sp-eta-postpone/theories/fp_red.v
2025-01-26 14:51:47 -05:00

258 lines
6.8 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

From Ltac2 Require Ltac2.
Import Ltac2.Notations.
Import Ltac2.Control.
Require Import ssreflect ssrbool.
Require Import FunInd.
Require Import Arith.Wf_nat.
Require Import Psatz.
From stdpp Require Import relations (rtc (..), rtc_once, rtc_r).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
Ltac2 spec_refl () :=
List.iter
(fun a => match a with
| (i, _, _) =>
let h := Control.hyp i in
try (specialize $h with (1 := eq_refl))
end) (Control.hyps ()).
Ltac spec_refl := ltac2:(spec_refl ()).
Module ERed.
Inductive R {n} : PTm n -> PTm n -> Prop :=
(****************** Eta ***********************)
| AppEta A a0 a1 :
R a0 a1 ->
R (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1
| PairEta a0 a1 :
R a0 a1 ->
R (PPair (PProj PL a0) (PProj PR a0)) a1
(*************** Congruence ********************)
| AbsCong A a0 a1 :
R a0 a1 ->
R (PAbs A a0) (PAbs A a1)
| AppCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (PApp a0 b0) (PApp a1 b1)
| PairCong a0 a1 b0 b1 :
R a0 a1 ->
R b0 b1 ->
R (PPair a0 b0) (PPair a1 b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (PProj p a0) (PProj p a1)
| VarTm i :
R (VarPTm i) (VarPTm i).
Lemma refl n (a : PTm n) : R a a.
Proof.
elim : n / a; hauto lq:on ctrs:R.
Qed.
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
Lemma AppEta' n A a0 a1 (u : PTm n) :
u = (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) ->
R a0 a1 ->
R u a1.
Proof. move => ->. apply AppEta. Qed.
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
Proof.
move => h. move : m ξ.
elim : n a b /h.
move => n A a0 a1 ha iha m ξ /=.
eapply AppEta' with (A := A); eauto. by asimpl.
all : qauto ctrs:R.
Qed.
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
Proof. eauto using renaming. Qed.
Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b :
R a b ->
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R ((scons a ρ0) i) ((scons b ρ1) i)).
Proof. hauto q:on inv:option. Qed.
Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
(forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)).
Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed.
Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) :
(forall i, R (ρ0 i) (ρ1 i)) ->
R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b).
Proof.
move => + h. move : m ρ0 ρ1. elim : n a b / h => n.
move => A a0 a1 ha iha m ρ0 ρ1 hρ /=.
eapply AppEta' with (A := A); eauto. by asimpl.
all : hauto lq:on ctrs:R use:morphing_up.
Qed.
Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) :
R a b ->
R (subst_PTm ρ a) (subst_PTm ρ b).
Proof.
hauto l:on use:morphing, refl.
Qed.
End ERed.
Inductive SNe {n} : PTm n -> Prop :=
| N_Var i :
SNe (VarPTm i)
| N_App a b :
SNe a ->
SN b ->
SNe (PApp a b)
| N_Proj p a :
SNe a ->
SNe (PProj p a)
with SN {n} : PTm n -> Prop :=
| N_Pair a b :
SN a ->
SN b ->
SN (PPair a b)
| N_Abs A a :
SN a ->
SN (PAbs A a)
| N_SNe a :
SNe a ->
SN a
| N_Exp a b :
TRedSN a b ->
SN b ->
SN a
with TRedSN {n} : PTm n -> PTm n -> Prop :=
| N_β A a b :
SN b ->
TRedSN (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a)
| N_AppL a0 a1 b :
TRedSN a0 a1 ->
TRedSN (PApp a0 b) (PApp a1 b)
| N_ProjPairL a b :
SN b ->
TRedSN (PProj PL (PPair a b)) a
| N_ProjPairR a b :
SN a ->
TRedSN (PProj PR (PPair a b)) b
| N_ProjCong p a b :
TRedSN a b ->
TRedSN (PProj p a) (PProj p b).
Scheme sne_ind := Induction for SNe Sort Prop
with sn_ind := Induction for SN Sort Prop
with sred_ind := Induction for TRedSN Sort Prop.
Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind.
Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop :=
| T_Refl :
TRedSN' a a
| T_Once b :
TRedSN a b ->
TRedSN' a b.
Lemma SN_Proj n p (a : PTm n) :
SN (PProj p a) -> SN a.
Proof.
move E : (PProj p a) => u h.
move : a E.
elim : n u / h => n //=; sauto.
Qed.
Lemma ered_sn_preservation n :
(forall (a : PTm n) (s : SNe a), forall b, ERed.R a b -> SNe b) /\
(forall (a : PTm n) (s : SN a), forall b, ERed.R a b -> SN b) /\
(forall (a b : PTm n) (_ : TRedSN a b), forall c, ERed.R a c -> exists d, TRedSN' c d /\ ERed.R b d).
Proof.
move : n. apply sn_mutual => n.
- sauto lq:on.
- sauto lq:on.
- sauto lq:on.
- move => a b ha iha hb ihb b0.
inversion 1; subst.
+ have /iha : (ERed.R (PProj PL a0) (PProj PL b0)) by sauto lq:on.
sfirstorder use:SN_Proj.
+ sauto lq:on.
- move => A a ha iha b.
inversion 1; subst.
+ have : ERed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)).
apply ERed.AppCong; eauto using ERed.refl.
sfirstorder use:ERed.renaming.
move /iha.
admit.
+ sauto lq:on.
- sauto lq:on.
- sauto lq:on.
- move => A a b ha iha c h0.
inversion h0; subst.
inversion H1; subst.
+ exists (PApp a1 b1). split. sfirstorder.
asimpl.
sauto lq:on.
+ have {}/iha := H3 => iha.
exists (subst_PTm (scons b1 VarPTm) a2).
split.
sauto lq:on.
hauto lq:on use:ERed.morphing, ERed.refl inv:option.
- sauto.
- move => a b hb ihb c.
elim /ERed.inv => //= _.
move => p a0 a1 ha [*]. subst.
elim /ERed.inv : ha => //= _.
+ move => a0 a2 ha [*]. subst.
exists (PProj PL a1).
split. sauto.
sauto lq:on.
+ sauto lq:on rew:off.
- move => a b ha iha c.
elim /ERed.inv => //=_.
move => p a0 a1 + [*]. subst.
elim /ERed.inv => //=_.
+ move => a0 a2 h [*]. subst.
exists (PProj PR a1).
split. sauto.
sauto lq:on.
+ sauto lq:on.
- sauto.
Admitted.
Module RRed.
Inductive R {n} : PTm n -> PTm n -> Prop :=
(****************** Eta ***********************)
| AppAbs A a b :
R (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a)
| ProjPair p a b :
R (PProj p (PPair a b)) (if p is PL then a else b)
(*************** Congruence ********************)
| AbsCong A a0 a1 :
R a0 a1 ->
R (PAbs A a0) (PAbs A a1)
| AppCong0 a0 a1 b :
R a0 a1 ->
R (PApp a0 b) (PApp a1 b)
| AppCong1 a b0 b1 :
R b0 b1 ->
R (PApp a b0) (PApp a b1)
| PairCong0 a0 a1 b :
R a0 a1 ->
R (PPair a0 b) (PPair a1 b)
| PairCong1 a b0 b1 :
R b0 b1 ->
R (PPair a b0) (PPair a b1)
| ProjCong p a0 a1 :
R a0 a1 ->
R (PProj p a0) (PProj p a1).
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
End RRed.