599 lines
15 KiB
Coq
599 lines
15 KiB
Coq
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
|
|
From Equations Require Import Equations.
|
|
Derive NoConfusion for nat PTag BTag PTm.
|
|
Derive EqDec for BTag PTag PTm.
|
|
From Ltac2 Require Ltac2.
|
|
Import Ltac2.Notations.
|
|
Import Ltac2.Control.
|
|
From Hammer Require Import Tactics.
|
|
From stdpp Require Import relations (rtc(..)).
|
|
|
|
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
|
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
|
| there i Γ A B :
|
|
lookup i Γ A ->
|
|
lookup (S i) (cons B Γ) (ren_PTm shift A).
|
|
|
|
Lemma lookup_deter i Γ A B :
|
|
lookup i Γ A ->
|
|
lookup i Γ B ->
|
|
A = B.
|
|
Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed.
|
|
|
|
Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U.
|
|
Proof. move => ->. apply here. Qed.
|
|
|
|
Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A ->
|
|
lookup (S i) (cons B Γ) U.
|
|
Proof. move => ->. apply there. Qed.
|
|
|
|
Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A).
|
|
|
|
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
|
|
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
|
|
|
|
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
|
|
|
|
Lemma up_injective (ξ : nat -> nat) :
|
|
ren_inj ξ ->
|
|
ren_inj (upRen_PTm_PTm ξ).
|
|
Proof.
|
|
move => h i j.
|
|
case : i => //=; case : j => //=.
|
|
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
|
|
Qed.
|
|
|
|
Local Ltac2 rec solve_anti_ren () :=
|
|
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
|
intro $x;
|
|
lazy_match! Constr.type (Control.hyp x) with
|
|
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
|
|
| _ => solve_anti_ren ()
|
|
end.
|
|
|
|
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
|
|
|
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
|
|
ren_inj ξ ->
|
|
ren_PTm ξ a = ren_PTm ξ b ->
|
|
a = b.
|
|
Proof.
|
|
move : ξ b. elim : a => //; try solve_anti_ren.
|
|
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
|
|
Qed.
|
|
|
|
Inductive HF : Set :=
|
|
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
|
|
|
Definition ishf (a : PTm) :=
|
|
match a with
|
|
| PPair _ _ => true
|
|
| PAbs _ => true
|
|
| PUniv _ => true
|
|
| PBind _ _ _ => true
|
|
| PNat => true
|
|
| PSuc _ => true
|
|
| PZero => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition toHF (a : PTm) :=
|
|
match a with
|
|
| PPair _ _ => H_Pair
|
|
| PAbs _ => H_Abs
|
|
| PUniv _ => H_Univ
|
|
| PBind p _ _ => H_Bind p
|
|
| PNat => H_Nat
|
|
| PSuc _ => H_Suc
|
|
| PZero => H_Zero
|
|
| _ => H_Bot
|
|
end.
|
|
|
|
Fixpoint ishne (a : PTm) :=
|
|
match a with
|
|
| VarPTm _ => true
|
|
| PApp a _ => ishne a
|
|
| PProj _ a => ishne a
|
|
| PInd _ n _ _ => ishne n
|
|
| _ => false
|
|
end.
|
|
|
|
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
|
|
|
|
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
|
|
|
|
Definition ispair (a : PTm) :=
|
|
match a with
|
|
| PPair _ _ => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition isnat (a : PTm) := if a is PNat then true else false.
|
|
|
|
Definition iszero (a : PTm) := if a is PZero then true else false.
|
|
|
|
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
|
|
|
|
Definition isabs (a : PTm) :=
|
|
match a with
|
|
| PAbs _ => true
|
|
| _ => false
|
|
end.
|
|
|
|
Definition tm_nonconf (a b : PTm) : bool :=
|
|
match a, b with
|
|
| PAbs _, _ => (~~ ishf b) || isabs b
|
|
| _, PAbs _ => ~~ ishf a
|
|
| VarPTm _, VarPTm _ => true
|
|
| PPair _ _, _ => (~~ ishf b) || ispair b
|
|
| _, PPair _ _ => ~~ ishf a
|
|
| PZero, PZero => true
|
|
| PSuc _, PSuc _ => true
|
|
| PApp _ _, PApp _ _ => true
|
|
| PProj _ _, PProj _ _ => true
|
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
|
| PNat, PNat => true
|
|
| PUniv _, PUniv _ => true
|
|
| PBind _ _ _, PBind _ _ _ => true
|
|
| _,_=> false
|
|
end.
