302 lines
10 KiB
Coq
302 lines
10 KiB
Coq
From Equations Require Import Equations.
|
||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
|
||
Require Import ssreflect ssrbool.
|
||
From stdpp Require Import relations (rtc(..)).
|
||
From Hammer Require Import Tactics.
|
||
|
||
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||
|
||
Lemma coqeq_no_hred a b : a ↔ b -> HRed.nf a /\ HRed.nf b.
|
||
Proof. induction 1;
|
||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||
Qed.
|
||
|
||
Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b.
|
||
Proof.
|
||
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
|
||
Qed.
|
||
|
||
Lemma coqeq_neuneu u0 u1 :
|
||
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||
Proof.
|
||
inversion 3; subst => //=.
|
||
Qed.
|
||
|
||
Lemma check_equal_sound :
|
||
(forall a b (h : algo_dom a b), check_equal a b h -> a ↔ b) /\
|
||
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a ⇔ b).
|
||
Proof.
|
||
apply algo_dom_mutual.
|
||
- move => a b h.
|
||
move => h0.
|
||
rewrite check_equal_abs_abs.
|
||
constructor. tauto.
|
||
- move => a u i h0 ih h.
|
||
apply CE_AbsNeu => //.
|
||
apply : ih. simp check_equal tm_to_eq_view in h.
|
||
by rewrite check_equal_abs_neu in h.
|
||
- move => a u i h ih h0.
|
||
apply CE_NeuAbs=>//.
|
||
apply ih.
|
||
by rewrite check_equal_neu_abs in h0.
|
||
- move => a0 a1 b0 b1 a ha h.
|
||
move => h0.
|
||
rewrite check_equal_pair_pair. move /andP => [h1 h2].
|
||
sauto lq:on.
|
||
- move => a0 a1 u neu h ih h' ih' he.
|
||
rewrite check_equal_pair_neu in he.
|
||
apply CE_PairNeu => //; hauto lqb:on.
|
||
- move => a0 a1 u i a ha a2 hb.
|
||
rewrite check_equal_neu_pair => *.
|
||
apply CE_NeuPair => //; hauto lqb:on.
|
||
- sfirstorder.
|
||
- hauto l:on use:CE_SucSuc.
|
||
- move => i j /sumboolP.
|
||
hauto lq:on use:CE_UnivCong.
|
||
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
|
||
rewrite check_equal_bind_bind in h2.
|
||
move : h2.
|
||
move /andP => [/andP [h20 h21] h3].
|
||
move /sumboolP : h20 => ?. subst.
|
||
hauto l:on use:CE_BindCong.
|
||
- sfirstorder.
|
||
- move => i j /sumboolP ?. subst.
|
||
apply : CE_NeuNeu. apply CE_VarCong.
|
||
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
|
||
apply CE_NeuNeu.
|
||
rewrite check_equal_proj_proj in he.
|
||
move /andP : he => [/sumboolP ? h1]. subst.
|
||
sauto lq:on use:coqeq_neuneu.
|
||
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
|
||
rewrite check_equal_app_app in hE.
|
||
move /andP : hE => [h0 h1].
|
||
sauto lq:on use:coqeq_neuneu.
|
||
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||
rewrite check_equal_ind_ind.
|
||
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
|
||
sauto lq:on use:coqeq_neuneu.
|
||
- move => a b n n0 i. by rewrite check_equal_conf.
|
||
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
|
||
rewrite check_equal_nfnf in ih.
|
||
tauto.
|
||
- move => a a' b ha doma ih hE.
|
||
rewrite check_equal_hredl in hE. sauto lq:on.
|
||
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
|
||
sauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
|
||
|
||
Lemma check_equal_complete :
|
||
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a ↔ b) /\
|
||
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a ⇔ b).
|
||
Proof.
|
||
apply algo_dom_mutual.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- ce_solv.
|
||
- move => i j.
|
||
rewrite check_equal_univ.
|
||
case : nat_eqdec => //=.
|
||
ce_solv.
