sp-eta-postpone/theories/preservation.v

221 lines
7.9 KiB
Coq

Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural fp_red.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality.
Lemma App_Inv Γ (b a : PTm) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : Γ u U / hu => //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv Γ (a : PTm) U :
Γ PAbs a U ->
exists A B, (cons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : Γ u U / hu => //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj1_Inv Γ (a : PTm ) U :
Γ PProj PL a U ->
exists A B, Γ a PBind PSig A B /\ Γ A U.
Proof.
move E : (PProj PL a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
eapply regularity in ha.
move : ha => [i].
move /Bind_Inv => [j][h _].
by move /E_Refl /Su_Eq in h.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj2_Inv Γ (a : PTm) U :
Γ PProj PR a U ->
exists A B, Γ a PBind PSig A B /\ Γ subst_PTm (scons (PProj PL a) VarPTm) B U.
Proof.
move E : (PProj PR a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
have ha' := ha.
eapply regularity in ha.
move : ha => [i ha].
move /T_Proj1 in ha'.
apply : bind_inst; eauto.
apply : E_Refl ha'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Pair_Inv Γ (a b : PTm ) U :
Γ PPair a b U ->
exists A B, Γ a A /\
Γ b subst_PTm (scons a VarPTm) B /\
Γ PBind PSig A B U.
Proof.
move E : (PPair a b) => u hu.
move : a b E. elim : Γ u U / hu => //=.
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
exists A,B. repeat split => //=.
move /E_Refl /Su_Eq : hS. apply.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Ind_Inv Γ P (a : PTm) b c U :
Γ PInd P a b c U ->
exists i, (cons PNat Γ) P PUniv i /\
Γ a PNat /\
Γ b subst_PTm (scons PZero VarPTm) P /\
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\
Γ subst_PTm (scons a VarPTm) P U.
Proof.
move E : (PInd P a b c)=> u hu.
move : P a b c E. elim : Γ u U / hu => //=.
- move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst.
exists i. repeat split => //=.
have : Γ subst_PTm (scons a VarPTm) P subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt.
eauto using E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A.
Proof.
move => a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h.
apply : E_Conv; eauto.
apply : E_AppAbs; eauto.
eauto using T_Conv.
Qed.
Lemma E_ProjPair1 : forall (a b : PTm) Γ (A : PTm),
Γ PProj PL (PPair a b) A -> Γ PProj PL (PPair a b) a A.
Proof.
move => a b Γ A.
move /Proj1_Inv. move => [A0][B0][hab]hA0.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move /Su_Sig_Proj1 in hS.
have {hA0} {}hS : Γ A1 A by eauto using Su_Transitive.
apply : E_Conv; eauto.
apply : E_ProjPair1; eauto.
Qed.
Lemma Suc_Inv Γ (a : PTm) A :
Γ PSuc a A -> Γ a PNat /\ Γ PNat A.
Proof.
move E : (PSuc a) => u hu.
move : a E.
elim : Γ u A /hu => //=.
- move => Γ a ha iha a0 [*]. subst.
split => //=. eapply wff_mutual in ha.
apply : Su_Eq.
apply E_Refl. by apply T_Nat'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma RRed_Eq Γ (a b : PTm) A :
Γ a A ->
RRed.R a b ->
Γ a b A.
Proof.
move => + h. move : Γ A. elim : a b /h.
- apply E_AppAbs.
- move => p a b Γ A.
case : p => //=.
+ apply E_ProjPair1.
+ move /Proj2_Inv. move => [A0][B0][hab]hA0.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0.
have : Γ PPair a b PBind PSig A1 B1 by hauto lq:on ctrs:Wt.
move /T_Proj1.
move /E_ProjPair1 /E_Symmetric => h.
have /Su_Sig_Proj1 hSA := hS.
have : Γ subst_PTm (scons a VarPTm) B1 subst_PTm (scons (PProj PL (PPair a b)) VarPTm) B0 by
apply : Su_Sig_Proj2; eauto.
move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply].
move {hS}.
move => ?. apply : E_Conv; eauto. apply : E_ProjPair2; eauto.
- hauto lq:on use:Ind_Inv, E_Conv, E_IndZero.
- move => P a b c Γ A.
move /Ind_Inv.
move => [i][hP][ha][hb][hc]hSu.
apply : E_Conv; eauto.
apply : E_IndSuc'; eauto.
hauto l:on use:Suc_Inv.
- qauto l:on use:Abs_Inv, E_Conv, regularity_sub0, E_Abs.
- move => a0 a1 b ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
have {}/iha iha := ih0.
have [i hP] : exists i, Γ PBind PPi A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_App; eauto using E_Refl.
- move => a0 b0 b1 ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
have {}/iha iha := ih1.
have [i hP] : exists i, Γ PBind PPi A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_App; eauto.
sfirstorder use:E_Refl.
- move => a0 a1 b ha iha Γ A /Pair_Inv.
move => [A0][B0][h0][h1]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by eauto using regularity_sub0.
have {}/iha iha := h0.
apply : E_Conv; eauto.
apply : E_Pair; eauto using E_Refl.
- move => a b0 b1 ha iha Γ A /Pair_Inv.
move => [A0][B0][h0][h1]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by eauto using regularity_sub0.
have {}/iha iha := h1.
apply : E_Conv; eauto.
apply : E_Pair; eauto using E_Refl.
- case.
+ move => a0 a1 ha iha Γ A /Proj1_Inv [A0][B0][h0]hU.
apply : E_Conv; eauto.
qauto l:on ctrs:Eq,Wt.
+ move => a0 a1 ha iha Γ A /Proj2_Inv [A0][B0][h0]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_Proj2; eauto.
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
have {}/ihA ihA := h0.
apply : E_Conv; eauto.
apply E_Bind'; eauto using E_Refl.
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
have {}/ihA ihA := h1.
apply : E_Conv; eauto.
apply E_Bind'; eauto using E_Refl.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on use:Suc_Inv, E_Conv, E_SucCong.
Qed.
Theorem subject_reduction Γ (a b A : PTm) :
Γ a A ->
RRed.R a b ->
Γ b A.
Proof. hauto lq:on use:RRed_Eq, regularity. Qed.