //=.
|
||
- move => a0 a1 b0 b1 h ih h' ih' /andP [h0 h1].
|
||
have hb0 : nf b0 by eauto.
|
||
suff : ne a0 by qauto b:on.
|
||
qauto l:on inv:R_elim.
|
||
- hauto lb:on.
|
||
- hauto lq:on inv:R_elim.
|
||
- move => a0 a1 /negP ha' ha ih ha1.
|
||
have {ih} := ih ha1.
|
||
move => ha0.
|
||
suff : ne a0 by hauto lb:on drew:off use:ne_nf_ren.
|
||
inversion ha; subst => //=.
|
||
- move => a0 a1 /negP ha' ha ih ha1.
|
||
have {}ih := ih ha1.
|
||
have : ne a0 by hauto lq:on inv:PTm.
|
||
qauto lb:on.
|
||
- move => a0 a1 b0 b1 ha iha hb ihb /andP [h0 h1].
|
||
have {}ihb := ihb h1.
|
||
have {}iha := iha ltac:(eauto using ne_nf).
|
||
suff : ne a0 by hauto lb:on.
|
||
move : ha h0. hauto lq:on inv:R_elim.
|
||
- hauto lb: on drew: off.
|
||
- hauto lq:on rew:off inv:R_elim.
|
||
Qed.
|
||
|
||
Lemma R_nonelim_nothf n (a b : PTm n) :
|
||
R_nonelim a b ->
|
||
~~ ishf a ->
|
||
R_elim a b.
|
||
Proof.
|
||
move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_elim.
|
||
Qed.
|
||
|
||
End NeERed.
|
||
|
||
Lemma bool_dec (a : bool) : a \/ ~~ a.
|
||
Proof. hauto lq:on inv:bool. Qed.
|
||
|
||
Lemma η_split n (a0 a1 : PTm n) :
|
||
ERed.R a0 a1 ->
|
||
exists b, rtc RRed.R a0 b /\ NeERed.R_nonelim b a1.
|
||
Proof.
|
||
move => h. elim : n a0 a1 /h .
|
||
- move => n a0 a1 ha [b [ih0 ih1]].
|
||
case : (bool_dec (ishf b)); cycle 1.
|
||
exists (PAbs (PApp (ren_PTm shift b) (VarPTm var_zero))).
|
||
split. apply RReds.AbsCong. apply RReds.AppCong; auto using rtc_refl.
|
||
by eauto using RReds.renaming.
|
||
apply NeERed.AppEta=>//.
|
||
sfirstorder use:NeERed.R_nonelim_nothf.
|
||
|
||
case : b ih0 ih1 => //=.
|
||
+ move => p ih0 ih1 _.
|
||
inversion ih1; subst.
|
||
|
||
(* Violates SN *)
|
||
+ admit.
|
||
|
||
|
||
Lemma η_nf_to_ne n (a0 a1 : PTm n) :
|
||
ERed'.R a0 a1 -> nf a0 -> ~~ ne a0 -> ne a1 ->
|
||
(a0 = PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) \/
|
||
(a0 = PPair (PProj PL a1) (PProj PR a1)).
|
||
Proof.
|
||
move => h.
|
||
elim : n a0 a1 /h => n /=.
|
||
- sfirstorder use:ne_ered.
|
||
- hauto l:on use:ne_ered.
|
||
- scongruence use:ne_ered.
|
||
- hauto qb:on use:ne_ered, ne_nf.
|
||
- move => a b0 b1 h0 ih0 /andP [h1 h2] h3 /andP [h4 h5].
|
||
have {h3} : ~~ ne a by sfirstorder b:on.
|
||
by move /negP.
|
||
- hauto lqb:on.
|
||
- sfirstorder b:on.
|
||
- scongruence b:on.
|
||
Qed.
|
||
|
||
Lemma η_nf'' n (a b : PTm n) : ERed'.R a b -> nf b -> nf a \/ rtc RRed.R a b.
|
||
Proof.
|
||
move => h.
|
||
elim : n a b / h.
|
||
- move => n a.
|
||
case : a => //=.
|
||
* tauto.
|
||
* move => p hp. right.
|
||
apply rtc_once.
|
||
apply RRed.AbsCong.
|
||
apply RRed.AppAbs'. by asimpl.
|
||
* hauto lb:on use:ne_nf_ren.