|
||
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
|
||
rewrite check_equal_bind_bind.
|
||
move /negP.
|
||
move /nandP.
|
||
case. move /nandP.
|
||
case. move => h. have : p0 <> p1 by sauto lqb:on.
|
||
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
|
||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||
- simp check_equal. done.
|
||
- move => i j. move => h. have {h} : ~ nat_eqdec i j by done.
|
||
case : nat_eqdec => //=. ce_solv.
|
||
- move => p0 p1 u0 u1 neu0 neu1 h ih.
|
||
rewrite check_equal_proj_proj.
|
||
move /negP /nandP. case.
|
||
case : PTag_eqdec => //=. sauto lq:on.
|
||
sauto lqb:on.
|
||
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
|
||
rewrite check_equal_app_app.
|
||
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
|
||
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||
rewrite check_equal_ind_ind.
|
||
move => + h.
|
||
inversion h; subst.
|
||
inversion H; subst.
|
||
move /negP /nandP.
|
||
case. move/nandP.
|
||
case. move/nandP.
|
||
case. qauto b:on inv:CoqEq, CoqEq_Neu.
|
||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||
- rewrite /tm_conf.
|
||
move => a b n n0 i. simp ce_prop.
|
||
move => _. inversion 1; subst => //=.
|
||
+ destruct b => //=.
|
||
+ destruct a => //=.
|
||
+ destruct b => //=.
|
||
+ destruct a => //=.
|
||
+ hauto l:on inv:CoqEq_Neu.
|
||
- move => a b h ih.
|
||
rewrite check_equal_nfnf.
|
||
move : ih => /[apply].
|
||
move => + h0.
|
||
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
|
||
inversion h0; subst.
|
||
hauto l:on use:hreds_nf_refl.
|
||
- move => a a' b h dom.
|
||
simp ce_prop => /[apply].
|
||
move => + h1. inversion h1; subst.
|
||
inversion H; subst.
|
||
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
|
||
+ have ? : y = a' by eauto using hred_deter. subst.
|
||
sauto lq:on.
|
||
- move => a b b' u hr dom ihdom.
|
||
rewrite check_equal_hredr.
|
||
move => + h. inversion h; subst.
|
||
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||
move => {}/ihdom.
|
||
inversion H0; subst.
|
||
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
|
||
sfirstorder unfold:HRed.nf.
|
||
+ sauto lq:on use:hred_deter.
|
||
Qed.
|
||
|
||
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
|
||
|
||
(* Reusing algo_dom results in an inefficient proof, but i'll brute force it so i can get the result more quickly *)
|
||
Lemma check_sub_sound :
|
||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h -> if q then a ⋖ b else b ⋖ a) /\
|
||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h -> if q then a ≪ b else b ≪ a).
|
||
Proof.
|
||
apply algo_dom_mutual; try done.
|
||
- move => a [] //=; hauto qb:on.
|
||
- move => a0 a1 []//=; hauto qb:on.
|
||
- simpl. move => i j [];
|
||
sauto lq:on use:Reflect.Nat_leb_le.
|
||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb q.
|
||
case : p0; case : p1; try done; simp ce_prop.
|
||
sauto lqb:on.
|
||
sauto lqb:on.
|
||
- hauto l:on.
|
||
- move => i j q h.
|
||
have {}h : nat_eqdec i j by sfirstorder.
|
||
case : nat_eqdec h => //=; sauto lq:on.
|
||
- simp_sub.
|
||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||
- simp_sub.
|
||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||
- simp_sub.
|
||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||
- move => a b n n0 i q h.
|
||
exfalso.
|
||
destruct a, b; try done; simp_sub; hauto lb:on use:check_equal_conf.
|
||
- move => a b doma ihdom q.
|
||
simp ce_prop. sauto lq:on.
|
||
- move => a a' b hr doma ihdom q.
|
||
simp ce_prop. move : ihdom => /[apply]. move {doma}.
|
||
sauto lq:on.
|
||
- move => a b b' n r dom ihdom q.
