Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax. Require Import common fp_red. From Hammer Require Import Tactics. From Equations Require Import Equations. Require Import ssreflect ssrbool. Require Import Logic.PropExtensionality (propositional_extensionality). From stdpp Require Import relations (rtc(..), rtc_subrel). Import Psatz. Definition ProdSpace (PA : PTm -> Prop) (PF : PTm -> (PTm -> Prop) -> Prop) b : Prop := forall a PB, PA a -> PF a PB -> PB (PApp b a). Definition SumSpace (PA : PTm -> Prop) (PF : PTm -> (PTm -> Prop) -> Prop) t : Prop := (exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b). Definition BindSpace p := if p is PPi then ProdSpace else SumSpace. Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). Inductive InterpExt i (I : nat -> PTm -> Prop) : PTm -> (PTm -> Prop) -> Prop := | InterpExt_Ne A : SNe A -> ⟦ A ⟧ i ;; I ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v) | InterpExt_Bind p A B PA PF : ⟦ A ⟧ i ;; I ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) -> ⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF | InterpExt_Nat : ⟦ PNat ⟧ i ;; I ↘ SNat | InterpExt_Univ j : j < i -> ⟦ PUniv j ⟧ i ;; I ↘ (I j) | InterpExt_Step A A0 PA : TRedSN A A0 -> ⟦ A0 ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I ↘ PA where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). Lemma InterpExt_Univ' i I j (PF : PTm -> Prop) : PF = I j -> j < i -> ⟦ PUniv j ⟧ i ;; I ↘ PF. Proof. hauto lq:on ctrs:InterpExt. Qed. Infix " (PTm -> Prop) -> Prop by wf i lt := InterpUnivN i := @InterpExt i (fun j A => match j exists PA, InterpUnivN j A PA | right _ => False end). Lemma InterpExt_lt_impl i I I' A (PA : PTm -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI h. elim : A PA /h. - hauto q:on ctrs:InterpExt. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. Lemma InterpExt_lt_eq i I I' A (PA : PTm -> Prop) : (forall j, j < i -> I j = I' j) -> ⟦ A ⟧ i ;; I ↘ PA = ⟦ A ⟧ i ;; I' ↘ PA. Proof. move => hI. apply propositional_extensionality. have : forall j, j < i -> I' j = I j by sfirstorder. firstorder using InterpExt_lt_impl. Qed. Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). Lemma InterpUnivN_nolt i : @InterpUnivN i = @InterpExt i (fun j (A : PTm ) => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUnivN. extensionality A. extensionality PA. apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. Lemma InterpUniv_ind : forall (P : nat -> PTm -> (PTm -> Prop) -> Prop), (forall i (A : PTm), SNe A -> P i A (fun a : PTm => exists v : PTm , rtc TRedSN a v /\ SNe v)) -> (forall i (p : BTag) (A : PTm ) (B : PTm ) (PA : PTm -> Prop) (PF : PTm -> (PTm -> Prop) -> Prop), ⟦ A ⟧ i ↘ PA -> P i A PA -> (forall a : PTm , PA a -> exists PB : PTm -> Prop, PF a PB) -> (forall (a : PTm ) (PB : PTm -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> (forall (a : PTm ) (PB : PTm -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) -> P i (PBind p A B) (BindSpace p PA PF)) -> (forall i, P i PNat SNat) -> (forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) -> (forall i (A A0 : PTm ) (PA : PTm -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) -> forall i (p : PTm ) (P0 : PTm -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0. Proof. move => P hSN hBind hNat hUniv hRed. elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv. move => A PA. move => h. set I := fun _ => _ in h. elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto. Qed. Derive Dependent Inversion iinv with (forall i I (A : PTm ) PA, InterpExt i I A PA) Sort Prop. Lemma InterpUniv_Ne i (A : PTm) : SNe A -> ⟦ A ⟧ i ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v). Proof. simp InterpUniv. apply InterpExt_Ne. Qed. Lemma InterpUniv_Bind i p A B PA PF : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, PF a PB) -> (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> ⟦ PBind p A B ⟧ i ↘ BindSpace p PA PF. Proof. simp InterpUniv. apply InterpExt_Bind. Qed. Lemma InterpUniv_Univ i j : j < i -> ⟦ PUniv j ⟧ i ↘ (fun A => exists PA, ⟦ A ⟧ j ↘ PA). Proof. simp InterpUniv. simpl. apply InterpExt_Univ'. by simp InterpUniv. Qed. Lemma InterpUniv_Step i A A0 PA : TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> ⟦ A ⟧ i ↘ PA. Proof. simp InterpUniv. apply InterpExt_Step. Qed. Lemma InterpUniv_Nat i : ⟦ PNat ⟧ i ↘ SNat. Proof. simp InterpUniv. apply InterpExt_Nat. Qed. #[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv. Lemma InterpExt_cumulative i j I (A : PTm ) PA : i <= j -> ⟦ A ⟧ i ;; I ↘ PA -> ⟦ A ⟧ j ;; I ↘ PA. Proof. move => h h0. elim : A PA /h0; hauto l:on ctrs:InterpExt solve+:(by lia). Qed. Lemma InterpUniv_cumulative i (A : PTm) PA : ⟦ A ⟧ i ↘ PA -> forall j, i <= j -> ⟦ A ⟧ j ↘ PA. Proof. hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. Qed. Definition CR (P : PTm -> Prop) := (forall a, P a -> SN a) /\ (forall a, SNe a -> P a). Lemma N_Exps (a b : PTm) : rtc TRedSN a b -> SN b -> SN a. Proof. induction 1; eauto using N_Exp. Qed. Lemma CR_SNat : CR SNat. Proof. rewrite /CR. split. induction 1; hauto q:on ctrs:SN,SNe. hauto lq:on ctrs:SNat. Qed. Lemma adequacy : forall i A PA, ⟦ A ⟧ i ↘ PA -> CR PA /\ SN A. Proof. apply : InterpUniv_ind. - hauto l:on use:N_Exps ctrs:SN,SNe. - move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF. set PBot := (VarPTm var_zero). have hb : PA PBot by hauto q:on ctrs:SNe. have hb' : SN PBot by hauto q:on ctrs:SN, SNe. rewrite /CR. repeat split. + case : p =>//=. * rewrite /ProdSpace. qauto use:SN_AppInv unfold:CR. * hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps. + move => a ha. case : p=>/=. * rewrite /ProdSpace => a0 *. suff : SNe (PApp a a0) by sfirstorder. hauto q:on use:N_App. * sfirstorder. + apply N_Bind=>//=. have : SN (PApp (PAbs B) PBot). apply : N_Exp; eauto using N_β. hauto lq:on. qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv. - sfirstorder use:CR_SNat. - hauto l:on ctrs:InterpExt rew:db:InterpUniv. - hauto l:on ctrs:SN unfold:CR. Qed. Lemma InterpUniv_Steps i A A0 PA : rtc TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> ⟦ A ⟧ i ↘ PA. Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed. Lemma InterpUniv_back_clos i (A : PTm ) PA : ⟦ A ⟧ i ↘ PA -> forall a b, TRedSN a b -> PA b -> PA a. Proof. move : i A PA . apply : InterpUniv_ind; eauto. - hauto q:on ctrs:rtc. - move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr. case : p => //=. + rewrite /ProdSpace. move => hba a0 PB ha hPB. suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on. apply N_AppL => //=. hauto q:on use:adequacy. + hauto lq:on ctrs:rtc unfold:SumSpace. - hauto lq:on ctrs:SNat. - hauto l:on use:InterpUniv_Step. Qed. Lemma InterpUniv_back_closs i (A : PTm) PA : ⟦ A ⟧ i ↘ PA -> forall a b, rtc TRedSN a b -> PA b -> PA a. Proof. induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos. Qed. Lemma InterpUniv_case i (A : PTm) PA : ⟦ A ⟧ i ↘ PA -> exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H \/ isnat H). Proof. move : i A PA. apply InterpUniv_ind => //=. hauto lq:on ctrs:rtc use:InterpUniv_Ne. hauto l:on use:InterpUniv_Bind. hauto l:on use:InterpUniv_Nat. hauto l:on use:InterpUniv_Univ. hauto lq:on ctrs:rtc. Qed. Lemma redsn_preservation_mutual : (forall (a : PTm) (s : SNe a), forall b, TRedSN a b -> False) /\ (forall (a : PTm) (s : SN a), forall b, TRedSN a b -> SN b) /\ (forall (a b : PTm) (_ : TRedSN a b), forall c, TRedSN a c -> b = c). Proof. apply sn_mutual; sauto lq:on rew:off. Qed. Lemma redsns_preservation : forall a b, SN a -> rtc TRedSN a b -> SN b. Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed. #[export]Hint Resolve Sub.sne_bind_noconf Sub.sne_univ_noconf Sub.bind_univ_noconf Sub.bind_sne_noconf Sub.univ_sne_noconf Sub.univ_bind_noconf Sub.nat_bind_noconf Sub.bind_nat_noconf Sub.sne_nat_noconf Sub.nat_sne_noconf Sub.univ_nat_noconf Sub.nat_univ_noconf: noconf. Lemma InterpUniv_SNe_inv i (A : PTm) PA : SNe A -> ⟦ A ⟧ i ↘ PA -> PA = (fun a => exists v, rtc TRedSN a v /\ SNe v). Proof. simp InterpUniv. hauto lq:on rew:off inv:InterpExt,SNe use:redsn_preservation_mutual. Qed. Lemma InterpUniv_Bind_inv i p A B S : ⟦ PBind p A B ⟧ i ↘ S -> exists PA PF, ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, PF a PB) /\ (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\ S = BindSpace p PA PF. Proof. simp InterpUniv. inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual. rewrite -!InterpUnivN_nolt. sauto lq:on. Qed. Lemma InterpUniv_Nat_inv i S : ⟦ PNat ⟧ i ↘ S -> S = SNat. Proof. simp InterpUniv. inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual. sauto lq:on. Qed. Lemma InterpUniv_Univ_inv i j S : ⟦ PUniv j ⟧ i ↘ S -> S = (fun A => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i. Proof. simp InterpUniv. inversion 1; try hauto inv:SNe use:redsn_preservation_mutual. rewrite -!InterpUnivN_nolt. sfirstorder. subst. hauto lq:on inv:TRedSN. Qed. Lemma bindspace_impl p (PA PA0 : PTm -> Prop) PF PF0 b : (forall x, if p is PPi then (PA0 x -> PA x) else (PA x -> PA0 x)) -> (forall (a : PTm ) (PB PB0 : PTm -> Prop), PA0 a -> PF a PB -> PF0 a PB0 -> (forall x, PB x -> PB0 x)) -> (forall a, PA a -> exists PB, PF a PB) -> (forall a, PA0 a -> exists PB0, PF0 a PB0) -> (BindSpace p PA PF b -> BindSpace p PA0 PF0 b). Proof. rewrite /BindSpace => hSA h hPF hPF0. case : p hSA => /= hSA. - rewrite /ProdSpace. move => h1 a PB ha hPF'. have {}/hPF : PA a by sfirstorder. specialize hPF0 with (1 := ha). hauto lq:on. - rewrite /SumSpace. case. sfirstorder. move => [a0][b0][h0][h1]h2. right. hauto lq:on. Qed. Lemma InterpUniv_Sub' i (A B : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ i ↘ PB -> ((Sub.R A B -> forall x, PA x -> PB x) /\ (Sub.R B A -> forall x, PB x -> PA x)). Proof. move => hA. move : i A PA hA B PB. apply : InterpUniv_ind. - move => i A hA B PB hPB. split. + move => hAB a ha. have [? ?] : SN B /\ SN A by hauto l:on use:adequacy. move /InterpUniv_case : hPB. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R A H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : SNe H. suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on. move : hA hAB. clear. hauto lq:on db:noconf. move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst. tauto. + move => hAB a ha. have [? ?] : SN B /\ SN A by hauto l:on use:adequacy. move /InterpUniv_case : hPB. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R H A by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : SNe H. suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on. move : hAB hA h0. clear. hauto lq:on db:noconf. move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst. tauto. - move => i p A B PA PF hPA ihPA hTot hRes ihPF U PU hU. split. + have hU' : SN U by hauto l:on use:adequacy. move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU. have {hU} {}h : Sub.R (PBind p A B) H by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have{h0} : isbind H. suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on. have : isbind (PBind p A B) by scongruence. move : h. clear. hauto l:on db:noconf. case : H h1 h => //=. move => p0 A0 B0 h0 /Sub.bind_inj. move => [? [hA hB]] _. subst. move /InterpUniv_Bind_inv : h0. move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst. move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on. move => a PB PB' ha hPB hPB'. move : hRes0 hPB'. repeat move/[apply]. move : ihPF hPB. repeat move/[apply]. move => h. eapply h. apply Sub.cong => //=; eauto using DJoin.refl. + have hU' : SN U by hauto l:on use:adequacy. move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU. have {hU} {}h : Sub.R H (PBind p A B) by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have{h0} : isbind H. suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by sfirstorder b:on. have : isbind (PBind p A B) by scongruence. move : h. clear. move : (PBind p A B). hauto lq:on db:noconf. case : H h1 h => //=. move => p0 A0 B0 h0 /Sub.bind_inj. move => [? [hA hB]] _. subst. move /InterpUniv_Bind_inv : h0. move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst. move => x. apply bindspace_impl; eauto;[idtac|idtac]. hauto l:on. move => a PB PB' ha hPB hPB'. eapply ihPF; eauto. apply Sub.cong => //=; eauto using DJoin.refl. - move => i B PB h. split. + move => hAB a ha. have ? : SN B by hauto l:on use:adequacy. move /InterpUniv_case : h. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R PNat H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : isnat H. suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by sfirstorder b:on. have : @isnat PNat by simpl. move : h0 hAB. clear. qauto l:on db:noconf. case : H h1 hAB h0 => //=. move /InterpUniv_Nat_inv. scongruence. + move => hAB a ha. have ? : SN B by hauto l:on use:adequacy. move /InterpUniv_case : h. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R H PNat by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : isnat H. suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by sfirstorder b:on. have : @isnat PNat by simpl. move : h0 hAB. clear. qauto l:on db:noconf. case : H h1 hAB h0 => //=. move /InterpUniv_Nat_inv. scongruence. - move => i j jlti ih B PB hPB. split. + have ? : SN B by hauto l:on use:adequacy. move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]]. move => hj. have {hj}{}h : Sub.R (PUniv j) H by eauto using Sub.transitive, Sub.FromJoin. have {h0} : isuniv H. suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf. case : H h1 h => //=. move => j' hPB h _. have {}h : j <= j' by hauto lq:on use: Sub.univ_inj. subst. move /InterpUniv_Univ_inv : hPB => [? ?]. subst. have ? : j <= i by lia. move => A. hauto l:on use:InterpUniv_cumulative. + have ? : SN B by hauto l:on use:adequacy. move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]]. move => hj. have {hj}{}h : Sub.R H (PUniv j) by eauto using Sub.transitive, Sub.FromJoin, DJoin.symmetric. have {h0} : isuniv H. suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf. case : H h1 h => //=. move => j' hPB h _. have {}h : j' <= j by hauto lq:on use: Sub.univ_inj. move /InterpUniv_Univ_inv : hPB => [? ?]. subst. move => A. hauto l:on use:InterpUniv_cumulative. - move => i A A0 PA hr hPA ihPA B PB hPB. have ? : SN A by sauto lq:on use:adequacy. split. + move => ?. have {}hr : Sub.R A0 A by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin. have : Sub.R A0 B by eauto using Sub.transitive. qauto l:on. + move => ?. have {}hr : Sub.R A A0 by hauto lq:on ctrs:rtc use:DJoin.FromRedSNs, DJoin.symmetric, Sub.FromJoin. have : Sub.R B A0 by eauto using Sub.transitive. qauto l:on. Qed. Lemma InterpUniv_Sub0 i (A B : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ i ↘ PB -> Sub.R A B -> forall x, PA x -> PB x. Proof. move : InterpUniv_Sub'. repeat move/[apply]. move => [+ _]. apply. Qed. Lemma InterpUniv_Sub i j (A B : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ j ↘ PB -> Sub.R A B -> forall x, PA x -> PB x. Proof. have [? ?] : i <= max i j /\ j <= max i j by lia. move => hPA hPB. have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative. have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative. move : InterpUniv_Sub0. repeat move/[apply]. apply. Qed. Lemma InterpUniv_Join i (A B : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ i ↘ PB -> DJoin.R A B -> PA = PB. Proof. move => + + /[dup] /Sub.FromJoin + /DJoin.symmetric /Sub.FromJoin. move : InterpUniv_Sub'; repeat move/[apply]. move => h. move => h1 h2. extensionality x. apply propositional_extensionality. firstorder. Qed. Lemma InterpUniv_Functional i (A : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ A ⟧ i ↘ PB -> PA = PB. Proof. hauto l:on use:InterpUniv_Join, DJoin.refl. Qed. Lemma InterpUniv_Join' i j (A B : PTm) PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ B ⟧ j ↘ PB -> DJoin.R A B -> PA = PB. Proof. have [? ?] : i <= max i j /\ j <= max i j by lia. move => hPA hPB. have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative. have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative. eauto using InterpUniv_Join. Qed. Lemma InterpUniv_Functional' i j A PA PB : ⟦ A ⟧ i ↘ PA -> ⟦ A ⟧ j ↘ PB -> PA = PB. Proof. hauto l:on use:InterpUniv_Join', DJoin.refl. Qed. Lemma InterpUniv_Bind_inv_nopf i p A B P (h : ⟦PBind p A B ⟧ i ↘ P) : exists (PA : PTm -> Prop), ⟦ A ⟧ i ↘ PA /\ (forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\ P = BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB). Proof. move /InterpUniv_Bind_inv : h. move => [PA][PF][hPA][hPF][hPF']?. subst. exists PA. repeat split => //. - sfirstorder. - extensionality b. case : p => /=. + extensionality a. extensionality PB. extensionality ha. apply propositional_extensionality. split. * move => h hPB. apply h. have {}/hPF := ha. move => [PB0 hPB0]. have {}/hPF' := hPB0 => ?. have : PB = PB0 by hauto l:on use:InterpUniv_Functional. congruence. * sfirstorder. + rewrite /SumSpace. apply propositional_extensionality. split; hauto q:on use:InterpUniv_Functional. Qed. Definition ρ_ok (Γ : list PTm) (ρ : nat -> PTm) := forall i k A PA, lookup i Γ A -> ⟦ subst_PTm ρ A ⟧ k ↘ PA -> PA (ρ i). Definition SemWt Γ (a A : PTm) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a). Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70). Definition SemEq Γ (a b A : PTm) := DJoin.R a b /\ forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a) /\ PA (subst_PTm ρ b). Notation "Γ ⊨ a ≡ b ∈ A" := (SemEq Γ a b A) (at level 70). Definition SemLEq Γ (A B : PTm) := Sub.R A B /\ exists i, forall ρ, ρ_ok Γ ρ -> exists S0 S1, ⟦ subst_PTm ρ A ⟧ i ↘ S0 /\ ⟦ subst_PTm ρ B ⟧ i ↘ S1. Notation "Γ ⊨ a ≲ b" := (SemLEq Γ a b) (at level 70). Lemma SemWt_Univ Γ (A : PTm) i : Γ ⊨ A ∈ PUniv i <-> forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_PTm ρ A ⟧ i ↘ S. Proof. rewrite /SemWt. split. - hauto lq:on rew:off use:InterpUniv_Univ_inv. - move => /[swap] ρ /[apply]. move => [PA hPA]. exists (S i). eexists. split. + simp InterpUniv. apply InterpExt_Univ. lia. + simpl. eauto. Qed. Lemma SemEq_SemWt Γ (a b A : PTm) : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ a ∈ A /\ Γ ⊨ b ∈ A /\ DJoin.R a b. Proof. hauto lq:on rew:off unfold:SemEq, SemWt. Qed. Lemma SemLEq_SemWt Γ (A B : PTm) : Γ ⊨ A ≲ B -> Sub.R A B /\ exists i, Γ ⊨ A ∈ PUniv i /\ Γ ⊨ B ∈ PUniv i. Proof. hauto q:on use:SemWt_Univ. Qed. Lemma SemWt_SemEq Γ (a b A : PTm) : Γ ⊨ a ∈ A -> Γ ⊨ b ∈ A -> (DJoin.R a b) -> Γ ⊨ a ≡ b ∈ A. Proof. move => ha hb heq. split => //= ρ hρ. have {}/ha := hρ. have {}/hb := hρ. move => [k][PA][hPA]hpb. move => [k0][PA0][hPA0]hpa. have : PA = PA0 by hauto l:on use:InterpUniv_Functional'. hauto lq:on. Qed. Lemma SemWt_SemLEq Γ (A B : PTm) i j : Γ ⊨ A ∈ PUniv i -> Γ ⊨ B ∈ PUniv j -> Sub.R A B -> Γ ⊨ A ≲ B. Proof. move => ha hb heq. split => //. exists (Nat.max i j). have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia. move => ρ hρ. have {}/ha := hρ. have {}/hb := hρ. move => [k][PA][/= /InterpUniv_Univ_inv [? hPA]]hpb. move => [k0][PA0][/= /InterpUniv_Univ_inv [? hPA0]]hpa. subst. move : hpb => [PA]hPA'. move : hpa => [PB]hPB'. exists PB, PA. split; apply : InterpUniv_cumulative; eauto. Qed. Lemma ρ_ok_id Γ : ρ_ok Γ VarPTm. Proof. rewrite /ρ_ok. hauto q:on use:adequacy ctrs:SNe. Qed. Lemma ρ_ok_cons i Γ ρ a PA A : ⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a -> ρ_ok Γ ρ -> ρ_ok (cons A Γ) (scons a ρ). Proof. move => h0 h1 h2. rewrite /ρ_ok. case => [|j]; cycle 1. - move => m PA0. asimpl => ?. inversion 1; subst; asimpl. hauto lq:on unfold:ρ_ok. - move => m A0 PA0. inversion 1; subst. asimpl => h. have ? : PA0 = PA by eauto using InterpUniv_Functional'. by subst. Qed. Lemma ρ_ok_cons' i Γ ρ a PA A Δ : Δ = (cons A Γ) -> ⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a -> ρ_ok Γ ρ -> ρ_ok Δ (scons a ρ). Proof. move => ->. apply ρ_ok_cons. Qed. Lemma ρ_ok_renaming (Γ : list PTm) ρ : forall (Δ : list PTm) ξ, renaming_ok Γ Δ ξ -> ρ_ok Γ ρ -> ρ_ok Δ (funcomp ρ ξ). Proof. move => Δ ξ hξ hρ. rewrite /ρ_ok => i m' A PA. rewrite /renaming_ok in hξ. rewrite /ρ_ok in hρ. move => PA0 h. rewrite /funcomp. eapply hρ with (k := m'); eauto. move : h. by asimpl. Qed. Lemma renaming_SemWt Γ a A : Γ ⊨ a ∈ A -> forall Δ (ξ : nat -> nat), renaming_ok Δ Γ ξ -> Δ ⊨ ren_PTm ξ a ∈ ren_PTm ξ A. Proof. rewrite /SemWt => h Δ ξ hξ ρ hρ. have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming. hauto q:on solve+:(by asimpl). Qed. Definition smorphing_ok Δ Γ ρ := forall ξ, ρ_ok Δ ξ -> ρ_ok Γ (funcomp (subst_PTm ξ) ρ). Lemma smorphing_ok_refl Δ : smorphing_ok Δ Δ VarPTm. rewrite /smorphing_ok => ξ. apply. Qed. Lemma smorphing_ren Ξ Δ Γ (ρ : nat -> PTm) (ξ : nat -> nat) : renaming_ok Ξ Δ ξ -> smorphing_ok Δ Γ ρ -> smorphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ). Proof. move => hξ hρ τ. move /ρ_ok_renaming : hξ => /[apply]. move => h. rewrite /smorphing_ok in hρ. asimpl. Check (funcomp τ ξ). set u := funcomp _ _. have : u = funcomp (subst_PTm (funcomp τ ξ)) ρ. subst u. extensionality i. by asimpl. move => ->. by apply hρ. Qed. Lemma smorphing_ext Δ Γ (ρ : nat -> PTm) (a : PTm) (A : PTm) : smorphing_ok Δ Γ ρ -> Δ ⊨ a ∈ subst_PTm ρ A -> smorphing_ok Δ (cons A Γ) (scons a ρ). Proof. move => h ha τ. move => /[dup] hτ. move : ha => /[apply]. move => [k][PA][h0]h1. apply h in hτ. case => [|i]; cycle 1. - move => k0 A0 PA0. asimpl. rewrite {2}/funcomp. asimpl. elim /lookup_inv => //= _. move => i0 Γ0 A1 B + [?][? ?]?. subst. asimpl. move : hτ; by repeat move/[apply]. - move => k0 A0 PA0. asimpl. rewrite {2}/funcomp. asimpl. elim /lookup_inv => //=_ A1 Γ0 _ [? ?] ?. subst. asimpl. move => *. suff : PA0 = PA by congruence. move : h0. asimpl. eauto using InterpUniv_Functional'. Qed. Lemma morphing_SemWt : forall Γ (a A : PTm ), Γ ⊨ a ∈ A -> forall Δ (ρ : nat -> PTm ), smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ subst_PTm ρ A. Proof. move => Γ a A ha Δ ρ hρ τ hτ. have {}/hρ {}/ha := hτ. asimpl. eauto. Qed. Lemma morphing_SemWt_Univ : forall Γ (a : PTm) i, Γ ⊨ a ∈ PUniv i -> forall Δ (ρ : nat -> PTm), smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ PUniv i. Proof. move => Γ a i ha Δ ρ. have -> : PUniv i = subst_PTm ρ (PUniv i) by reflexivity. by apply morphing_SemWt. Qed. Lemma weakening_Sem Γ (a : PTm) A B i (h0 : Γ ⊨ B ∈ PUniv i) (h1 : Γ ⊨ a ∈ A) : (cons B Γ) ⊨ ren_PTm shift a ∈ ren_PTm shift A. Proof. apply : renaming_SemWt; eauto. hauto lq:on ctrs:lookup unfold:renaming_ok. Qed. Lemma weakening_Sem_Univ Γ (a : PTm) B i j (h0 : Γ ⊨ B ∈ PUniv i) (h1 : Γ ⊨ a ∈ PUniv j) : (cons B Γ) ⊨ ren_PTm shift a ∈ PUniv j. Proof. move : weakening_Sem h0 h1; repeat move/[apply]. done. Qed. Reserved Notation "⊨ Γ" (at level 70). Inductive SemWff : list PTm -> Prop := | SemWff_nil : ⊨ nil | SemWff_cons Γ A i : ⊨ Γ -> Γ ⊨ A ∈ PUniv i -> (* -------------- *) ⊨ (cons A Γ) where "⊨ Γ" := (SemWff Γ). (* Semantic context wellformedness *) Lemma SemWff_lookup Γ : ⊨ Γ -> forall (i : nat) A, lookup i Γ A -> exists j, Γ ⊨ A ∈ PUniv j. Proof. move => h. elim : Γ / h. - by inversion 1. - move => Γ A i hΓ ihΓ hA j B. elim /lookup_inv => //=_. + move => ? ? ? [*]. subst. eauto using weakening_Sem_Univ. + move => i0 Γ0 A0 B0 hl ? [*]. subst. move : ihΓ hl => /[apply]. move => [j hA0]. eauto using weakening_Sem_Univ. Qed. Lemma SemWt_SN Γ (a : PTm) A : Γ ⊨ a ∈ A -> SN a /\ SN A. Proof. move => h. have {}/h := ρ_ok_id Γ => h. have : SN (subst_PTm VarPTm A) by hauto l:on use:adequacy. have : SN (subst_PTm VarPTm a)by hauto l:on use:adequacy. by asimpl. Qed. Lemma SemEq_SN_Join Γ (a b A : PTm) : Γ ⊨ a ≡ b ∈ A -> SN a /\ SN b /\ SN A /\ DJoin.R a b. Proof. hauto l:on use:SemEq_SemWt, SemWt_SN. Qed. Lemma SemLEq_SN_Sub Γ (a b : PTm) : Γ ⊨ a ≲ b -> SN a /\ SN b /\ Sub.R a b. Proof. hauto l:on use:SemLEq_SemWt, SemWt_SN. Qed. (* Semantic typing rules *) Lemma ST_Var' Γ (i : nat) A j : lookup i Γ A -> Γ ⊨ A ∈ PUniv j -> Γ ⊨ VarPTm i ∈ A. Proof. move => hl /SemWt_Univ h. rewrite /SemWt => ρ /[dup] hρ {}/h [S hS]. exists j,S. asimpl. hauto q:on unfold:ρ_ok. Qed. Lemma ST_Var Γ (i : nat) A : ⊨ Γ -> lookup i Γ A -> Γ ⊨ VarPTm i ∈ A. Proof. hauto l:on use:ST_Var', SemWff_lookup. Qed. Lemma InterpUniv_Bind_nopf p i (A : PTm) B PA : ⟦ A ⟧ i ↘ PA -> (forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> ⟦ PBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB)). Proof. move => h0 h1. apply InterpUniv_Bind => //=. Qed. Lemma ST_Bind' Γ i j p (A : PTm) (B : PTm) : Γ ⊨ A ∈ PUniv i -> (cons A Γ) ⊨ B ∈ PUniv j -> Γ ⊨ PBind p A B ∈ PUniv (max i j). Proof. move => /SemWt_Univ h0 /SemWt_Univ h1. apply SemWt_Univ => ρ hρ. move /h0 : (hρ){h0} => [S hS]. eexists => /=. have ? : i <= Nat.max i j by lia. apply InterpUniv_Bind_nopf; eauto. - eauto using InterpUniv_cumulative. - move => *. asimpl. hauto l:on use:InterpUniv_cumulative, ρ_ok_cons. Qed. Lemma ST_Bind Γ i p (A : PTm) (B : PTm) : Γ ⊨ A ∈ PUniv i -> cons A Γ ⊨ B ∈ PUniv i -> Γ ⊨ PBind p A B ∈ PUniv i. Proof. move => h0 h1. replace i with (max i i) by lia. move : h0 h1. apply ST_Bind'. Qed. Lemma ST_Abs Γ (a : PTm) A B i : Γ ⊨ PBind PPi A B ∈ (PUniv i) -> (cons A Γ) ⊨ a ∈ B -> Γ ⊨ PAbs a ∈ PBind PPi A B. Proof. rename a into b. move /SemWt_Univ => + hb ρ hρ. move /(_ _ hρ) => [PPi hPPi]. exists i, PPi. split => //. simpl in hPPi. move /InterpUniv_Bind_inv_nopf : hPPi. move => [PA [hPA [hTot ?]]]