|
|
|
|
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
|
|
|
|
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
|
ishf (ren_PTm ξ a) = ishf a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
|
|
isabs (ren_PTm ξ a) = isabs a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
|
|
ispair (ren_PTm ξ a) = ispair a.
|
|
Proof. case : a => //=. Qed.
|
|
|
|
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
|
|
ishne (ren_PTm ξ a) = ishne a.
|
|
Proof. move : ξ. elim : a => //=. Qed.
|
|
|
|
Lemma renaming_shift Γ A :
|
|
renaming_ok (cons A Γ) Γ shift.
|
|
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
|
|
|
|
Lemma subst_scons_id (a : PTm) :
|
|
subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a.
|
|
Proof.
|
|
have E : subst_PTm VarPTm a = a by asimpl.
|
|
rewrite -{2}E.
|
|
apply ext_PTm. case => //=.
|
|
Qed.
|
|
|
|
Module HRed.
|
|
Inductive R : PTm -> PTm -> Prop :=
|
|
(****************** Beta ***********************)
|
|
| AppAbs a b :
|
|
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
|
|
|
| ProjPair p a b :
|
|
R (PProj p (PPair a b)) (if p is PL then a else b)
|
|
|
|
| IndZero P b c :
|
|
R (PInd P PZero b c) b
|
|
|
|
| IndSuc P a b c :
|
|
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
|
|
|
(*************** Congruence ********************)
|
|
| AppCong a0 a1 b :
|
|
R a0 a1 ->
|
|
R (PApp a0 b) (PApp a1 b)
|
|
| ProjCong p a0 a1 :
|
|
R a0 a1 ->
|
|
R (PProj p a0) (PProj p a1)
|
|
| IndCong P a0 a1 b c :
|
|
R a0 a1 ->
|
|
R (PInd P a0 b c) (PInd P a1 b c).
|
|
|
|
Definition nf a := forall b, ~ R a b.
|
|
End HRed.
|
|
|
|
Inductive algo_dom : PTm -> PTm -> Prop :=
|
|
| A_AbsAbs a b :
|
|
algo_dom_r a b ->
|
|
(* --------------------- *)
|
|
algo_dom (PAbs a) (PAbs b)
|
|
|
|
| A_AbsNeu a u :
|
|
ishne u ->
|
|
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
|
|
(* --------------------- *)
|
|
algo_dom (PAbs a) u
|
|
|
|
| A_NeuAbs a u :
|
|
ishne u ->
|
|
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
|
|
(* --------------------- *)
|
|
algo_dom u (PAbs a)
|
|
|
|
| A_PairPair a0 a1 b0 b1 :
|
|
algo_dom_r a0 a1 ->
|
|
algo_dom_r b0 b1 ->
|
|
(* ---------------------------- *)
|
|
algo_dom (PPair a0 b0) (PPair a1 b1)
|
|
|
|
| A_PairNeu a0 a1 u :
|
|
ishne u ->
|
|
algo_dom_r a0 (PProj PL u) ->
|
|
algo_dom_r a1 (PProj PR u) ->
|
|
(* ----------------------- *)
|
|
algo_dom (PPair a0 a1) u
|
|
|
|
| A_NeuPair a0 a1 u :
|
|
ishne u ->
|
|
algo_dom_r (PProj PL u) a0 ->
|
|
algo_dom_r (PProj PR u) a1 ->
|
|
(* ----------------------- *)
|
|
algo_dom u (PPair a0 a1)
|
|
|
|
| A_ZeroZero :
|
|
algo_dom PZero PZero
|
|
|
|
| A_SucSuc a0 a1 :
|
|
algo_dom_r a0 a1 ->
|
|
algo_dom (PSuc a0) (PSuc a1)
