Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Reserved Notation "Γ ⊢ a ∈ A" (at level 70). Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70). Reserved Notation "⊢ Γ" (at level 70). Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop := | T_Var n Γ (i : fin n) : ⊢ Γ -> Γ ⊢ VarPTm i ∈ Γ i | T_Bind n Γ i j p (A : PTm n) (B : PTm (S n)) : Γ ⊢ A ∈ PUniv i -> funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv j -> Γ ⊢ PBind p A B ∈ PUniv (max i j) | T_Abs n Γ (a : PTm (S n)) A B i : Γ ⊢ PBind PPi A B ∈ (PUniv i) -> funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B -> Γ ⊢ PAbs a ∈ PBind PPi A B | T_App n Γ (b a : PTm n) A B : Γ ⊢ b ∈ PBind PPi A B -> Γ ⊢ a ∈ A -> Γ ⊢ PApp b a ∈ subst_PTm (scons a VarPTm) B | T_Pair n Γ (a b : PTm n) A B i : Γ ⊢ PBind PSig A B ∈ (PUniv i) -> Γ ⊢ a ∈ A -> Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B -> Γ ⊢ PPair a b ∈ PBind PSig A B | T_Proj1 n Γ (a : PTm n) A B : Γ ⊢ a ∈ PBind PSig A B -> Γ ⊢ PProj PL a ∈ A | T_Proj2 n Γ (a : PTm n) A B : Γ ⊢ a ∈ PBind PSig A B -> Γ ⊢ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B | T_Conv n Γ (a : PTm n) A B i : Γ ⊢ a ∈ A -> Γ ⊢ A ≡ B ∈ PUniv i -> Γ ⊢ a ∈ B with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop := | E_Refl n Γ (a : PTm n) A : Γ ⊢ a ∈ A -> Γ ⊢ a ≡ a ∈ A | E_Symmetric n Γ (a b : PTm n) A : Γ ⊢ a ≡ b ∈ A -> Γ ⊢ b ≡ a ∈ A | E_Transitive n Γ (a b c : PTm n) A : Γ ⊢ a ≡ b ∈ A -> Γ ⊢ b ≡ c ∈ A -> Γ ⊢ a ≡ c ∈ A | E_Bind n Γ i j p (A0 A1 : PTm n) B0 B1 : ⊢ Γ -> Γ ⊢ A0 ≡ A1 ∈ PUniv i -> funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv j -> Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv (max i j) | E_Abs n Γ (a b : PTm (S n)) A B i : Γ ⊢ PBind PPi A B ∈ (PUniv i) -> funcomp (ren_PTm shift) (scons A Γ) ⊢ a ≡ b ∈ B -> Γ ⊢ PAbs a ≡ PAbs b ∈ PBind PPi A B | E_App n Γ i (b0 b1 a0 a1 : PTm n) A B : Γ ⊢ PBind PPi A B ∈ (PUniv i) -> Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B -> Γ ⊢ a0 ≡ a1 ∈ A -> Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B | E_Pair n Γ (a0 a1 b0 b1 : PTm n) A B i : Γ ⊢ PBind PSig A B ∈ (PUniv i) -> Γ ⊢ a0 ≡ a1 ∈ A -> Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B -> Γ ⊢ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B | E_Proj1 n Γ (a b : PTm n) A B : Γ ⊢ a ≡ b ∈ PBind PSig A B -> Γ ⊢ PProj PL a ≡ PProj PL b ∈ A | E_Proj2 n Γ i (a b : PTm n) A B : Γ ⊢ PBind PSig A B ∈ (PUniv i) -> Γ ⊢ a ≡ b ∈ PBind PSig A B -> Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B | E_Conv n Γ (a b : PTm n) A B i : Γ ⊢ a ≡ b ∈ A -> Γ ⊢ B ∈ PUniv i -> Γ ⊢ A ≡ B ∈ PUniv i -> Γ ⊢ a ≡ b ∈ B | E_Bind_Proj1 n Γ p (A0 A1 : PTm n) B0 B1 i : Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i -> Γ ⊢ A0 ≡ A1 ∈ PUniv i | E_Bind_Proj2 n Γ p (a0 a1 A0 A1 : PTm n) B0 B1 i : Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i -> Γ ⊢ a0 ≡ a1 ∈ A0 -> Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≡ subst_PTm (scons a1 VarPTm) B1 ∈ PUniv i with Wff : forall {n}, (fin n -> PTm n) -> Prop := | Wff_Nil : ⊢ null | Wff_Cons n Γ (A : PTm n) i : ⊢ Γ -> Γ ⊢ A ∈ PUniv i -> (* -------------- *) ⊢ funcomp (ren_PTm shift) (scons A Γ) where "Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A).