. subst=>/=. move => a PB ha. asimpl => hPB. move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply]. move /hb. intros (m & PB0 & hPB0 & hPB0'). replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'. apply : InterpUniv_back_clos; eauto. apply N_β'. by asimpl. move : ha hPA. clear. hauto q:on use:adequacy. Qed. Lemma ST_App Γ (b a : PTm) A B : Γ ⊨ b ∈ PBind PPi A B -> Γ ⊨ a ∈ A -> Γ ⊨ PApp b a ∈ subst_PTm (scons a VarPTm) B. Proof. move => hf hb ρ hρ. move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf). move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb). simpl in hPi. move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst. have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. move : hf (hb). move/[apply]. move : hTot hb. move/[apply]. asimpl. hauto lq:on. Qed. Lemma ST_App' Γ (b a : PTm) A B U : U = subst_PTm (scons a VarPTm) B -> Γ ⊨ b ∈ PBind PPi A B -> Γ ⊨ a ∈ A -> Γ ⊨ PApp b a ∈ U. Proof. move => ->. apply ST_App. Qed. Lemma ST_Pair Γ (a b : PTm) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ∈ A -> Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B -> Γ ⊨ PPair a b ∈ PBind PSig A B. Proof. move /SemWt_Univ => + ha hb ρ hρ. move /(_ _ hρ) => [PPi hPPi]. exists i, PPi. split => //. simpl in hPPi. move /InterpUniv_Bind_inv_nopf : hPPi. move => [PA [hPA [hTot ?]]]. subst=>/=. rewrite /SumSpace. right. exists (subst_PTm ρ a), (subst_PTm ρ b). split. - apply rtc_refl. - move /ha : (hρ){ha}. move => [m][PA0][h0]h1. move /hb : (hρ){hb}. move => [k][PB][h2]h3. have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. split => // PB0. move : h2. asimpl => *. have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst. Qed. Lemma N_Projs p (a b : PTm) : rtc TRedSN a b -> rtc TRedSN (PProj p a) (PProj p b). Proof. induction 1; hauto lq:on ctrs:rtc, TRedSN. Qed. Lemma ST_Proj1 Γ (a : PTm) A B : Γ ⊨ a ∈ PBind PSig A B -> Γ ⊨ PProj PL a ∈ A. Proof. move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. move : h0 => [S][h2][h3]?. subst. move : h1 => /=. rewrite /SumSpace. case. - move => [v [h0 h1]]. have {}h0 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL v) by hauto lq:on use:N_Projs. have {}h1 : SNe (PProj PL v) by hauto lq:on ctrs:SNe. hauto q:on use:InterpUniv_back_closs,adequacy. - move => [a0 [b0 [h4 [h5 h6]]]]. exists m, S. split => //=. have {}h4 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL (PPair a0 b0)) by eauto using N_Projs. have ? : rtc TRedSN (PProj PL (PPair a0 b0)) a0 by hauto q:on ctrs:rtc, TRedSN use:adequacy. have : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto q:on ctrs:rtc use:@relations.rtc_r. move => h. apply : InterpUniv_back_closs; eauto. Qed. Lemma ST_Proj2 Γ (a : PTm) A B : Γ ⊨ a ∈ PBind PSig A B -> Γ ⊨ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B. Proof. move => h ρ hρ. move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. move : h0 => [S][h2][h3]?. subst. move : h1 => /=. rewrite /SumSpace. case. - move => h. move : h => [v [h0 h1]]. have hp : forall p, SNe (PProj p v) by hauto lq:on ctrs:SNe. have hp' : forall p, rtc TRedSN (PProj p(subst_PTm ρ a)) (PProj p v) by eauto using N_Projs. have hp0 := hp PL. have hp1 := hp PR => {hp}. have hp0' := hp' PL. have hp1' := hp' PR => {hp'}. have : S (PProj PL (subst_PTm ρ a)). apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy. move /h3 => [PB]. asimpl => hPB. do 2 eexists. split; eauto. apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy. - move => [a0 [b0 [h4 [h5 h6]]]]. have h3_dup := h3. specialize h3 with (1 := h5). move : h3 => [PB hPB]. have hr : forall p, rtc TRedSN (PProj p (subst_PTm ρ a)) (PProj p (PPair a0 b0)) by hauto l:on use: N_Projs. have hSN : SN a0 by move : h5 h2; clear; hauto q:on use:adequacy. have hSN' : SN b0 by hauto q:on use:adequacy. have hrl : TRedSN (PProj PL (PPair a0 b0)) a0 by hauto lq:on ctrs:TRedSN. have hrr : TRedSN (PProj PR (PPair a0 b0)) b0 by hauto lq:on ctrs:TRedSN. exists m, PB. asimpl. split. + have hr' : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto l:on use:@relations.rtc_r. have : S (PProj PL (subst_PTm ρ a)) by hauto lq:on use:InterpUniv_back_closs. move => {}/h3_dup. move => [PB0]. asimpl => hPB0. suff : PB = PB0 by congruence. move : hPB. asimpl => hPB. suff : DJoin.R (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B) (subst_PTm (scons a0 ρ) B). move : InterpUniv_Join hPB0 hPB; repeat move/[apply]. done. apply DJoin.cong. apply DJoin.FromRedSNs. hauto lq:on ctrs:rtc unfold:BJoin.R. + hauto lq:on use:@relations.rtc_r, InterpUniv_back_closs. Qed. Lemma ST_Conv' Γ (a : PTm) A B i : Γ ⊨ a ∈ A -> Γ ⊨ B ∈ PUniv i -> Sub.R A B -> Γ ⊨ a ∈ B. Proof. move => ha /SemWt_Univ h h0. move => ρ hρ. have {}h0 : Sub.R (subst_PTm ρ A) (subst_PTm ρ B) by eauto using Sub.substing. move /ha : (hρ){ha} => [m [PA [h1 h2]]]. move /h : (hρ){h} => [S hS]. have h3 : forall x, PA x -> S x. move : InterpUniv_Sub h0 h1 hS; by repeat move/[apply]. hauto lq:on. Qed. Lemma ST_Conv_E Γ (a : PTm) A B i : Γ ⊨ a ∈ A -> Γ ⊨ B ∈ PUniv i -> DJoin.R A B -> Γ ⊨ a ∈ B. Proof. hauto l:on use:ST_Conv', Sub.FromJoin. Qed. Lemma ST_Conv Γ (a : PTm) A B : Γ ⊨ a ∈ A -> Γ ⊨ A ≲ B -> Γ ⊨ a ∈ B. Proof. hauto l:on use:ST_Conv', SemLEq_SemWt. Qed. Lemma SE_Refl Γ (a : PTm) A : Γ ⊨ a ∈ A -> Γ ⊨ a ≡ a ∈ A. Proof. hauto lq:on unfold:SemWt,SemEq use:DJoin.refl. Qed. Lemma SE_Symmetric Γ (a b : PTm) A : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ b ≡ a ∈ A. Proof. hauto q:on unfold:SemEq. Qed. Lemma SE_Transitive Γ (a b c : PTm) A : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ b ≡ c ∈ A -> Γ ⊨ a ≡ c ∈ A. Proof. move => ha hb. apply SemEq_SemWt in ha, hb. have ? : SN b by hauto l:on use:SemWt_SN. apply SemWt_SemEq; try tauto. hauto l:on use:DJoin.transitive. Qed. Definition Γ_sub' Γ Δ := forall ρ, ρ_ok Δ ρ -> ρ_ok Γ ρ. Definition Γ_eq' Γ Δ := forall ρ, ρ_ok Δ ρ <-> ρ_ok Γ ρ. Lemma Γ_sub'_refl Γ : Γ_sub' Γ Γ. rewrite /Γ_sub'. sfirstorder b:on. Qed. Lemma Γ_sub'_cons Γ Δ A B i j : Sub.R B A -> Γ_sub' Γ Δ -> Γ ⊨ A ∈ PUniv i -> Δ ⊨ B ∈ PUniv j -> Γ_sub' (cons A Γ) (cons B Δ). Proof. move => hsub hsub' hA hB ρ hρ. move => k k' A0 PA. have hρ_inv : ρ_ok Δ (funcomp ρ shift). move : hρ. clear. move => hρ i. (* specialize (hρ (shift i)). *) move => k A PA. move /there. move /(_ B). rewrite /ρ_ok in hρ. move /hρ. asimpl. by apply. elim /lookup_inv => //=hl. move => A1 Γ0 ? [? ?] ?. subst. - asimpl. move => h. have {}/hsub' hρ' := hρ_inv. move /SemWt_Univ : (hA) (hρ')=> /[apply]. move => [S]hS. move /SemWt_Univ : (hB) (hρ_inv)=>/[apply]. move => [S1]hS1. move /(_ var_zero j (ren_PTm shift B) S1) : hρ (hS1). asimpl. move => /[apply]. move /(_ ltac:(apply here)). move => *. suff : forall x, S1 x -> PA x by firstorder. apply : InterpUniv_Sub; eauto. by apply Sub.substing. - rewrite /Γ_sub' in hsub'. asimpl. move => i0 Γ0 A1 B0 hi0 ? [? ?]