From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat. Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Ltac2 spec_refl () := List.iter (fun a => match a with | (i, _, _) => let h := Control.hyp i in try (specialize $h with (1 := eq_refl)) end) (Control.hyps ()). Ltac spec_refl := ltac2:(spec_refl ()). Module ERed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta A a0 a1 : R a0 a1 -> R (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 | PairEta a0 a1 : R a0 a1 -> R (PPair (PProj PL a0) (PProj PR a0)) a1 (*************** Congruence ********************) | AbsCong A a0 a1 : R a0 a1 -> R (PAbs A a0) (PAbs A a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | VarTm i : R (VarPTm i) (VarPTm i). Lemma refl n (a : PTm n) : R a a. Proof. elim : n / a; hauto lq:on ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma AppEta' n A a0 a1 (u : PTm n) : u = (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) -> R a0 a1 -> R u a1. Proof. move => ->. apply AppEta. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n A a0 a1 ha iha m ξ /=. eapply AppEta' with (A := A); eauto. by asimpl. all : qauto ctrs:R. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b / h => n. move => A a0 a1 ha iha m ρ0 ρ1 hρ /=. eapply AppEta' with (A := A); eauto. by asimpl. all : hauto lq:on ctrs:R use:morphing_up. Qed. Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. End ERed. Inductive SNe {n} : PTm n -> Prop := | N_Var i : SNe (VarPTm i) | N_App a b : SNe a -> SN b -> SNe (PApp a b) | N_Proj p a : SNe a -> SNe (PProj p a) with SN {n} : PTm n -> Prop := | N_Pair a b : SN a -> SN b -> SN (PPair a b) | N_Abs A a : SN a -> SN (PAbs A a) | N_SNe a : SNe a -> SN a | N_Exp a b : TRedSN a b -> SN b -> SN a with TRedSN {n} : PTm n -> PTm n -> Prop := | N_β A a b : SN b -> TRedSN (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a) | N_AppL a0 a1 b : TRedSN a0 a1 -> TRedSN (PApp a0 b) (PApp a1 b) | N_ProjPairL a b : SN b -> TRedSN (PProj PL (PPair a b)) a | N_ProjPairR a b : SN a -> TRedSN (PProj PR (PPair a b)) b | N_ProjCong p a b : TRedSN a b -> TRedSN (PProj p a) (PProj p b). Scheme sne_ind := Induction for SNe Sort Prop with sn_ind := Induction for SN Sort Prop with sred_ind := Induction for TRedSN Sort Prop. Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind. Check sn_mutual. Lemma ered_sn_preservation n : (forall (a : PTm n) (s : SNe a), forall b, ERed.R a b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall b, ERed.R a b -> SN b) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall c, ERed.R a c -> exists d, TRedSN c d /\ ERed.R b d). Proof. move : n. apply sn_mutual => n. - sauto lq:on. - sauto lq:on. - sauto lq:on. - move => a b ha iha hb ihb b0. inversion 1; subst. + have /iha : (ERed.R (PProj PL a0) (PProj PL b0)) by sauto lq:on. admit. + sauto lq:on. - move => A a ha iha b. inversion 1; subst. + have : ERed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)). apply ERed.AppCong; eauto using ERed.refl. sfirstorder use:ERed.renaming. move /iha. admit. + sauto lq:on. - sauto lq:on. - sauto lq:on. - move => A a b ha iha c h0. inversion h0; subst. inversion H1; subst. + exists (PApp a1 b1). split. admit. asimpl. sauto lq:on. + have {}/iha := H3 => iha. exists (subst_PTm (scons b1 VarPTm) a2). split. sauto lq:on. hauto lq:on use:ERed.morphing, ERed.refl inv:option. - sauto lq:on. - move => a b hb ihb c. elim /ERed.inv => //= _. move => p a0 a1 ha [*]. subst. elim /ERed.inv : ha => //= _. + move => a0 a2 ha [*]. subst. exists (PProj PL a1). split. admit. sauto lq:on. + sauto lq:on rew:off. - move => a b ha iha c. elim /ERed.inv => //=_. move => p a0 a1 + [*]. subst. elim /ERed.inv => //=_. + move => a0 a2 h [*]. subst. exists (PProj PR a1). split. admit. sauto lq:on. + sauto lq:on. - sauto lq:on. Admitted. Module RRed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppAbs A a b : R (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) (*************** Congruence ********************) | AbsCong A a0 a1 : R a0 a1 -> R (PAbs A a0) (PAbs A a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. End RRed. Module ERedM. Inductive R {n} (a : PTm n) : PTm n -> Prop := | refl : R a a | step b : ERed.R a b -> R a b. End ERedM. Inductive Wt {n} (Γ : fin n -> Ty) : PTm n -> Ty -> Prop := | T_Var i : Wt Γ (VarPTm i) (Γ i) | T_Abs a A B : Wt (scons A Γ) a B -> Wt Γ (PAbs A a) (Fun A B) | T_App b a A B : Wt Γ b (Fun A B) -> Wt Γ a A -> Wt Γ (PApp b a) B | T_Pair a b A B : Wt Γ a A -> Wt Γ b B -> Wt Γ (PPair a b) (Prod A B) | T_Proj p a A B : Wt Γ a (Prod A B) -> Wt Γ (PProj p a) (if p is PL then A else B). Module Wt. Lemma renaming n m (Γ : fin n -> Ty) Δ (ξ : fin n -> fin m) a A : (forall i, Γ i = Δ (ξ i)) -> Wt Γ a A -> Wt Δ (ren_PTm ξ a) A. Proof. move => + h. move : m Δ ξ. elim : n Γ a A / h; try hauto inv:option lq:on ctrs:Wt. Qed. Lemma antirenaming n m (Γ : fin n -> Ty) Δ (ξ : fin n -> fin m) a A : (forall i, Γ i = Δ (ξ i)) -> Wt Δ (ren_PTm ξ a) A -> Wt Γ a A. Proof. move E : (ren_PTm ξ a) => u + h. move : n a ξ Γ E. elim : m Δ u A / h=> n /=. - hauto q:on ctrs:Wt inv:PTm. - move => Γ a A B ha iha m []//= A0 p ξ Δ [? ?]