|
||
* move => p p0 /andP [h0 h1].
|
||
right.
|
||
(* violates SN *)
|
||
admit.
|
||
* move => p u h.
|
||
hauto lb:on use:ne_nf_ren.
|
||
- move => n a ha.
|
||
case : a ha => //=.
|
||
* tauto.
|
||
* move => p hp. right.
|
||
(* violates SN *)
|
||
admit.
|
||
* sfirstorder b:on.
|
||
* hauto lq:on ctrs:rtc,RRed.R.
|
||
* qauto b:on.
|
||
- move => n a0 a1 ha h0 /= h1.
|
||
specialize h0 with (1 := h1).
|
||
case : h0. tauto.
|
||
eauto using RReds.AbsCong.
|
||
- move => n a0 a1 b ha h /= /andP [h0 h1].
|
||
have h2 : nf a1 by sfirstorder use:ne_nf.
|
||
have {}h := h h2.
|
||
case : h => h.
|
||
+ have : ne a0 \/ ~~ ne a0 by sauto lq:on.
|
||
case; first by sfirstorder b:on.
|
||
move : η_nf_to_ne (ha) h h0; repeat move/[apply].
|
||
case => ?; subst.
|
||
* simpl.
|
||
right.
|
||
apply rtc_once.
|
||
apply : RRed.AppAbs'.
|
||
by asimpl.
|
||
* simpl.
|
||
(* violates SN *)
|
||
admit.
|
||
+ right.
|
||
hauto lq:on ctrs:rtc use:RReds.AppCong.
|
||
- move => n a b0 b1 h h0 /=.
|
||
move /andP => [h1 h2].
|
||
have {h0} := h0 h2.
|
||
case => h3.
|
||
+ sfirstorder b:on.
|
||
+ right.
|
||
hauto lq:on ctrs:rtc use:RReds.AppCong.
|
||
- hauto lqb:on drew:off use:RReds.PairCong.
|
||
- hauto lqb:on drew:off use:RReds.PairCong.
|
||
- move => n p a0 a1 h0 h1 h2.
|
||
simpl in h2.
|
||
have : nf a1 by sfirstorder use:ne_nf.
|
||
move : h1 => /[apply].
|
||
case=> h.
|
||
+ have : ne a0 \/ ~~ ne a0 by sauto lq:on.
|
||
case;first by tauto.
|
||
move : η_nf_to_ne (h0) h h2; repeat move/[apply].
|
||
case => ?. subst => //=.
|
||
* right.
|
||
(* violates SN *)
|
||
admit.
|
||
* right.
|
||
subst.
|
||
apply rtc_once.
|
||
sauto lq:on rew:off ctrs:RRed.R.
|
||
+ hauto lq:on use:RReds.ProjCong.
|
||
Admitted.
|
||
|
||
Lemma η_nf' n (a b : PTm n) : ERed'.R a b -> rtc ERed'.R (tstar a) (tstar b).
|
||
Proof.
|
||
move => h.
|
||
elim : n a b /h.
|
||
- move => n a /=.
|
||
set p := (X in (PAbs X)).
|
||
have : (exists a1, ren_PTm shift a = PAbs a1 /\ p = subst_PTm (scons (VarPTm var_zero) VarPTm) (tstar a1)) \/
|
||
p = PApp (tstar (ren_PTm shift a)) (VarPTm var_zero) by hauto lq:on rew:off.
|
||
case.
|
||
+ move => [a2 [+]].
|
||
subst p.
|
||
case : a => //=.
|
||
move => p [h0] . subst => _.
|
||
rewrite TStar.renaming. asimpl.
|
||
sfirstorder.
|
||
+ move => ->.
|
||
rewrite TStar.renaming.
|
||
hauto lq:on ctrs:ERed'.R, rtc.
|
||
- move => n a.
|
||
case : (tstar_proj n a).
|
||
+ move => [_ h].
|
||
rewrite TStar.pair.
|
||
rewrite !h.
|
||
hauto lq:on ctrs:ERed'.R, rtc.
|
||
+ move => [a2][b0][?]. subst.
|
||
move => h.
|
||
rewrite TStar.pair.
|
||
rewrite !h.
|
||
sfirstorder.
|
||
- (* easy *)
|
||
eauto using EReds.AbsCong.
|
||
(* hard application cases *)
|
||
- admit.
|
||
- admit.