|
|
|
|
| A_UnivCong i j :
|
|
(* -------------------------- *)
|
|
algo_dom (PUniv i) (PUniv j)
|
|
|
|
| A_BindCong p0 p1 A0 A1 B0 B1 :
|
|
algo_dom_r A0 A1 ->
|
|
algo_dom_r B0 B1 ->
|
|
(* ---------------------------- *)
|
|
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
|
|
|
|
| A_NatCong :
|
|
algo_dom PNat PNat
|
|
|
|
| A_VarCong i j :
|
|
(* -------------------------- *)
|
|
algo_dom (VarPTm i) (VarPTm j)
|
|
|
|
| A_AppCong u0 u1 a0 a1 :
|
|
ishne u0 ->
|
|
ishne u1 ->
|
|
algo_dom u0 u1 ->
|
|
algo_dom_r a0 a1 ->
|
|
(* ------------------------- *)
|
|
algo_dom (PApp u0 a0) (PApp u1 a1)
|
|
|
|
| A_ProjCong p0 p1 u0 u1 :
|
|
ishne u0 ->
|
|
ishne u1 ->
|
|
algo_dom u0 u1 ->
|
|
(* --------------------- *)
|
|
algo_dom (PProj p0 u0) (PProj p1 u1)
|
|
|
|
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
|
|
ishne u0 ->
|
|
ishne u1 ->
|
|
algo_dom_r P0 P1 ->
|
|
algo_dom u0 u1 ->
|
|
algo_dom_r b0 b1 ->
|
|
algo_dom_r c0 c1 ->
|
|
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
|
|
|
| A_Conf a b :
|
|
HRed.nf a ->
|
|
HRed.nf b ->
|
|
tm_conf a b ->
|
|
algo_dom a b
|
|
|
|
with algo_dom_r : PTm -> PTm -> Prop :=
|
|
| A_NfNf a b :
|
|
algo_dom a b ->
|
|
algo_dom_r a b
|
|
|
|
| A_HRedL a a' b :
|
|
HRed.R a a' ->
|
|
algo_dom_r a' b ->
|
|
(* ----------------------- *)
|
|
algo_dom_r a b
|
|
|
|
| A_HRedR a b b' :
|
|
HRed.nf a ->
|
|
HRed.R b b' ->
|
|
algo_dom_r a b' ->
|
|
(* ----------------------- *)
|
|
algo_dom_r a b.
|
|
|
|
Scheme algo_ind := Induction for algo_dom Sort Prop
|
|
with algor_ind := Induction for algo_dom_r Sort Prop.
|
|
|
|
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
|
#[export]Hint Constructors algo_dom algo_dom_r : adom.
|
|
|
|
Definition stm_nonconf a b :=
|
|
match a, b with
|
|
| PUniv _, PUniv _ => true
|
|
| PBind PPi _ _, PBind PPi _ _ => true
|
|
| PBind PSig _ _, PBind PSig _ _ => true
|
|
| PNat, PNat => true
|
|
| VarPTm _, VarPTm _ => true
|
|
| PApp _ _, PApp _ _ => true
|
|
| PProj _ _, PProj _ _ => true
|
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
|
| _, _ => false
|
|
end.
|
|
|
|
Definition neuneu_nonconf a b :=
|
|
match a, b with
|
|
| VarPTm _, VarPTm _ => true
|
|
| PApp _ _, PApp _ _ => true
|
|
| PProj _ _, PProj _ _ => true
|
|
| PInd _ _ _ _, PInd _ _ _ _ => true
|
|
| _, _ => false
|
|
end.
|
|
|
|
Lemma stm_tm_nonconf a b :
|
|
stm_nonconf a b -> tm_nonconf a b.
|
|
Proof. apply /implyP.
|
|
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
|
|
Qed.
|
|
|
|
Definition stm_conf a b := ~~ stm_nonconf a b.
|
|
|
|
Lemma tm_stm_conf a b :
|
|
tm_conf a b -> stm_conf a b.
|
|
Proof.
|
|
rewrite /tm_conf /stm_conf.
|
|
apply /contra /stm_tm_nonconf.
|
|
Qed.