. subst. hauto q:on inv:option ctrs:Wt. - move => Γ b a A B hb ihb ha iha m [] //=. move => p p0 ξ Δ [*]. subst. hauto lq:on rew:off ctrs:Wt. - move => Γ a b A B ha iha hb ihb m []//=. hauto lq:on ctrs:Wt. - move => Γ p a A B ha iha m []//=. move => p0 p1 ξ Δ [*]. subst. hauto lq:on rew:off ctrs:Wt. Qed. Local Lemma morphing_upren n m (Γ : fin n -> Ty) Δ (ρ : fin n -> PTm m) A : (forall i, Wt Δ (ρ i) (Γ i)) -> (forall i, Wt (scons A Δ) ((up_PTm_PTm ρ) i) ((scons A Γ) i)). Proof. sblast inv:option use:renaming. Qed. Lemma morphing n m (Γ : fin n -> Ty) Δ (ρ : fin n -> PTm m) a A: (forall i, Wt Δ (ρ i) (Γ i)) -> Wt Γ a A -> Wt Δ (subst_PTm ρ a) A. Proof. move => + h. move : m Δ ρ; elim : n Γ a A /h; hauto lq:on use:morphing_upren ctrs:Wt. Qed. Lemma substing n (Γ : fin n -> Ty) a b A B: Wt (scons B Γ) a A -> Wt Γ b B -> Wt Γ (subst_PTm (scons b VarPTm) a) A. Proof. move => h0 h1. apply : morphing; eauto. hauto lq:on ctrs:Wt inv:option. Qed. Lemma preservation_beta n Γ a b A : @Wt n Γ a A -> RRed.R a b -> Wt Γ b A. Proof. move => + h0. move : Γ A. elim : n a b /h0=> n //=; hauto lq:on inv:Wt ctrs:Wt use:substing. Qed. Lemma typing_unique n Γ a A B : @Wt n Γ a A -> Wt Γ a B -> A = B. Proof. move => h. move : B. elim : n Γ a A /h=>//=; hauto lq:on rew:off ctrs:Wt inv:Wt. Qed. Lemma preservation_eta n Γ a b A : @Wt n Γ a A -> ERed.R a b -> Wt Γ b A. Proof. move => + h0. move : Γ A. elim : n a b /h0=> n //=; try qauto inv:Wt ctrs:Wt use:substing. - move => A a Γ ξ hA. inversion hA; subst. inversion H2; subst. inversion H4; subst. apply antirenaming with (Γ := Γ) in H1; sfirstorder use:typing_unique. - move => a Γ U. inversion 1; subst. inversion H2; subst. inversion H4; subst. suff : Prod A B0 = Prod A0 B by congruence. eauto using typing_unique. - hauto lq:on inv:Wt ctrs:Wt. Qed. End Wt. Lemma eta_postponement n Γ a b c A : @Wt n Γ a A -> ERed.R a b -> RRed.R b c -> exists d, rtc RRed.R a d /\ ERed.R d c. Proof. move => + h. move : Γ c A. elim : n a b /h => //=. - move => n A a Γ c A0 hA0 ha. exists (PAbs A (PApp (ren_PTm shift c) (VarPTm var_zero))). split. admit. apply ERed.AppEta. - move => n a Γ c A ha ha0. exists (PPair (PProj PL c) (PProj PR c)). split. admit. apply ERed.PairEta. - move => n A a0 a1 ha iha Γ c A0 ha0. elim /RRed.inv => //= _. move => A1 a2 a3 ha' [*]. subst. inversion ha0; subst. move : iha H2 ha'. repeat move/[apply]. move => [d [h0 h1]]. exists (PAbs A d). split. admit. hauto lq:on ctrs:ERed.R. - move => n a0 a1 b ha iha Γ c A hab hab0. elim /RRed.inv : hab0 => //= _. move => A0 a2 b0 [*]. subst. + inversion ha; subst. * exists (subst_PTm (scons b VarPTm) a2). split. apply : rtc_l. apply RRed.AppAbs. asimpl. apply rtc_once. apply RRed.AppAbs. admit. * exfalso. move : hab. clear. hauto lq:on inv:Wt. * inversion hab; subst. exists (subst_PTm (scons b VarPTm) a1). split. apply rtc_once. apply RRed.AppAbs. admit. + move => a2 a3 b0 ha0 [*]. subst. have : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt. move => [Γ0 [A0] hA0]. move : iha hA0 ha0. repeat move /[apply]. move => [d [h0 h1]]. exists (PApp d b). split. admit. hauto lq:on ctrs:ERed.R. + move => a2 b0 b1 hb [*]. subst. sauto lq:on. - move => n a b0 b1 hb ihb Γ c A hu hu'. elim /RRed.inv : hu' => //=_. + move => A0 a0 b2 [*]. subst. move {ihb}. eexists. split. apply rtc_once. apply RRed.AppAbs. admit. + sauto lq:on. + move => a0 b2 b3 hb0 [*]. subst. have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt. move : ihb hb0. repeat move/[apply]. move => [d [h0 h1]]. exists (PApp a d). split. admit. sauto lq:on. - move => n a0 a1 b ha iha Γ u A hu. elim / RRed.inv => //= _. + move => a2 a3 b0 h [*]. subst. have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt. move : iha h. repeat move/[apply]. move => [d [h0 h1]]. exists (PPair d b). split. admit. sauto lq:on. + move => a2 b0 b1 h [*]. subst. sauto lq:on. - move => n a b0 b1 hb ihb Γ c A hu. elim / RRed.inv => //=_. move => a0 a1 b2 ha [*]. subst. + sauto lq:on. + move => a0 b2 b3 hb0 [*]. subst. have [? [? ]] : exists Γ A, @Wt n Γ b0 A by hauto