|
||
simp ce_prop.
|
||
move : ihdom => /[apply].
|
||
move {dom}.
|
||
sauto lq:on rew:off.
|
||
Qed.
|
||
|
||
Lemma check_sub_complete :
|
||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h = false -> if q then ~ a ⋖ b else ~ b ⋖ a) /\
|
||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h = false -> if q then ~ a ≪ b else ~ b ≪ a).
|
||
Proof.
|
||
apply algo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
|
||
- move => i j q /=.
|
||
sauto lq:on rew:off use:PeanoNat.Nat.leb_le.
|
||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb [].
|
||
+ move => + h. inversion h; subst; simp ce_prop.
|
||
* move /nandP.
|
||
case.
|
||
by move => /negbTE {}/iha.
|
||
by move => /negbTE {}/ihb.
|
||
* move /nandP.
|
||
case.
|
||
by move => /negbTE {}/iha.
|
||
by move => /negbTE {}/ihb.
|
||
* inversion H.
|
||
+ move => + h. inversion h; subst; simp ce_prop.
|
||
* move /nandP.
|
||
case.
|
||
by move => /negbTE {}/iha.
|
||
by move => /negbTE {}/ihb.
|
||
* move /nandP.
|
||
case.
|
||
by move => /negbTE {}/iha.
|
||
by move => /negbTE {}/ihb.
|
||
* inversion H.
|
||
- simp_sub.
|
||
sauto lq:on use:check_equal_complete.
|
||
- simp_sub.
|
||
move => p0 p1 u0 u1 i i0 a iha q.
|
||
move /nandP.
|
||
case.
|
||
move /nandP.
|
||
case => //.
|
||
by move /negP.
|
||
by move /negP.
|
||
move /negP.
|
||
move => h. eapply check_equal_complete in h.
|
||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||
- move => u0 u1 a0 a1 i i0 a hdom ihdom hdom' ihdom'.
|
||
simp_sub.
|
||
move /nandP.
|
||
case.
|
||
move/nandP.
|
||
case.
|
||
by move/negP.
|
||
by move/negP.
|
||
move /negP.
|
||
move => h. eapply check_equal_complete in h.
|
||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||
- move => P0 P1 u0 u1 b0 b1 c0 c1 i i0 dom ihdom dom' ihdom' dom'' ihdom'' dom''' ihdom''' q.
|
||
move /nandP.
|
||
case.
|
||
move /nandP.
|
||
case => //=.
|
||
by move/negP.
|
||
by move/negP.
|
||
move /negP => h. eapply check_equal_complete in h.
|
||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||
- move => a b h ih q. simp ce_prop => {}/ih.
|
||
case : q => h0;
|
||
inversion 1; subst; hauto l:on use:algo_dom_no_hred, hreds_nf_refl.
|
||
- move => a a' b r dom ihdom q.
|
||
simp ce_prop => {}/ihdom.
|
||
case : q => h0.
|
||
inversion 1; subst.
|
||
inversion H0; subst. sfirstorder use:coqleq_no_hred.
|
||
have ? : a' = y by eauto using hred_deter. subst.
|
||
sauto lq:on.
|
||
inversion 1; subst.
|
||
inversion H1; subst. sfirstorder use:coqleq_no_hred.
|
||
have ? : a' = y by eauto using hred_deter. subst.
|
||
sauto lq:on.
|
||
- move => a b b' n r hr ih q.
|
||
simp ce_prop => {}/ih.
|
||
case : q.
|
||
+ move => h. inversion 1; subst.
|
||
inversion H1; subst.
|
||
sfirstorder use:coqleq_no_hred.
|
||
have ? : b' = y by eauto using hred_deter. subst.
|
||
sauto lq:on.
|
||
+ move => h. inversion 1; subst.
|
||
inversion H0; subst.
|
||
sfirstorder use:coqleq_no_hred.
|
||
have ? : b' = y by eauto using hred_deter. subst.
|
||
sauto lq:on.
|
||
Qed.
|