|
|
|
|
Inductive salgo_dom : PTm -> PTm -> Prop :=
|
|
| S_UnivCong i j :
|
|
(* -------------------------- *)
|
|
salgo_dom (PUniv i) (PUniv j)
|
|
|
|
| S_PiCong A0 A1 B0 B1 :
|
|
salgo_dom_r A1 A0 ->
|
|
salgo_dom_r B0 B1 ->
|
|
(* ---------------------------- *)
|
|
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
|
|
|
|
| S_SigCong A0 A1 B0 B1 :
|
|
salgo_dom_r A0 A1 ->
|
|
salgo_dom_r B0 B1 ->
|
|
(* ---------------------------- *)
|
|
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
|
|
|
|
| S_NatCong :
|
|
salgo_dom PNat PNat
|
|
|
|
| S_NeuNeu a b :
|
|
neuneu_nonconf a b ->
|
|
algo_dom a b ->
|
|
salgo_dom a b
|
|
|
|
| S_Conf a b :
|
|
HRed.nf a ->
|
|
HRed.nf b ->
|
|
stm_conf a b ->
|
|
salgo_dom a b
|
|
|
|
with salgo_dom_r : PTm -> PTm -> Prop :=
|
|
| S_NfNf a b :
|
|
salgo_dom a b ->
|
|
salgo_dom_r a b
|
|
|
|
| S_HRedL a a' b :
|
|
HRed.R a a' ->
|
|
salgo_dom_r a' b ->
|
|
(* ----------------------- *)
|
|
salgo_dom_r a b
|
|
|
|
| S_HRedR a b b' :
|
|
HRed.nf a ->
|
|
HRed.R b b' ->
|
|
salgo_dom_r a b' ->
|
|
(* ----------------------- *)
|
|
salgo_dom_r a b.
|
|
|
|
#[export]Hint Constructors salgo_dom salgo_dom_r : sdom.
|
|
Scheme salgo_ind := Induction for salgo_dom Sort Prop
|
|
with salgor_ind := Induction for salgo_dom_r Sort Prop.
|
|
|
|
Lemma hf_no_hred (a b : PTm) :
|
|
ishf a ->
|
|
HRed.R a b ->
|
|
False.
|
|
Proof. hauto l:on inv:HRed.R. Qed.
|
|
|
|
Lemma hne_no_hred (a b : PTm) :
|
|
ishne a ->
|
|
HRed.R a b ->
|
|
False.
|
|
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
|
|
|
|
Ltac2 destruct_salgo () :=
|
|
lazy_match! goal with
|
|
| [h : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
|
|
if Constr.is_var a then destruct $a; ltac1:(done) else ()
|
|
| [|- is_true (stm_conf _ _)] =>
|
|
unfold stm_conf; ltac1:(done)
|
|
end.
|
|
|
|
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
|
|
|
|
Lemma algo_dom_r_inv a b :
|
|
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
|
Proof.
|
|
induction 1; hauto lq:on ctrs:rtc.
|
|
Qed.
|
|
|
|
Lemma A_HRedsL a a' b :
|
|
rtc HRed.R a a' ->
|
|
algo_dom_r a' b ->
|
|
algo_dom_r a b.
|
|
induction 1; sfirstorder use:A_HRedL.
|
|
Qed.
|
|
|
|
Lemma A_HRedsR a b b' :
|
|
HRed.nf a ->
|
|
rtc HRed.R b b' ->
|
|
algo_dom a b' ->
|
|
algo_dom_r a b.
|
|
Proof. induction 2; sauto. Qed.
|
|
|
|
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
|
Proof. case : a; case : b => //=. Qed.
|
|
|
|
Lemma algo_dom_no_hred (a b : PTm) :
|
|
algo_dom a b ->
|
|
HRed.nf a /\ HRed.nf b.
|
|
Proof.
|
|
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred lq:on unfold:HRed.nf.
|
|
Qed.
|
|
|
|
|
|
Lemma A_HRedR' a b b' :
|
|
HRed.R b b' ->
|
|
algo_dom_r a b' ->
|
|
algo_dom_r a b.
|
|
Proof.
|
|
move => hb /algo_dom_r_inv.
|
|
move => [a0 [b0 [h0 [h1 h2]]]].
|
|
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
|
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
|
hauto lq:on use:A_HRedsL, A_HRedsR.
|
|
Qed.
|
|
|
|
Lemma algo_dom_sym :
|
|
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
|
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
|
Proof.
|
|
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
|
|
Qed.
|
|
|
|
Lemma salgo_dom_r_inv a b :
|
|
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
|
Proof.
|
|
induction 1; hauto lq:on ctrs:rtc.
|
|
Qed.
|
|
|
|
Lemma S_HRedsL a a' b :
|
|
rtc HRed.R a a' ->
|
|
salgo_dom_r a' b ->
|
|
salgo_dom_r a b.