lq:on inv:Wt. move : ihb hb0. repeat move/[apply]. move => [d [h0 h1]]. exists (PPair a d). split. admit. sauto lq:on. - move => n p a0 a1 ha iha Γ u A hu. elim / RRed.inv => //=_. + move => p0 a2 b0 [*]. subst. inversion ha; subst. * exfalso. move : hu. clear. hauto q:on inv:Wt. * exists (match p with | PL => a2 | PR => b0 end). split. apply : rtc_l. apply RRed.ProjPair. apply rtc_once. clear. hauto lq:on use:RRed.ProjPair. admit. * eexists. split. apply rtc_once. apply RRed.ProjPair. admit. * eexists. split. apply rtc_once. apply RRed.ProjPair. admit. + move => p0 a2 a3 ha0 [*]. subst. have [? [? ]] : exists Γ A, @Wt n Γ a0 A by hauto lq:on inv:Wt. move : iha ha0; repeat move/[apply]. move => [d [h0 h1]]. exists (PProj p d). split. admit. sauto lq:on. Admitted. (* Trying my best to not write C style module_funcname *) Module Par. Inductive R {n} : PTm n -> PTm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (PApp (PPair a0 b0) c0) (PPair (PApp a1 c1) (PApp b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (PProj p (PAbs a0)) (PAbs (PProj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (PPair (PProj PL a1) (PProj PR a1)) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | Univ i : R (PUniv i) (PUniv i) | Bot : R PBot PBot. Lemma refl n (a : PTm n) : R a a. elim : n /a; hauto ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : PTm n) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : PTm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma AppEta' n (a0 a1 b : PTm n) : b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : match goal with | [ |- context[var_zero]] => move => *; apply : AppEta'; eauto; by asimpl | _ => qauto ctrs:R use:ProjPair' end. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. eapply AppAbs' with (a1 := subst_PTm (up_PTm_PTm ρ1) a1); eauto. by asimpl. hauto l:on use:renaming inv:option. - hauto lq:on rew:off ctrs:R. - hauto l:on inv:option use:renaming ctrs:R. - hauto lq:on use:ProjPair'. - move => n a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - sfirstorder. - hauto l:on inv:option ctrs:R use:renaming. - hauto q:on ctrs:R. - qauto l:on ctrs:R. - qauto l:on ctrs:R. - hauto l:on inv:option ctrs:R use:renaming. - qauto l:on ctrs:R. - qauto l:on ctrs:R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. Proof. move E : (ren_PTm ξ a) => u h. move : n ξ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//=. move => c c0 [+ ?]. subst. case : c => //=. move => c [?]. subst. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ξ []//=. move => []//= t t0 t1 [*]. subst. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => n p a0 a1 ha iha m ξ []//= p0 []//= t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ξ []//= p0 []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [a0 [? ?]]. subst. eexists. split. apply AppEta; eauto. by asimpl. - move => n a0 a1 ha iha m ξ a ?. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply PairEta; eauto. by asimpl. - move => n i m ξ []//=. hauto l:on. - move => n a0 a1 ha iha m ξ []//= t [*]. subst. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0 [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ξ []//= t t0[*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split=>/=. by apply PairCong; eauto. done. - move => n p a0 a1 ha iha m ξ []//= p0 t [*]. subst. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. by apply ProjCong; eauto. done. - hauto q:on inv:PTm ctrs:R. - hauto q:on inv:PTm ctrs:R. - hauto q:on inv:PTm ctrs:R. Qed. End Par. Module Pars. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc Par.R a b -> rtc Par.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto lq:on ctrs:rtc use:Par.renaming. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : rtc Par.R a b -> rtc Par.R (subst_PTm ρ a) (subst_PTm ρ b). induction 1; hauto l:on ctrs:rtc use:Par.substing. Qed. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : rtc Par.R (ren_PTm ξ a) b -> exists b0, rtc Par.R a b0 /\ ren_PTm ξ b0 = b. Proof. move E :(ren_PTm ξ a) => u h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /Par.antirenaming : h0. move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:Par.R use:Par.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma ProjCong n p (a0 a1 : PTm n) : rtc Par.R a0 a1 -> rtc Par.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc Par.R a0 a1 -> rtc Par.R b0 b1 -> rtc Par.