sp-eta-postpone/theories/typing.v

237 lines
7.2 KiB
Coq

Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
| T_Var i Γ A :
Γ ->
lookup i Γ A ->
Γ VarPTm i A
| T_Bind Γ i p (A : PTm) (B : PTm) :
Γ A PUniv i ->
cons A Γ B PUniv i ->
Γ PBind p A B PUniv i
| T_Abs Γ (a : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B
| T_App Γ (b a : PTm) A B :
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B
| T_Proj1 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PL a A
| T_Proj2 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ Γ i :
Γ ->
Γ PUniv i PUniv (S i)
| T_Nat Γ i :
Γ ->
Γ PNat PUniv i
| T_Zero Γ :
Γ ->
Γ PZero PNat
| T_Suc Γ (a : PTm) :
Γ a PNat ->
Γ PSuc a PNat
| T_Ind Γ P (a : PTm) b c i :
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c subst_PTm (scons a VarPTm) P
| T_Conv Γ (a : PTm) A B :
Γ a A ->
Γ A B ->
Γ a B
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| E_Refl Γ (a : PTm ) A :
Γ a A ->
Γ a a A
| E_Symmetric Γ (a b : PTm) A :
Γ a b A ->
Γ b a A
| E_Transitive Γ (a b c : PTm) A :
Γ a b A ->
Γ b c A ->
Γ a c A
(* Congruence *)
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Proj1 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A
| E_Proj2 Γ i (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
(cons PNat Γ) P0 PUniv i ->
(cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
(cons P0 ((cons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0
| E_SucCong Γ (a b : PTm) :
Γ a b PNat ->
Γ PSuc a PSuc b PNat
| E_Conv Γ (a b : PTm) A B :
Γ a b A ->
Γ A B ->
Γ a b B
(* Beta *)
| E_AppAbs Γ (a : PTm) b A B i:
Γ PBind PPi A B PUniv i ->
Γ b A ->
(cons A Γ) a B ->
Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B
| E_ProjPair1 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PL (PPair a b) a A
| E_ProjPair2 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B
| E_IndZero Γ P i (b : PTm) c :
(cons PNat Γ) P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P
| E_IndSuc Γ P (a : PTm) b c i :
(cons PNat Γ) P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P
| E_FunExt Γ (a b : PTm) A B i :
Γ PBind PPi A B PUniv i ->
Γ a PBind PPi A B ->
Γ b PBind PPi A B ->
A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B
| E_PairExt Γ (a b : PTm) A B i :
Γ PBind PSig A B PUniv i ->
Γ a PBind PSig A B ->
Γ b PBind PSig A B ->
Γ PProj PL a PProj PL b A ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a b PBind PSig A B
with LEq : list PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| Su_Transitive Γ (A B C : PTm) :
Γ A B ->
Γ B C ->
Γ A C
(* Congruence *)
| Su_Univ Γ i j :
Γ ->
i <= j ->
Γ PUniv i PUniv j
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
Γ A0 PUniv i ->
Γ A1 A0 ->
(cons A0 Γ) B0 B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
Γ A1 PUniv i ->
Γ A0 A1 ->
(cons A1 Γ) B0 B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1
(* Injecting from equalities *)
| Su_Eq Γ (A : PTm) B i :
Γ A B PUniv i ->
Γ A B
(* Projection axioms *)
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ A1 A0
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ A0 A1
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : list PTm -> Prop :=
| Wff_Nil :
nil
| Wff_Cons Γ (A : PTm) i :
Γ ->
Γ A PUniv i ->
(* -------------------------------- *)
(cons A Γ)
where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
Scheme wf_ind := Induction for Wff Sort Prop
with wt_ind := Induction for Wt Sort Prop
with eq_ind := Induction for Eq Sort Prop
with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.