From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat (well_founded_lt_compat). Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common fp_red. Require Import Btauto. Fixpoint nostuck (a : PTm) := match a with | VarPTm i => true | PAbs a => nostuck a | PApp a b => (ishf a ==> isabs a) && nostuck a && nostuck b | PBind _ A B => nostuck A && nostuck B | PPair a b => nostuck a && nostuck b | PProj _ a => (ishf a ==> ispair a) && nostuck a | PZero => true | PSuc a => nostuck a | PInd P a b c => nostuck P && (ishf a ==> iszero a || issuc a) && nostuck a && nostuck b && nostuck c | PNat => true | PUniv _ => true end. CoInductive safe a : Prop := safe_intro {safe_nostuck : nostuck a ; safe_red : forall b,RERed.R a b -> safe b}. Arguments safe_intro {a}. Lemma safe_coind P : (forall a, P a -> nostuck a /\ (forall b, RERed.R a b -> P b)) -> forall a, P a -> safe a. move => h. cofix ih. move => a ha. apply h in ha. destruct ha as [ha0 ha1]. apply safe_intro. apply ha0. move => b hb. apply ha1 in hb. apply ih. apply hb. Qed. Lemma nostuck_antisubstitution : forall ρ a, nostuck (subst_PTm ρ a) -> nostuck a. Proof. suff : forall (ρ : nat -> PTm) (a : PTm), nostuck (subst_PTm ρ a) ==> nostuck a by sauto lqb:on. move => /[swap]. elim => //=. - move => *. rewrite !Bool.implb_orb /is_true. btauto. - move => b ihb a iha ρ. move /(_ ρ) : ihb. apply /implyP. move /(_ ρ) : iha. apply /implyP. case : b => //= *; rewrite /is_true !Bool.implb_orb; btauto. - move => a iha b ihb ρ. move /(_ ρ) : ihb. apply /implyP. move /(_ ρ) : iha. apply /implyP. rewrite /is_true !Bool.implb_orb; btauto. - move => p u hu ρ. move /(_ ρ) : hu. apply /implyP. case : u => //= *; rewrite /is_true !Bool.implb_orb; btauto. - move => _ a iha b ihb ρ. move /(_ (up_PTm_PTm ρ)) : ihb. apply /implyP. move /(_ ρ) : iha. apply /implyP. rewrite /is_true !Bool.implb_orb; btauto. - move => P ihP a iha b ihb c ihc ρ. move /(_ (up_PTm_PTm ρ)) : ihP. apply /implyP. move /(_ ρ) : iha. apply /implyP. move /(_ ρ) : ihb. apply /implyP. move /(_ (up_PTm_PTm (up_PTm_PTm ρ))) : ihc. apply /implyP. case : a => //= *; rewrite /is_true !Bool.implb_orb; btauto. Qed. Lemma safe_antisubstitution : forall ρ a, safe (subst_PTm ρ a) -> safe a. Proof. suff : forall a, (exists ρ, safe (subst_PTm ρ a)) -> safe a by firstorder. apply safe_coind. move => a [ρ ha]. split. have {}ha : nostuck (subst_PTm ρ a) by hauto lq:on inv:safe lq:on. by eauto using nostuck_antisubstitution. move => b hr. exists ρ. inversion ha as [ha0 ha1]. hauto lq:on use:RERed.substing. Qed. Lemma safe_app_inv0 : forall a b, safe (PApp a b) -> safe a. Proof. suff : forall a, (exists b, safe (PApp a b)) -> safe a by firstorder. apply safe_coind. sauto lqb:on. Qed. Lemma safe_app_inv1 : forall a b, safe (PApp a b) -> safe b. Proof. suff : forall b, (exists a, safe (PApp a b)) -> safe b by firstorder. apply safe_coind. sauto lqb:on. Qed. Lemma safe_abs_inv : forall a, safe (PAbs a) -> safe a. Proof. apply safe_coind. sauto lqb:on. Qed. Lemma safe_proj_inv : forall p a, safe (PProj p a) -> safe a. Proof. move => p. apply safe_coind. sauto lqb:on. Qed. Lemma safe_ind_inv0 : forall P a b c, safe (PInd P a b c) -> safe P. Proof. move => + a b c. apply safe_coind. sauto lqb:on. Qed. Lemma safe_ind_inv1 : forall P a b c, safe (PInd P a b c) -> safe a. Proof. move => P + b c. apply safe_coind. sauto lqb:on. Qed. Lemma safe_ind_inv2 : forall P a b c, safe (PInd P a b c) -> safe b. Proof. move => P a + c. apply safe_coind. sauto lqb:on. Qed. Lemma safe_ind_inv3 : forall P a b c, safe (PInd P a b c) -> safe c. Proof. move => P a b +. apply safe_coind. sauto lqb:on. Qed. Lemma safe_bind_inv0 p : forall A B, safe (PBind p A B) -> safe A. Proof. move => + B. apply safe_coind. sauto lqb:on. Qed. Lemma safe_bind_inv1 p : forall A B, safe (PBind p A B) -> safe B. Proof. move => A +. apply safe_coind. sauto lqb:on. Qed. Lemma safe_pair_inv0 : forall A B, safe (PPair A B) -> safe A. Proof. move => + B. apply safe_coind. sauto lqb:on. Qed. Lemma safe_pair_inv1 : forall A B, safe (PPair A B) -> safe B. Proof. move => A +. apply safe_coind. sauto lqb:on. Qed. Lemma safe_suc_inv : forall a, safe (PSuc a) -> safe a. Proof. apply safe_coind. sauto lqb:on. Qed. Lemma safe_app_imp a b : ishf a -> ~~ isabs a -> ~ safe (PApp a b). Proof. case : a => //=; sfirstorder use:safe_nostuck. Qed. Lemma safe_proj_imp p a : ishf a -> ~~ ispair a -> ~ safe (PProj p a). Proof. case : a => //=; sfirstorder use:safe_nostuck. Qed. Lemma safe_ind_imp : forall Q (a : PTm) b c, ishf a -> ~~ iszero a -> ~~ issuc a -> ~ safe (PInd Q a b c). Proof. move => Q [] => //=; hauto lb:on use:safe_nostuck. Qed. Lemma safe_rred a b : RERed.R a b -> safe a -> safe b. Proof. sauto lq:on. Qed. Lemma safe_rered a b : RERed.R a b -> safe a -> safe b. Proof. qauto l:on inv:safe ctrs:safe. Qed. Lemma safe_rereds a b : rtc RERed.R a b -> safe a -> safe b. Proof. induction 1; eauto using safe_rered. Qed. Definition tm_omega := PApp (PAbs (PApp (VarPTm 0) (VarPTm 0))) (PAbs (PApp (VarPTm 0) (VarPTm 0))). Lemma safe_omega : safe tm_omega. Proof. move E : tm_omega => u. move : u E. apply safe_coind. move => a ?. subst. split => //=. move => b. inversion 1 => //=; subst; sauto q:on. Qed. Module Safe_NoForbid <: NoForbid. Definition P := @safe. Lemma P_EPar : forall (a b : PTm), EPar.R a b -> P a -> P b. Proof. move => a b /EReds.FromEPar /REReds.FromEReds. apply safe_rereds. Qed. Lemma P_RRed : forall (a b : PTm), RRed.R a b -> P a -> P b. Proof. move => a b /RERed.FromBeta. apply safe_rered. Qed. Lemma PApp_imp : forall a b, ishf a -> ~~ isabs a -> ~ P (PApp a b). apply safe_app_imp. Qed. Lemma PProj_imp : forall p a, ishf a -> ~~ ispair a -> ~ P (PProj p a). apply safe_proj_imp. Qed. Lemma PInd_imp : forall Q (a : PTm) b c, ishf a -> ~~ iszero a -> ~~ issuc a -> ~ P (PInd Q a b c). apply safe_ind_imp. Qed. Lemma P_AppInv : forall (a b : PTm), P (PApp a b) -> P a /\ P b. firstorder using safe_app_inv0, safe_app_inv1. Qed. Lemma P_PairInv : forall (a b : PTm), P (PPair a b) -> P a /\ P b. firstorder using safe_pair_inv0, safe_pair_inv1. Qed. Lemma P_ProjInv : forall p (a : PTm), P (PProj p a) -> P a. apply safe_proj_inv. Qed. Lemma P_BindInv : forall p (A : PTm) B, P (PBind p A B) -> P A /\ P B. firstorder using safe_bind_inv0, safe_bind_inv1. Qed. Lemma P_SucInv : forall (a : PTm), P (PSuc a) -> P a. apply safe_suc_inv. Qed. Lemma P_AbsInv : forall (a : PTm), P (PAbs a) -> P a. apply safe_abs_inv. Qed. Lemma P_renaming : forall (ξ : nat -> nat) a , P (ren_PTm ξ a) -> P a. substify. hauto lq:on use:safe_antisubstitution. Qed. Lemma P_IndInv : forall Q (a : PTm) b c, P (PInd Q a b c) -> P Q /\ P a /\ P b /\ P c. qauto l:on use: safe_ind_inv0, safe_ind_inv1, safe_ind_inv2, safe_ind_inv3. Qed. End Safe_NoForbid.