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma AbsCong n (a b : PTm (S n)) : rtc Par.R a b -> rtc Par.R (PAbs a) (PAbs b). Proof. solve_s. Qed. End Pars. Definition var_or_const {n} (a : PTm n) := match a with | VarPTm _ => true | PBot => true | _ => false end. (***************** Beta rules only ***********************) Module RPar. Inductive R {n} : PTm n -> PTm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | AppPair a0 a1 b0 b1 c0 c1: R a0 a1 -> R b0 b1 -> R c0 c1 -> R (PApp (PPair a0 b0) c0) (PPair (PApp a1 c1) (PApp b1 c1)) | ProjAbs p a0 a1 : R a0 a1 -> R (PProj p (PAbs a0)) (PAbs (PProj p a1)) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | Univ i : R (PUniv i) (PUniv i) | Bot : R PBot PBot. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma refl n (a : PTm n) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : PTm n) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : PTm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a b : PTm (S n)) c d : R a b -> R c d -> R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b). Proof. move => h0 h1. apply morphing => //=. qauto l:on ctrs:R inv:option. Qed. Lemma var_or_const_imp {n} (a b : PTm n) : var_or_const a -> a = b -> ~~ var_or_const b -> False. Proof. hauto lq:on inv:PTm. Qed. Lemma var_or_const_up n m (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> (forall i, var_or_const (up_PTm_PTm ρ i)). Proof. move => h /= [i|]. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. - sfirstorder. Qed. Local Ltac antiimp := qauto l:on use:var_or_const_imp. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> R (subst_PTm ρ a) b -> exists b0, R a b0 /\ subst_PTm ρ b0 = b. Proof. move E : (subst_PTm ρ a) => u hρ h. move : n ρ hρ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_const_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc m ρ hρ. move => []//=; first by antiimp. move => []//=; first by antiimp. move => t t0 t1 [*]. subst. have {}/iha := hρ => iha. have {}/ihb := hρ => ihb. have {}/ihc := hρ => ihc. spec_refl. move : iha => [? [*]]. move : ihb => [? [*]]. move : ihc => [? [*]]. eexists. split. apply AppPair; hauto. subst. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 []//= t [*]; first by antiimp. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n i m ρ hρ []//=. hauto l:on. - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - hauto q:on ctrs:R inv:PTm. - hauto q:on ctrs:R inv:PTm. - hauto q:on ctrs:R inv:PTm. Qed. End RPar. (***************** Beta rules only ***********************) Module RPar'. Inductive R {n} : PTm n -> PTm n -> Prop := (***************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | UnivCong i : R (PUniv i) (PUniv i) | BotCong : R PBot PBot. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma refl n (a : PTm n) : R a a. Proof. induction a; hauto lq:on ctrs:R. Qed. Lemma AppAbs' n a0 a1 (b0 b1 t : PTm n) : t = subst_PTm (scons b1 VarPTm) a1 -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) t. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p (a0 a1 b0 b1 : PTm n) t : t = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) t. Proof. move => > ->. apply ProjPair. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => *; apply : AppAbs'; eauto; by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b /h. - move => *. apply : AppAbs'; eauto using morphing_up. by asimpl. - hauto lq:on ctrs:R use:ProjPair' use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:morphing_up. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a b : PTm (S n)) c d : R a b -> R c d -> R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons d VarPTm) b). Proof. move => h0 h1. apply morphing => //=. qauto l:on ctrs:R inv:option. Qed. Lemma var_or_const_imp {n} (a b : PTm n) : var_or_const a -> a = b -> ~~ var_or_const b -> False. Proof. hauto lq:on inv:PTm. Qed. Lemma var_or_const_up n m (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> (forall i, var_or_const (up_PTm_PTm ρ i)). Proof. move => h /= [i|]. - asimpl. move /(_ i) in h. rewrite /funcomp. move : (ρ i) h. case => //=. - sfirstorder. Qed. Local Ltac antiimp := qauto l:on use:var_or_const_imp. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> R (subst_PTm ρ a) b -> exists b0, R a b0 /\ subst_PTm ρ b0 = b. Proof. move E : (subst_PTm ρ a) => u hρ h. move : n ρ hρ a E. elim : m u b/h. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => c c0 [+ ?]. subst. case : c => //=; first by antiimp. move => c [?]. subst. spec_refl. have /var_or_const_up hρ' := hρ. move : iha hρ' => /[apply] iha. move : ihb hρ => /[apply] ihb. spec_refl. move : iha => [c1][ih0]?. subst. move : ihb => [c2][ih1]?. subst. eexists. split. apply AppAbs; eauto. by asimpl. - move => n p a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => p0 []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. move : ihb => [c0 [? ?]]