|
||
(* Trivial congruence cases *)
|
||
- move => n a0 a1 b ha iha.
|
||
hauto lq:on ctrs:rtc use:EReds.PairCong.
|
||
- hauto lq:on ctrs:rtc use:EReds.PairCong.
|
||
(* hard projection cases *)
|
||
- move => n p a0 a1 h0 h1.
|
||
case : (tstar_proj n a0).
|
||
+ move => [ha0 ->].
|
||
case : (tstar_proj n a1).
|
||
* move => [ha1 ->].
|
||
(* Trivial by proj cong *)
|
||
hauto lq:on use:EReds.ProjCong.
|
||
* move => [a2][b0][?]. subst.
|
||
move => ->.
|
||
elim /ERed'.inv : h0 => //_.
|
||
** move => a1 a3 ? *. subst.
|
||
(* Contradiction *)
|
||
admit.
|
||
** hauto lqb:on.
|
||
** hauto lqb:on.
|
||
** hauto lqb:on.
|
||
+ move => [a2][b0][?] ->. subst.
|
||
case : (tstar_proj n a1).
|
||
* move => [ha1 ->].
|
||
simpl in h1.
|
||
inversion h0; subst.
|
||
** hauto lq:on.
|
||
** hauto lqb:on.
|
||
** hauto lqb:on.
|
||
* move => [a0][b1][?]. subst => ->.
|
||
rewrite !TStar.pair in h1.
|
||
inversion h0; subst.
|
||
** admit.
|
||
** best.
|
||
|
||
Lemma η_nf n (a b : PTm n) : ERed.R a b -> ERed.R (tstar a) (tstar b).
|
||
Proof.
|
||
move => h.
|
||
elim : n a b /h.
|
||
- move => n a0 a1 h h0 /=.
|
||
set p := (X in (PAbs X)).
|
||
have : (exists a1, ren_PTm shift a0 = PAbs a1 /\ p = subst_PTm (scons (VarPTm var_zero) VarPTm) (tstar a1)) \/
|
||
p = PApp (tstar (ren_PTm shift a0)) (VarPTm var_zero) by hauto lq:on rew:off.
|
||
case.
|
||
+ move => [a2 [+]].
|
||
subst p.
|
||
case : a0 h h0 => //=.
|
||
move => p h0 h1 [?]. subst => _.
|
||
rewrite TStar.renaming. by asimpl.
|
||
+ move => ->.
|
||
rewrite TStar.renaming.
|
||
hauto lq:on ctrs:ERed.R.
|
||
- move => n a0 a1 ha iha.
|
||
case : (tstar_proj n a0).
|
||
+ move => [_ h].
|
||
change (tstar (PPair (PProj PL a0) (PProj PR a0))) with
|
||
(PPair (tstar (PProj PL a0)) (tstar (PProj PR a0))).
|
||
rewrite !h.
|
||
hauto lq:on ctrs:ERed.R.
|
||
+ move => [a2][b0][?]. subst.
|
||
move => h.
|
||
rewrite TStar.pair.
|
||
rewrite !h.
|
||
sfirstorder.
|
||
- hauto lq:on ctrs:ERed.R.
|
||
- admit.
|
||
- hauto lq:on ctrs:ERed.R.
|
||
- move => n p a0 a1 h0 h1.
|
||
case : (tstar_proj n a0).
|
||
+ move => [ha0 ->].
|
||
case : (tstar_proj n a1).
|
||
* move => [ha1 ->].
|
||
hauto lq:on ctrs:ERed.R.
|
||
* move => [a2][b0][?]. subst.
|
||
move => ->.
|
||
elim /ERed.inv : h0 => //_.
|
||
** move => a1 a3 ? *. subst.
|
||
(* Contradiction *)
|
||
admit.
|
||
** hauto lqb:on.
|
||
** hauto lqb:on.
|
||
+ move => [a2][b0][?] ->. subst.
|
||
case : (tstar_proj n a1).
|
||
* move => [ha1 ->].
|
||
inversion h0; subst.
|
||
** admit.
|
||
** scongruence.
|
||
* move => [a0][b1][?]. subst => ->.
|
||
rewrite !TStar.pair in h1.
|
||
inversion h1; subst.
|
||
**
|
||
** hauto lq:on.
|
||
|
||
|
||
|
||
|
||
move : b.
|
||
apply tstar_ind => {}n {}a => //=.