?. subst. move /(_ (funcomp ρ shift) hρ_inv) in hsub'. move : hsub' hi0 => /[apply]. move => /[apply]. by asimpl. Qed. Lemma Γ_sub'_SemWt Γ Δ a A : Γ_sub' Γ Δ -> Γ ⊨ a ∈ A -> Δ ⊨ a ∈ A. Proof. move => hs ha ρ hρ. have {}/hs hρ' := hρ. hauto l:on. Qed. Lemma Γ_eq_sub Γ Δ : Γ_eq' Γ Δ <-> Γ_sub' Γ Δ /\ Γ_sub' Δ Γ. Proof. rewrite /Γ_eq' /Γ_sub'. hauto l:on. Qed. Lemma Γ_eq'_cons Γ Δ A B i j : DJoin.R B A -> Γ_eq' Γ Δ -> Γ ⊨ A ∈ PUniv i -> Δ ⊨ B ∈ PUniv j -> Γ_eq' (cons A Γ) (cons B Δ). Proof. move => h. have {h} [h0 h1] : Sub.R A B /\ Sub.R B A by hauto lq:on use:Sub.FromJoin, DJoin.symmetric. repeat rewrite ->Γ_eq_sub. hauto l:on use:Γ_sub'_cons. Qed. Lemma Γ_eq'_refl Γ : Γ_eq' Γ Γ. Proof. rewrite /Γ_eq'. firstorder. Qed. Lemma SE_Bind' Γ i j p (A0 A1 : PTm) B0 B1 : Γ ⊨ A0 ≡ A1 ∈ PUniv i -> cons A0 Γ ⊨ B0 ≡ B1 ∈ PUniv j -> Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv (max i j). Proof. move => hA hB. apply SemEq_SemWt in hA, hB. apply SemWt_SemEq; last by hauto l:on use:DJoin.BindCong. hauto l:on use:ST_Bind'. apply ST_Bind'; first by tauto. move => ρ hρ. suff : ρ_ok (cons A0 Γ) ρ by hauto l:on. move : hρ. suff : Γ_sub' (A0 :: Γ) (A1 :: Γ) by hauto l:on unfold:Γ_sub'. apply : Γ_sub'_cons. apply /Sub.FromJoin /DJoin.symmetric. tauto. apply Γ_sub'_refl. hauto lq:on. hauto lq:on. Qed. Lemma SE_Bind Γ i p (A0 A1 : PTm) B0 B1 : Γ ⊨ A0 ≡ A1 ∈ PUniv i -> cons A0 Γ ⊨ B0 ≡ B1 ∈ PUniv i -> Γ ⊨ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i. Proof. move => *. replace i with (max i i) by lia. auto using SE_Bind'. Qed. Lemma SE_Abs Γ (a b : PTm) A B i : Γ ⊨ PBind PPi A B ∈ (PUniv i) -> cons A Γ ⊨ a ≡ b ∈ B -> Γ ⊨ PAbs a ≡ PAbs b ∈ PBind PPi A B. Proof. move => hPi /SemEq_SemWt [ha][hb]he. apply SemWt_SemEq; eauto using DJoin.AbsCong, ST_Abs. Qed. Lemma SBind_inv1 Γ i p (A : PTm) B : Γ ⊨ PBind p A B ∈ PUniv i -> Γ ⊨ A ∈ PUniv i. move /SemWt_Univ => h. apply SemWt_Univ. hauto lq:on rew:off use:InterpUniv_Bind_inv. Qed. Lemma SE_AppEta Γ (b : PTm) A B i : Γ ⊨ PBind PPi A B ∈ (PUniv i) -> Γ ⊨ b ∈ PBind PPi A B -> Γ ⊨ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B. Proof. move => h0 h1. apply SemWt_SemEq; eauto. apply : ST_Abs; eauto. have hA : Γ ⊨ A ∈ PUniv i by eauto using SBind_inv1. eapply ST_App' with (A := ren_PTm shift A)(B:= ren_PTm (upRen_PTm_PTm shift) B). asimpl. by rewrite subst_scons_id. 2 : { apply : ST_Var'. apply here. apply : weakening_Sem_Univ; eauto. } change (PBind PPi (ren_PTm shift A) (ren_PTm (upRen_PTm_PTm shift) B)) with (ren_PTm shift (PBind PPi A B)). apply : weakening_Sem; eauto. hauto q:on ctrs:rtc,RERed.R. Qed. Lemma SE_AppAbs Γ (a : PTm) b A B i: Γ ⊨ PBind PPi A B ∈ PUniv i -> Γ ⊨ b ∈ A -> (cons A Γ) ⊨ a ∈ B -> Γ ⊨ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B. Proof. move => h h0 h1. apply SemWt_SemEq; eauto using ST_App, ST_Abs. move => ρ hρ. have {}/h0 := hρ. move => [k][PA][hPA]hb. move : ρ_ok_cons hPA hb (hρ); repeat move/[apply]. move => {}/h1. by asimpl. apply DJoin.FromRRed0. apply RRed.AppAbs. Qed. Lemma SE_Conv' Γ (a b : PTm) A B i : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ B ∈ PUniv i -> Sub.R A B -> Γ ⊨ a ≡ b ∈ B. Proof. move /SemEq_SemWt => [ha][hb]he hB hAB. apply SemWt_SemEq; eauto using ST_Conv'. Qed. Lemma SE_Conv Γ (a b : PTm) A B : Γ ⊨ a ≡ b ∈ A -> Γ ⊨ A ≲ B -> Γ ⊨ a ≡ b ∈ B. Proof. move => h /SemLEq_SemWt [h0][h1][ha]hb. eauto using SE_Conv'. Qed. Lemma SBind_inst Γ p i (A : PTm) B (a : PTm) : Γ ⊨ a ∈ A -> Γ ⊨ PBind p A B ∈ PUniv i -> Γ ⊨ subst_PTm (scons a VarPTm) B ∈ PUniv i. Proof. move => ha /SemWt_Univ hb. apply SemWt_Univ. move => ρ hρ. have {}/hb := hρ. asimpl. move => /= [S hS]. move /InterpUniv_Bind_inv_nopf : hS. move => [PA][hPA][hPF]?. subst. have {}/ha := hρ. move => [k][PA0][hPA0]ha. have ? : PA0 = PA by hauto l:on use:InterpUniv_Functional'. subst. have {}/hPF := ha. move => [PB]. asimpl. hauto lq:on. Qed. Lemma SE_Pair Γ (a0 a1 b0 b1 : PTm) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a0 ≡ a1 ∈ A -> Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B -> Γ ⊨ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B. Proof. move => h /SemEq_SemWt [ha0][ha1]hae /SemEq_SemWt [hb0][hb1]hbe. apply SemWt_SemEq; eauto using ST_Pair, DJoin.PairCong, SBind_inst, DJoin.cong, ST_Conv_E, ST_Pair. Qed. Lemma SE_Proj1 Γ (a b : PTm) A B : Γ ⊨ a ≡ b ∈ PBind PSig A B -> Γ ⊨ PProj PL a ≡ PProj PL b ∈ A. Proof. move => /SemEq_SemWt [ha][hb]he. apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj1. Qed. Lemma SE_Proj2 Γ i (a b : PTm ) A B : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ≡ b ∈ PBind PSig A B -> Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B. Proof. move => hS. move => /SemEq_SemWt [ha][hb]he. apply SemWt_SemEq; eauto using DJoin.ProjCong, ST_Proj2. have h : Γ ⊨ PProj PR b ∈ subst_PTm (scons (PProj PL b) VarPTm) B by eauto using ST_Proj2. apply : ST_Conv_E. apply h. apply : SBind_inst. eauto using ST_Proj1. eauto. hauto lq:on use: DJoin.cong, DJoin.ProjCong. Qed. Lemma ST_Nat Γ i : Γ ⊨ PNat ∈ PUniv i. Proof. move => ?. apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Nat. Qed. Lemma ST_Zero Γ : Γ ⊨ PZero ∈ PNat. Proof. move => ρ hρ. exists 0, SNat. simpl. split. apply InterpUniv_Nat. apply S_Zero. Qed. Lemma ST_Suc Γ (a : PTm) : Γ ⊨ a ∈ PNat -> Γ ⊨ PSuc a ∈ PNat. Proof. move => ha ρ. move : ha => /[apply] /=. move => [k][PA][h0 h1]. move /InterpUniv_Nat_inv : h0 => ?. subst. exists 0, SNat. split. apply InterpUniv_Nat. eauto using S_Suc. Qed. Lemma sn_unmorphing' : (forall (a : PTm) (s : SN a), forall (ρ : nat -> PTm) b, a = subst_PTm ρ b -> SN b). Proof. hauto l:on use:sn_unmorphing. Qed. Lemma sn_bot_up (a : PTm) i (ρ : nat -> PTm) : SN (subst_PTm (scons (VarPTm i) ρ) a) -> SN (subst_PTm (up_PTm_PTm ρ) a). rewrite /up_PTm_PTm. move => h. eapply sn_unmorphing' with (ρ := (scons (VarPTm i) VarPTm)); eauto. by