|
|
induction 1; sfirstorder use:S_HRedL.
|
|
Qed.
|
|
|
|
Lemma S_HRedsR a b b' :
|
|
HRed.nf a ->
|
|
rtc HRed.R b b' ->
|
|
salgo_dom a b' ->
|
|
salgo_dom_r a b.
|
|
Proof. induction 2; sauto. Qed.
|
|
|
|
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
|
|
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
|
|
|
|
Lemma salgo_dom_no_hred (a b : PTm) :
|
|
salgo_dom a b ->
|
|
HRed.nf a /\ HRed.nf b.
|
|
Proof.
|
|
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_no_hred lq:on unfold:HRed.nf.
|
|
Qed.
|
|
|
|
Lemma S_HRedR' a b b' :
|
|
HRed.R b b' ->
|
|
salgo_dom_r a b' ->
|
|
salgo_dom_r a b.
|
|
Proof.
|
|
move => hb /salgo_dom_r_inv.
|
|
move => [a0 [b0 [h0 [h1 h2]]]].
|
|
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
|
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
|
|
hauto lq:on use:S_HRedsL, S_HRedsR.
|
|
Qed.
|
|
|
|
Ltac solve_conf := intros; split;
|
|
apply S_Conf; solve [destruct_salgo | sfirstorder ctrs:salgo_dom use:hne_no_hred, hf_no_hred].
|
|
|
|
Ltac solve_basic := hauto q:on ctrs:salgo_dom, salgo_dom_r, algo_dom use:algo_dom_sym.
|
|
|
|
Lemma algo_dom_salgo_dom :
|
|
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
|
|
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
|
|
Proof.
|
|
apply algo_dom_mutual => //=; try first [solve_conf | solve_basic].
|
|
- case; case; hauto lq:on ctrs:salgo_dom use:algo_dom_sym inv:HRed.R unfold:HRed.nf.
|
|
- move => a b ha hb hc. split;
|
|
apply S_Conf; hauto l:on use:tm_conf_sym, tm_stm_conf.
|
|
- hauto lq:on ctrs:salgo_dom_r use:S_HRedR'.
|
|
Qed.
|
|
|
|
Fixpoint hred (a : PTm) : option (PTm) :=
|
|
match a with
|
|
| VarPTm i => None
|
|
| PAbs a => None
|
|
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
|
|
| PApp a b =>
|
|
match hred a with
|
|
| Some a => Some (PApp a b)
|
|
| None => None
|
|
end
|
|
| PPair a b => None
|
|
| PProj p (PPair a b) => if p is PL then Some a else Some b
|
|
| PProj p a =>
|
|
match hred a with
|
|
| Some a => Some (PProj p a)
|
|
| None => None
|
|
end
|
|
| PUniv i => None
|
|
| PBind p A B => None
|
|
| PNat => None
|
|
| PZero => None
|
|
| PSuc a => None
|
|
| PInd P PZero b c => Some b
|
|
| PInd P (PSuc a) b c =>
|
|
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
|
| PInd P a b c =>
|
|
match hred a with
|
|
| Some a => Some (PInd P a b c)
|
|
| None => None
|
|
end
|
|
end.
|
|
|
|
Lemma hred_complete (a b : PTm) :
|
|
HRed.R a b -> hred a = Some b.
|
|
Proof.
|
|
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
|
|
Qed.
|
|
|
|
Lemma hred_sound (a b : PTm):
|
|
hred a = Some b -> HRed.R a b.
|
|
Proof.
|
|
elim : a b; hauto q:on dep:on ctrs:HRed.R.
|
|
Qed.
|
|
|
|
Lemma hred_deter (a b0 b1 : PTm) :
|
|
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
|
|
Proof.
|
|
move /hred_complete => + /hred_complete. congruence.
|
|
Qed.
|
|
|
|
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
|
|
destruct (hred a) eqn:eq.
|
|
right. exists p. by apply hred_sound in eq.
|
|
left. move => b /hred_complete. congruence.
|
|
Defined.
|
|
|
|
Lemma hreds_nf_refl a b :
|
|
HRed.nf a ->
|
|
rtc HRed.R a b ->
|
|
a = b.
|
|
Proof. inversion 2; sfirstorder. Qed.
|
|
|
|
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
|
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|