. subst. eexists. split. by eauto using ProjPair. hauto q:on. - move => n i m ρ hρ []//=. hauto l:on. - move => n a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => t [*]. subst. have /var_or_const_up {}/iha := hρ => iha. spec_refl. move :iha => [b0 [? ?]]. subst. eexists. split. by apply AbsCong; eauto. by asimpl. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0 [*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply AppCong; eauto. done. - move => n a0 a1 b0 b1 ha iha hb ihb m ρ hρ []//=; first by antiimp. move => t t0[*]. subst. have {}/iha := (hρ) => iha. have {}/ihb := (hρ) => ihb. spec_refl. move : iha => [b0 [? ?]]. subst. move : ihb => [c0 [? ?]]. subst. eexists. split. by apply PairCong; eauto. by asimpl. - move => n p a0 a1 ha iha m ρ hρ []//=; first by antiimp. move => p0 t [*]. subst. have {}/iha := (hρ) => iha. spec_refl. move : iha => [b0 [? ?]]. subst. eexists. split. apply ProjCong; eauto. reflexivity. - hauto q:on ctrs:R inv:PTm. - move => n i n0 ρ hρ []//=; first by antiimp. hauto l:on. - hauto q:on inv:PTm ctrs:R. Qed. End RPar'. Module EReds. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:ERed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc ERed.R a b -> rtc ERed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. End EReds. Module EPar. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R a0 (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) | PairEta a0 a1 : R a0 a1 -> R a0 (PPair (PProj PL a1) (PProj PR a1)) (*************** Congruence ********************) | Var i : R (VarPTm i) (VarPTm i) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | ConstCong k : R (PConst k) (PConst k) | UnivCong i : R (PUniv i) (PUniv i) | BotCong : R PBot PBot. Lemma refl n (a : PTm n) : EPar.R a a. Proof. induction a; hauto lq:on ctrs:EPar.R. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a0 a1 ha iha m ξ /=. move /(_ _ ξ) /AppEta : iha. by asimpl. all : qauto ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma AppEta' n (a0 a1 b : PTm n) : b = (PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) -> R a0 a1 -> R a0 b. Proof. move => ->; apply AppEta. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => h. move : m ρ0 ρ1. elim : n a b / h => n. - move => a0 a1 ha iha m ρ0 ρ1 hρ /=. apply : AppEta'; eauto. by asimpl. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto q:on ctrs:R. - hauto l:on ctrs:R use:renaming inv:option. - hauto lq:on ctrs:R. - hauto lq:on ctrs:R. Qed. Lemma substing n a0 a1 (b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1). Proof. move => h0 h1. apply morphing => //. hauto lq:on ctrs:R inv:option. Qed. End EPar. Module OExp. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta a : R a (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) | PairEta a : R a (PPair (PProj PL a) (PProj PR a)). Lemma merge n (t a b : PTm n) : rtc R a b -> EPar.R t a -> EPar.R t b. Proof. move => h. move : t. elim : a b /h. - eauto using EPar.refl. - hauto q:on ctrs:EPar.R inv:R. Qed. Lemma commutativity n (a b c : PTm n) : EPar.R a b -> R a c -> exists d, R b d /\ EPar.R c d. Proof. move => h. inversion 1; subst. - hauto q:on ctrs:EPar.R, R use:EPar.renaming, EPar.refl. - hauto lq:on ctrs:EPar.R, R. Qed. Lemma commutativity0 n (a b c : PTm n) : EPar.R a b -> rtc R a c -> exists d, rtc R b d /\ EPar.R c d. Proof. move => + h. move : b. elim : a c / h. - sfirstorder. - hauto lq:on rew:off ctrs:rtc use:commutativity. Qed. End OExp. Local Ltac com_helper := split; [hauto lq:on ctrs:RPar.R use: RPar.refl, RPar.renaming |hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming]. Module RPars. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar.R use:RPar.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc RPar.R a b -> rtc RPar.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc RPar.R a0 a1 -> rtc RPar.R b0 b1 -> rtc RPar.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc RPar.R a0 a1 -> rtc RPar.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : PTm n) m (ξ : fin n -> fin m) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar.renaming, rtc_l. Qed. Lemma weakening n (a0 a1 : PTm n) : rtc RPar.R a0 a1 -> rtc RPar.R (ren_PTm shift a0) (ren_PTm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv n (a : PTm (S n)) b : rtc RPar.R (PAbs a) b -> exists a', b = PAbs a' /\ rtc RPar.R a a'. Proof. move E : (PAbs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar.R, rtc. Qed. Lemma morphing n m (a b : PTm n) (ρ : fin n -> PTm m) : rtc RPar.R a b -> rtc RPar.