asimpl. Qed. Lemma sn_bot_up2 (a : PTm) j i (ρ : nat -> PTm) : SN ((subst_PTm (scons (VarPTm j) (scons (VarPTm i) ρ)) a)) -> SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) a). rewrite /up_PTm_PTm. move => h. eapply sn_unmorphing' with (ρ := (scons (VarPTm j) (scons (VarPTm i) VarPTm))); eauto. by asimpl. Qed. Lemma SNat_SN (a : PTm) : SNat a -> SN a. induction 1; hauto lq:on ctrs:SN. Qed. Lemma ST_Ind Γ P (a : PTm) b c i : (cons PNat Γ) ⊨ P ∈ PUniv i -> Γ ⊨ a ∈ PNat -> Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> (cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> Γ ⊨ PInd P a b c ∈ subst_PTm (scons a VarPTm) P. Proof. move => hA hc ha hb ρ hρ. move /(_ ρ hρ) : ha => [m][PA][ha0]ha1. move /(_ ρ hρ) : hc => [n][PA0][/InterpUniv_Nat_inv ->]. simpl. (* Use localiaztion to block asimpl from simplifying pind *) set x := PInd _ _ _ _. asimpl. subst x. move : {a} (subst_PTm ρ a) . move : (subst_PTm ρ b) ha1 => {}b ha1. move => u hu. have hρb : ρ_ok (cons PNat Γ) (scons (VarPTm var_zero) ρ) by apply : ρ_ok_cons; hauto lq:on ctrs:SNat, SNe use:(@InterpUniv_Nat 0). have hρbb : ρ_ok (cons P (cons PNat Γ)) (scons (VarPTm var_zero) (scons (VarPTm var_zero) ρ)). move /SemWt_Univ /(_ _ hρb) : hA => [S ?]. apply : ρ_ok_cons; eauto. sauto lq:on use:adequacy. (* have snP : SN P by hauto l:on use:SemWt_SN. *) have snb : SN b by hauto q:on use:adequacy. have snP : SN (subst_PTm (up_PTm_PTm ρ) P) by eapply sn_bot_up; move : hA hρb => /[apply]; hauto lq:on use:adequacy. have snc : SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c) by apply: sn_bot_up2; move : hb hρbb => /[apply]; hauto lq:on use:adequacy. elim : u /hu. + exists m, PA. split. * move : ha0. by asimpl. * apply : InterpUniv_back_clos; eauto. apply N_IndZero; eauto. + move => a snea. have hρ' : ρ_ok (cons PNat Γ) (scons a ρ)by apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat. move /SemWt_Univ : (hA) hρ' => /[apply]. move => [S0 hS0]. exists i, S0. split=>//. eapply adequacy; eauto. apply N_Ind; eauto. + move => a ha [j][S][h0]h1. have hρ' : ρ_ok (cons PNat Γ) (scons (PSuc a) ρ)by apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat. move /SemWt_Univ : (hA) (hρ') => /[apply]. move => [S0 hS0]. exists i, S0. split => //. apply : InterpUniv_back_clos; eauto. apply N_IndSuc; eauto using SNat_SN. move : (PInd (subst_PTm (up_PTm_PTm ρ) P) a b (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c)) h1. move => r hr. have hρ'' : ρ_ok (cons P (cons PNat Γ)) (scons r (scons a ρ)) by eauto using ρ_ok_cons, (InterpUniv_Nat 0). move : hb hρ'' => /[apply]. move => [k][PA1][h2]h3. move : h2. asimpl => ?. have ? : PA1 = S0 by eauto using InterpUniv_Functional'. by subst. + move => a a' hr ha' [k][PA1][h0]h1. have : ρ_ok (cons PNat Γ) (scons a ρ) by apply : ρ_ok_cons; hauto l:on use:S_Red,(InterpUniv_Nat 0). move /SemWt_Univ : hA => /[apply]. move => [PA2]h2. exists i, PA2. split => //. apply : InterpUniv_back_clos; eauto. apply N_IndCong; eauto. suff : PA1 = PA2 by congruence. move : h0 h2. move : InterpUniv_Join'; repeat move/[apply]. apply. apply DJoin.FromRReds. apply RReds.FromRPar. apply RPar.morphing; last by apply RPar.refl. eapply LoReds.FromSN_mutual in hr. move /LoRed.ToRRed /RPar.FromRRed in hr. hauto lq:on inv:nat use:RPar.refl. Qed. Lemma SE_SucCong Γ (a b : PTm) : Γ ⊨ a ≡ b ∈ PNat -> Γ ⊨ PSuc a ≡ PSuc b ∈ PNat. Proof. move /SemEq_SemWt => [ha][hb]he. apply SemWt_SemEq; eauto using ST_Suc. hauto q:on use:REReds.suc_inv, REReds.SucCong. Qed. Lemma SE_IndCong Γ P0 P1 (a0 a1 : PTm ) b0 b1 c0 c1 i : cons PNat Γ ⊨ P0 ≡ P1 ∈ PUniv i -> Γ ⊨ a0 ≡ a1 ∈ PNat -> Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 -> cons P0 (cons PNat Γ) ⊨ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) -> Γ ⊨ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0. Proof. move /SemEq_SemWt=>[hP0][hP1]hPe. move /SemEq_SemWt=>[ha0][ha1]hae. move /SemEq_SemWt=>[hb0][hb1]hbe. move /SemEq_SemWt=>[hc0][hc1]hce. apply SemWt_SemEq; eauto using ST_Ind, DJoin.IndCong. apply ST_Conv_E with (A := subst_PTm (scons a1 VarPTm) P1) (i := i); last by eauto using DJoin.cong', DJoin.symmetric. apply : ST_Ind; eauto. eapply ST_Conv_E with (i := i); eauto. apply : morphing_SemWt_Univ; eauto. apply smorphing_ext. rewrite /smorphing_ok. move => ξ. rewrite /funcomp. by asimpl. by apply ST_Zero. by apply DJoin.substing. eapply ST_Conv_E with (i := i); eauto. apply : Γ_sub'_SemWt; eauto. apply : Γ_sub'_cons; eauto using DJoin.symmetric, Sub.FromJoin. apply : Γ_sub'_cons; eauto using Sub.refl, Γ_sub'_refl, (@ST_Nat _ 0). apply : weakening_Sem_Univ; eauto. move : hP1. move /morphing_SemWt. apply. apply smorphing_ext. have -> : (funcomp VarPTm shift) = funcomp (ren_PTm shift) (VarPTm) by asimpl. apply : smorphing_ren; eauto using smorphing_ok_refl. hauto l:on inv:option. apply ST_Suc. apply ST_Var' with (j := 0). apply here. apply ST_Nat. apply DJoin.renaming. by apply DJoin.substing. apply : morphing_SemWt_Univ; eauto. apply smorphing_ext; eauto using smorphing_ok_refl. Qed. Lemma SE_IndZero Γ P i (b : PTm) c : (cons PNat Γ) ⊨ P ∈ PUniv i -> Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> (cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> Γ ⊨ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P. Proof. move => hP hb hc. apply SemWt_SemEq; eauto using ST_Zero, ST_Ind. apply DJoin.FromRRed0. apply RRed.IndZero. Qed. Lemma SE_IndSuc Γ P (a : PTm) b c i : (cons PNat Γ) ⊨ P ∈ PUniv i -> Γ ⊨ a ∈ PNat -> Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> (cons P (cons PNat Γ)) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> Γ ⊨ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P. Proof. move => hP ha hb hc. apply SemWt_SemEq; eauto using ST_Suc, ST_Ind. set Δ := (X in X ⊨ _ ∈ _) in hc. have : smorphing_ok Γ Δ (scons (PInd P a b c) (scons a VarPTm)). apply smorphing_ext. apply smorphing_ext. apply smorphing_ok_refl. done. eauto using ST_Ind. move : morphing_SemWt hc; repeat move/[apply]. by asimpl. apply DJoin.FromRRed0. apply RRed.IndSuc. Qed. Lemma SE_ProjPair1 Γ (a b : PTm) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ∈ A -> Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B -> Γ ⊨ PProj PL (PPair a b) ≡ a ∈ A. Proof. move => h0 h1 h2. apply SemWt_SemEq; eauto using ST_Proj1, ST_Pair. apply DJoin.FromRRed0. apply