sp-eta-postpone/theories/admissible.v

48 lines
1.6 KiB
Coq

Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality.
Derive Inversion wff_inv with (forall Γ, Γ) Sort Prop.
Lemma T_Abs Γ (a : PTm ) A B :
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B.
Proof.
move => ha.
have [i hB] : exists i, (cons A Γ) B PUniv i by sfirstorder use:regularity.
have : (cons A Γ) by sfirstorder use:wff_mutual.
hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
Qed.
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i.
Proof.
move => h0 h1.
have : Γ A0 PUniv i by hauto l:on use:regularity.
have : Γ by sfirstorder use:wff_mutual.
move : E_Bind h0 h1; repeat move/[apply].
firstorder.
Qed.
Lemma E_App Γ (b0 b1 a0 a1 : PTm ) A B :
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PPi A B PUniv i by hauto l:on use:regularity.
move : E_App h. by repeat move/[apply].
Qed.
Lemma E_Proj2 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity.
move : E_Proj2 h; by repeat move/[apply].
Qed.