|
||
- hauto lq:on ctrs:ERed.R inv:ERed.R.
|
||
- move => a0 ? ih. subst.
|
||
move => b hb.
|
||
elim /ERed.inv : hb => //=_.
|
||
+ move => a1 a2 ha [*]. subst.
|
||
simpl.
|
||
case : a1 ih ha => //=.
|
||
|
||
|
||
- move => a0 ? ih u. subst.
|
||
elim /ERed.inv => //=_.
|
||
+ move => a1 a2 h [? ?]. subst.
|
||
have : ERed.R (PApp (ren_PTm shift a1) (VarPTm var_zero)) (PApp (ren_PTm shift u) (VarPTm var_zero))
|
||
by hauto lq:on ctrs:ERed.R use:ERed.renaming.
|
||
move /ih.
|
||
|
||
move => h0. simpl.
|
||
|
||
move => h.
|
||
elim : n a b /h => n.
|
||
- move => a0 a1 ha iha.
|
||
simpl.
|
||
move => h.
|
||
move /iha : (h) {iha}.
|
||
move : ha. clear. best.
|
||
clear.
|
||
- sfirstorder.
|
||
-
|
||
|
||
|
||
Lemma η_nf n (a b c : PTm n) : ERed.R a b -> nf b -> RRed.R a c ->
|
||
ERed.R c b.
|
||
Proof.
|
||
move => h. move : c.
|
||
elim : n a b /h=>//=n.
|
||
- move => a0 a1 ha iha u hu.
|
||
elim /RRed.inv => //= _.
|
||
move => a2 a3 h [*]. subst.
|
||
elim / RRed.inv : h => //_.
|
||
+ move => a2 b0 [h0 h1 h2]. subst.
|
||
case : a0 h0 ha iha =>//=.
|
||
move => u [?] ha iha. subst.
|
||
by asimpl.
|
||
+ move => a2 b4 b0 h [*]. subst.
|
||
move /RRed.antirenaming : h.
|
||
hauto lq:on ctrs:ERed.R.
|
||
+ move => a2 b0 b1 h [*]. subst.
|
||
inversion h.
|
||
- move => a0 b0 a1 ha iha hb ihb u hu.
|
||
elim /RRed.inv => //=_.
|
||
+ move => a2 a3 b1 h0 [*]. subst.
|
||
elim /RRed.inv : h0 => //=_.
|
||
* move => p a2 b1 [*]. subst.
|
||
elim /ERed.inv : ha => //=_.
|
||
** sauto lq:on.
|
||
** move => a0 a2 b2 b3 h h' [*]. subst.
|
||
|
||
|
||
Lemma η_nf n (a b c : PTm n) : ERed.R a b -> nf b -> RRed.R a c ->
|
||
ERed.R a c.
|
||
Proof.
|
||
move => h. move : c.
|
||
elim : n a b /h=>//=.
|
||
- move => n A a0 a1 ha iha c ha1.
|
||
elim /RRed.inv => //=_.
|
||
move => A0 a2 a3 hr [*]. subst.
|
||
set u := a0 in hr *.
|
||
set q := a3 in hr *.
|
||
elim / RRed.inv : hr => //_.
|
||
+ move => A0 a2 b0 [h0] h1 h2. subst.
|
||
subst u q.
|
||
rewrite h0. apply ERed.AppEta.
|
||
subst.
|
||
case : a0 ha iha h0 => //= B a ha iha [*]. subst.
|
||
asimpl.
|
||
admit.
|
||
+ subst u q.
|
||
move => a2 a4 b0 hr [*]. subst.
|
||
move /RRed.antirenaming : hr => [b0 [h0 h1]]. subst.
|
||
hauto lq:on ctrs:ERed.R use:ERed.renaming.
|
||
+ subst u q.
|
||
move => a2 b0 b1 h [*]. subst.
|
||
inversion h.
|
||
- move => n a0 a1 ha iha v hv.
|
||
elim /RRed.inv => //=_.
|
||
+ move => a2 a3 b0 h [*]. subst.
|
||
elim /RRed.inv : h => //=_.
|
||
* move => p a2 b0 [*]. subst.
|
||
elim /ERed.inv : ha=>//= _.
|
||
move => a0 a2 h [*]. subst.
|
||
best.
|
||
apply ERed.PairEta.
|
||
|
||
-
|