RRed.ProjPair. Qed. Lemma SE_ProjPair2 Γ (a b : PTm) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ∈ A -> Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B -> Γ ⊨ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B. Proof. move => h0 h1 h2. apply SemWt_SemEq; eauto using ST_Proj2, ST_Pair. apply : ST_Conv_E. apply : ST_Proj2; eauto. apply : ST_Pair; eauto. hauto l:on use:SBind_inst. apply DJoin.cong. apply DJoin.FromRRed0. apply RRed.ProjPair. apply DJoin.FromRRed0. apply RRed.ProjPair. Qed. Lemma SE_PairEta Γ (a : PTm) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ∈ PBind PSig A B -> Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B. Proof. move => h0 h. apply SemWt_SemEq; eauto. apply : ST_Pair; eauto using ST_Proj1, ST_Proj2. rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R. Qed. Lemma SE_PairExt Γ (a b : PTm) A B i : Γ ⊨ PBind PSig A B ∈ PUniv i -> Γ ⊨ a ∈ PBind PSig A B -> Γ ⊨ b ∈ PBind PSig A B -> Γ ⊨ PProj PL a ≡ PProj PL b ∈ A -> Γ ⊨ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B -> Γ ⊨ a ≡ b ∈ PBind PSig A B. Proof. move => h0 ha hb h1 h2. suff h : Γ ⊨ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B /\ Γ ⊨ PPair (PProj PL b) (PProj PR b) ≡ b ∈ PBind PSig A B /\ Γ ⊨ PPair (PProj PL a) (PProj PR a) ≡ PPair (PProj PL b) (PProj PR b) ∈ PBind PSig A B by decompose [and] h; eauto using SE_Transitive, SE_Symmetric. eauto 20 using SE_PairEta, SE_Symmetric, SE_Pair. Qed. Lemma SE_FunExt Γ (a b : PTm) A B i : Γ ⊨ PBind PPi A B ∈ PUniv i -> Γ ⊨ a ∈ PBind PPi A B -> Γ ⊨ b ∈ PBind PPi A B -> A :: Γ ⊨ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B -> Γ ⊨ a ≡ b ∈ PBind PPi A B. Proof. move => hpi ha hb he. move : SE_Abs (hpi) he. repeat move/[apply]. move => he. have /SE_Symmetric : Γ ⊨ PAbs (PApp (ren_PTm shift a) (VarPTm var_zero)) ≡ a ∈ PBind PPi A B by eauto using SE_AppEta. have : Γ ⊨ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B by eauto using SE_AppEta. eauto using SE_Transitive. Qed. Lemma SE_Nat Γ (a b : PTm) : Γ ⊨ a ≡ b ∈ PNat -> Γ ⊨ PSuc a ≡ PSuc b ∈ PNat. Proof. move /SemEq_SemWt => [ha][hb]hE. apply SemWt_SemEq; eauto using ST_Suc. eauto using DJoin.SucCong. Qed. Lemma SE_App Γ i (b0 b1 a0 a1 : PTm) A B : Γ ⊨ PBind PPi A B ∈ (PUniv i) -> Γ ⊨ b0 ≡ b1 ∈ PBind PPi A B -> Γ ⊨ a0 ≡ a1 ∈ A -> Γ ⊨ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B. Proof. move => hPi. move => /SemEq_SemWt [hb0][hb1]hb /SemEq_SemWt [ha0][ha1]ha. apply SemWt_SemEq; eauto using DJoin.AppCong, ST_App. apply : ST_Conv_E; eauto using ST_App, DJoin.cong, DJoin.symmetric, SBind_inst. Qed. Lemma SSu_Eq Γ (A B : PTm) i : Γ ⊨ A ≡ B ∈ PUniv i -> Γ ⊨ A ≲ B. Proof. move /SemEq_SemWt => h. qauto l:on use:SemWt_SemLEq, Sub.FromJoin. Qed. Lemma SSu_Transitive Γ (A B C : PTm) : Γ ⊨ A ≲ B -> Γ ⊨ B ≲ C -> Γ ⊨ A ≲ C. Proof. move => ha hb. apply SemLEq_SemWt in ha, hb. have ? : SN B by hauto l:on use:SemWt_SN. move : ha => [ha0 [i [ha1 ha2]]]. move : hb => [hb0 [j [hb1 hb2]]]. qauto l:on use:SemWt_SemLEq, Sub.transitive. Qed. Lemma ST_Univ' Γ i j : i < j -> Γ ⊨ PUniv i ∈ PUniv j. Proof. move => ?. apply SemWt_Univ. move => ρ hρ. eexists. by apply InterpUniv_Univ. Qed. Lemma ST_Univ Γ i : Γ ⊨ PUniv i ∈ PUniv (S i). Proof. apply ST_Univ'. lia. Qed. Lemma SSu_Univ Γ i j : i <= j -> Γ ⊨ PUniv i ≲ PUniv j. Proof. move => h. apply : SemWt_SemLEq; eauto using ST_Univ. sauto lq:on. Qed. Lemma SSu_Pi Γ (A0 A1 : PTm ) B0 B1 : Γ ⊨ A1 ≲ A0 -> cons A0 Γ ⊨ B0 ≲ B1 -> Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1. Proof. move => hA hB. have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1 by hauto l:on use:SemLEq_SN_Sub. apply SemLEq_SemWt in hA, hB. move : hA => [hA0][i][hA1]hA2. move : hB => [hB0][j][hB1]hB2. apply : SemWt_SemLEq; last by hauto l:on use:Sub.PiCong. hauto l:on use:ST_Bind'. apply ST_Bind'; eauto. move => ρ hρ. suff : ρ_ok (cons A0 Γ) ρ by hauto l:on. move : hρ. suff : Γ_sub' (A0 :: Γ) (A1 :: Γ) by hauto l:on unfold:Γ_sub'. apply : Γ_sub'_cons; eauto. apply Γ_sub'_refl. Qed. Lemma SSu_Sig Γ (A0 A1 : PTm) B0 B1 : Γ ⊨ A0 ≲ A1 -> cons A1 Γ ⊨ B0 ≲ B1 -> Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1. Proof. move => hA hB. have ? : SN A0 /\ SN A1 /\ SN B0 /\ SN B1 by hauto l:on use:SemLEq_SN_Sub. apply SemLEq_SemWt in hA, hB. move : hA => [hA0][i][hA1]hA2. move : hB => [hB0][j][hB1]hB2. apply : SemWt_SemLEq; last by hauto l:on use:Sub.SigCong. 2 : { hauto l:on use:ST_Bind'. } apply ST_Bind'; eauto. move => ρ hρ. suff : ρ_ok (cons A1 Γ) ρ by hauto l:on. move : hρ. suff : Γ_sub' (A1 :: Γ) (A0 :: Γ) by hauto l:on. apply : Γ_sub'_cons; eauto. apply Γ_sub'_refl. Qed. Lemma SSu_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 : Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 -> Γ ⊨ A1 ≲ A0. Proof. move /SemLEq_SemWt => [h0][h1][h2]he. apply : SemWt_SemLEq; eauto using SBind_inv1. hauto lq:on rew:off use:Sub.bind_inj. Qed. Lemma SSu_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 : Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 -> Γ ⊨ A0 ≲ A1. Proof. move /SemLEq_SemWt => [h0][h1][h2]he. apply : SemWt_SemLEq; eauto using SBind_inv1. hauto lq:on rew:off use:Sub.bind_inj. Qed. Lemma SSu_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 : Γ ⊨ PBind PPi A0 B0 ≲ PBind PPi A1 B1 -> Γ ⊨ a0 ≡ a1 ∈ A1 -> Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1. Proof. move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]]. move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha. apply : SemWt_SemLEq; eauto using SBind_inst; last by hauto l:on use:Sub.cong. apply SBind_inst with (p := PPi) (A := A0); eauto. apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1. Qed. Lemma SSu_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 : Γ ⊨ PBind PSig A0 B0 ≲ PBind PSig A1 B1 -> Γ ⊨ a0 ≡ a1 ∈ A0 -> Γ ⊨ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1. Proof. move /SemLEq_SemWt => [/Sub.bind_inj [_ [h1 h2]]]. move => [i][hP0]hP1 /SemEq_SemWt [ha0][ha1]ha. apply : SemWt_SemLEq; eauto using SBind_inst; last by hauto l:on use:Sub.cong. apply SBind_inst with (p := PSig) (A := A1); eauto. apply : ST_Conv'; eauto. hauto l:on use:SBind_inv1. Qed. #[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2 SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta ST_Nat ST_Ind ST_Suc ST_Zero SE_IndCong SE_SucCong SE_IndZero SE_IndSuc SE_SucCong : sem.