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar.substing. Qed. Lemma substing n (a b : PTm (S n)) c : rtc RPar.R a b -> rtc RPar.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> rtc RPar.R (subst_PTm ρ a) b -> exists b0, rtc RPar.R a b0 /\ subst_PTm ρ b0 = b. Proof. move E :(subst_PTm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars. Module RPars'. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RPar'.R use:RPar'.refl. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc RPar'.R a b -> rtc RPar'.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R b0 b1 -> rtc RPar'.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : PTm n) m (ξ : fin n -> fin m) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using RPar'.renaming, rtc_l. Qed. Lemma weakening n (a0 a1 : PTm n) : rtc RPar'.R a0 a1 -> rtc RPar'.R (ren_PTm shift a0) (ren_PTm shift a1). Proof. apply renaming. Qed. Lemma Abs_inv n (a : PTm (S n)) b : rtc RPar'.R (PAbs a) b -> exists a', b = PAbs a' /\ rtc RPar'.R a a'. Proof. move E : (PAbs a) => b0 h. move : a E. elim : b0 b / h. - hauto lq:on ctrs:rtc. - hauto lq:on ctrs:rtc inv:RPar'.R, rtc. Qed. Lemma morphing n m (a b : PTm n) (ρ : fin n -> PTm m) : rtc RPar'.R a b -> rtc RPar'.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; qauto l:on ctrs:rtc use:RPar'.substing. Qed. Lemma substing n (a b : PTm (S n)) c : rtc RPar'.R a b -> rtc RPar'.R (subst_PTm (scons c VarPTm) a) (subst_PTm (scons c VarPTm) b). Proof. hauto lq:on use:morphing inv:option. Qed. Lemma antirenaming n m (a : PTm n) (b : PTm m) (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> rtc RPar'.R (subst_PTm ρ a) b -> exists b0, rtc RPar'.R a b0 /\ subst_PTm ρ b0 = b. Proof. move E :(subst_PTm ρ a) => u hρ h. move : a E. elim : u b /h. - sfirstorder. - move => a b c h0 h1 ih1 a0 ?. subst. move /RPar'.antirenaming : h0. move /(_ hρ). move => [b0 [h2 ?]]. subst. hauto lq:on rew:off ctrs:rtc. Qed. End RPars'. Lemma Abs_EPar n a (b : PTm n) : EPar.R (PAbs a) b -> (exists d, EPar.R a d /\ rtc RPar.R (PApp (ren_PTm shift b) (VarPTm var_zero)) d) /\ (exists d, EPar.R a d /\ forall p, rtc RPar.R (PProj p b) (PAbs (PProj p d))). Proof. move E : (PAbs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha b ?. subst. specialize iha with (1 := eq_refl). move : iha => [[d [ih0 ih1]] _]. split; exists d. + split => //. apply : rtc_l. apply RPar.AppAbs; eauto => //=. apply RPar.refl. by apply RPar.refl. move :ih1; substify; by asimpl. + split => // p. apply : rtc_l. apply : RPar.ProjAbs. by apply RPar.refl. eauto using RPars.ProjCong, RPars.AbsCong. - move => n ? a1 ha iha a0 ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d [ih0 ih1]]]. split. + exists (PPair (PProj PL d) (PProj PR d)). split; first by apply EPar.PairEta. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. suff h : forall p, rtc RPar.R (PApp (PProj p (ren_PTm shift a1)) (VarPTm var_zero)) (PProj p d) by sfirstorder use:RPars.PairCong. move => p. move /(_ p) /RPars.weakening in ih1. apply relations.rtc_transitive with (y := PApp (ren_PTm shift (PAbs (PProj p d))) (VarPTm var_zero)). by eauto using RPars.AppCong, rtc_refl. apply relations.rtc_once => /=. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists d. repeat split => //. move => p. apply : rtc_l; eauto. hauto q:on use:RPar.ProjPair', RPar.refl. - move => n a0 a1 ha _ ? [*]. subst. split. + exists a1. split => //. apply rtc_once. apply : RPar.AppAbs'; eauto using RPar.refl. by asimpl. + exists a1. split => // p. apply rtc_once. apply : RPar.ProjAbs; eauto using RPar.refl. Qed. Lemma Pair_EPar n (a b c : PTm n) : EPar.R (PPair a b) c -> (forall p, exists d, rtc RPar.R (PProj p c) d /\ EPar.R (if p is PL then a else b) d) /\ (exists d0 d1, rtc RPar.R (PApp (ren_PTm shift c) (VarPTm var_zero)) (PPair (PApp (ren_PTm shift d0) (VarPTm var_zero))(PApp (ren_PTm shift d1) (VarPTm var_zero))) /\ EPar.R a d0 /\ EPar.R b d1). Proof. move E : (PPair a b) => u h. move : a b E. elim : n u c /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). move : iha => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. split. + move => p. exists (PAbs (PApp (ren_PTm shift (if p is PL then d0 else d1)) (VarPTm var_zero))). split. * apply : relations.rtc_transitive. ** apply RPars.ProjCong. apply RPars.AbsCong. eassumption. ** apply : rtc_l. apply RPar.ProjAbs; eauto using RPar.refl. apply RPars.AbsCong. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. hauto l:on. * hauto lq:on use:EPar.AppEta'. + exists d0, d1. repeat split => //. apply : rtc_l. apply : RPar.AppAbs'; eauto using RPar.refl => //=. by asimpl; renamify. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). split => [p|]. + move : iha => [/(_ p) [d [ih0 ih1]] _]. exists d. split=>//. apply : rtc_l. apply RPar.ProjPair; eauto using RPar.refl. set q := (X in rtc RPar.R X d). by have -> : q = PProj p a1 by hauto lq:on. + move :iha => [iha _]. move : (iha PL) => [d0 [ih0 ih0']]. move : (iha PR) => [d1 [ih1 ih1']] {iha}. exists d0, d1. apply RPars.weakening in ih0, ih1. repeat split => //=. apply : rtc_l. apply RPar.AppPair; eauto using RPar.refl. apply RPars.PairCong; apply RPars.AppCong; eauto using rtc_refl. - move => n a0 a1 b0 b1 ha _ hb _ a b [*]. subst. split. + move => p. exists (if p is PL then a1 else b1). split. * apply rtc_once. apply : RPar.ProjPair'; eauto using RPar.refl. * hauto lq:on rew:off. + exists a1, b1. split. apply rtc_once. apply RPar.AppPair; eauto using RPar.refl. split => //. Qed. Lemma commutativity0 n (a b0 b1 : PTm n) : EPar.R a b0 -> RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => h. move : b1. elim : n a b0 / h. - move => n a b0 ha iha b1 hb. move : iha (hb) => /[apply]. move => [c [ih0 ih1]]. exists (PAbs (PApp (ren_PTm shift c) (VarPTm var_zero))). split. + hauto lq:on ctrs:rtc use:RPars.AbsCong, RPars.AppCong, RPars.renaming. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - move => n a b0 hb0 ihb0 b1 /[dup] hb1 {}/ihb0. move => [c [ih0 ih1]]. exists (PPair (PProj PL c) (PProj PR c)). split. + apply RPars.PairCong; by apply RPars.ProjCong. + hauto lq:on ctrs:EPar.R use:EPar.refl, EPar.renaming. - hauto l:on ctrs:rtc inv:RPar.R. - move => n a0 a1 h ih b1. elim /RPar.inv => //= _. move => a2 a3 ? [*]. subst. hauto lq:on ctrs:rtc, RPar.R, EPar.R use:RPars.AbsCong. - move => n a0 a1 b0 b1 ha iha hb ihb b2. elim /RPar.inv => //= _. + move => a2 a3 b3 b4 h0 h1 [*]. subst. move /(_ _ ltac:(by eauto)) : ihb => [b [ihb0 ihb1]]. have {}/iha : RPar.R (PAbs a2) (PAbs a3) by hauto lq:on ctrs:RPar.R. move => [c [ih0 /Abs_EPar [[d [ih1 ih2]] _]]]. exists (subst_PTm (scons b VarPTm) d). split. (* By substitution *) * move /RPars.substing : ih2. move /(_ b). asimpl. eauto using relations.rtc_transitive, RPars.AppCong. (* By EPar morphing *) * by apply EPar.substing. + move => a2 a3 b3 b4 c0 c1 h0 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : iha => [c [ihc0 ihc1]]. move /(_ _ ltac:(by eauto)) : ihb => [d [ihd0 ihd1]]. move /Pair_EPar : ihc1 => [_ [d0 [d1 [ih0 [ih1 ih2]]]]]. move /RPars.substing : ih0. move /(_ d). asimpl => h. exists (PPair (PApp d0 d) (PApp d1 d)). split. hauto lq:on use:relations.rtc_transitive, RPars.AppCong. apply EPar.PairCong; by apply EPar.AppCong. + hauto lq:on ctrs:EPar.R use:RPars.AppCong. - hauto lq:on ctrs:EPar.R inv:RPar.R use:RPars.PairCong. - move => n p a b0 h0 ih0 b1. elim /RPar.inv => //= _. + move => ? a0 a1 h [*]. subst. move /(_ _ ltac:(by eauto using RPar.AbsCong)) : ih0 => [c [ih0 ih1]]. move /Abs_EPar : ih1 => [_ [d [ih1 ih2]]]. exists (PAbs (PProj p d)). qauto l:on ctrs:EPar.R use:RPars.ProjCong, @relations.rtc_transitive. + move => p0 a0 a1 b2 b3 h1 h2 [*]. subst. move /(_ _ ltac:(by eauto using RPar.PairCong)) : ih0 => [c [ih0 ih1]]. move /Pair_EPar : ih1 => [/(_ p)[d [ihd ihd']] _]. exists d. split => //. hauto lq:on use:RPars.ProjCong, relations.rtc_transitive. + hauto lq:on ctrs:EPar.R use:RPars.ProjCong. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. - hauto l:on ctrs:EPar.R inv:RPar.R. Qed. Lemma commutativity1 n (a b0 b1 : PTm n) : EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ EPar.R b1 c. Proof. move => + h. move : b0. elim : a b1 / h. - sfirstorder. - qauto l:on use:relations.rtc_transitive, commutativity0. Qed. Lemma commutativity n (a b0 b1 : PTm n) : rtc EPar.R a b0 -> rtc RPar.R a b1 -> exists c, rtc RPar.R b0 c /\ rtc EPar.R b1 c. move => h. move : b1. elim : a b0 /h. - sfirstorder. - move => a0 a1 a2 + ha1 ih b1 +. move : commutativity1; repeat move/[apply]. hauto q:on ctrs:rtc. Qed. Lemma Abs_EPar' n a (b : PTm n) : EPar.R (PAbs a) b -> (exists d, EPar.R a d /\ rtc OExp.R (PAbs d) b). Proof. move E : (PAbs a) => u h. move : a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Proj_EPar' n p a (b : PTm n) : EPar.R (PProj p a) b -> (exists d, EPar.R a d /\ rtc OExp.R (PProj p d) b). Proof. move E : (PProj p a) => u h. move : p a E. elim : n u b /h => //=. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a p ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma App_EPar' n (a b u : PTm n) : EPar.R (PApp a b) u -> (exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (PApp a0 b0) u). Proof. move E : (PApp a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Pair_EPar' n (a b u : PTm n) : EPar.R (PPair a b) u -> exists a0 b0, EPar.R a a0 /\ EPar.R b b0 /\ rtc OExp.R (PPair a0 b0) u. Proof. move E : (PPair a b) => t h. move : a b E. elim : n t u /h => //=. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 ha iha a b ?. subst. specialize iha with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Const_EPar' n k (u : PTm n) : EPar.R (PConst k) u -> rtc OExp.R (PConst k) u. move E : (PConst k) => t h. move : k E. elim : n t u /h => //=. - move => n a0 a1 h ih k ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih k ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Bot_EPar' n (u : PTm n) : EPar.R (PBot) u -> rtc OExp.R (PBot) u. move E : (PBot) => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma Univ_EPar' n i (u : PTm n) : EPar.R (PUniv i) u -> rtc OExp.R (PUniv i) u. move E : (PUniv i) => t h. move : E. elim : n t u /h => //=. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - move => n a0 a1 h ih ?. subst. specialize ih with (1 := eq_refl). hauto lq:on ctrs:OExp.R use:rtc_r. - hauto l:on ctrs:OExp.R. Qed. Lemma EPar_diamond n (c a1 b1 : PTm n) : EPar.R c a1 -> EPar.R c b1 -> exists d2, EPar.R a1 d2 /\ EPar.R b1 d2. Proof. move => h. move : b1. elim : n c a1 / h. - move => n c a1 ha iha b1 /iha [d2 [hd0 hd1]]. exists(PAbs (PApp (ren_PTm shift d2) (VarPTm var_zero))). hauto lq:on ctrs:EPar.R use:EPar.renaming. - hauto lq:on rew:off ctrs:EPar.R. - hauto lq:on use:EPar.refl. - move => n a0 a1 ha iha a2. move /Abs_EPar' => [d [hd0 hd1]]. move : iha hd0; repeat move/[apply]. move => [d2 [h0 h1]]. have : EPar.R (PAbs d) (PAbs d2) by eauto using EPar.AbsCong. move : OExp.commutativity0 hd1; repeat move/[apply]. move => [d1 [hd1 hd2]]. exists d1. hauto lq:on ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /App_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (PApp a2 b2)(PApp a3 b3) by hauto l:on use:EPar.AppCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n a0 a1 b0 b1 ha iha hb ihb c. move /Pair_EPar' => [a2][b2][/iha [a3 h0]][/ihb [b3 h1]]h2 {iha ihb}. have : EPar.R (PPair a2 b2)(PPair a3 b3) by hauto l:on use:EPar.PairCong. move : OExp.commutativity0 h2; repeat move/[apply]. move => [d h]. exists d. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - move => n p a0 a1 ha iha b. move /Proj_EPar' => [d [/iha [d2 h] h1]] {iha}. have : EPar.R (PProj p d) (PProj p d2) by hauto l:on use:EPar.ProjCong. move : OExp.commutativity0 h1; repeat move/[apply]. move => [d1 h1]. exists d1. hauto lq:on rew:off ctrs:EPar.R use:OExp.merge. - qauto use:Const_EPar', EPar.refl. - qauto use:Univ_EPar', EPar.refl. - qauto use:Bot_EPar', EPar.refl. Qed. Function tstar {n} (a : PTm n) := match a with | VarPTm i => a | PAbs a => PAbs (tstar a) | PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a) | PApp (PPair a b) c => PPair (PApp (tstar a) (tstar c)) (PApp (tstar b) (tstar c)) | PApp a b => PApp (tstar a) (tstar b) | PPair a b => PPair (tstar a) (tstar b) | PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b) | PProj p (PAbs a) => (PAbs (PProj p (tstar a))) | PProj p a => PProj p (tstar a) | PConst k => PConst k | PUniv i => PUniv i | PBot => PBot end. Lemma RPar_triangle n (a : PTm n) : forall b, RPar.R a b -> RPar.R b (tstar a). Proof. apply tstar_ind => {n a}. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on use:RPar.cong, RPar.refl ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off ctrs:RPar.R inv:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto lq:on rew:off inv:RPar.R ctrs:RPar.R. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto drew:off inv:RPar.R use:RPar.refl, RPar.ProjPair'. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. - hauto lq:on inv:RPar.R ctrs:RPar.R. Qed. Function tstar' {n} (a : PTm n) := match a with | VarPTm i => a | PAbs a => PAbs (tstar' a) | PApp (PAbs a) b => subst_PTm (scons (tstar' b) VarPTm) (tstar' a) | PApp a b => PApp (tstar' a) (tstar' b) | PPair a b => PPair (tstar' a) (tstar' b) | PProj p (PPair a b) => if p is PL then (tstar' a) else (tstar' b) | PProj p a => PProj p (tstar' a) | PConst k => PConst k | PUniv i => PUniv i | PBot => PBot end. Lemma RPar'_triangle n (a : PTm n) : forall b, RPar'.R a b -> RPar'.R b (tstar' a). Proof. apply tstar'_ind => {n a}. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on use:RPar'.cong, RPar'.refl ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off ctrs:RPar'.R inv:RPar'.R. - hauto lq:on rew:off inv:RPar'.R ctrs:RPar'.R. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto drew:off inv:RPar'.R use:RPar'.refl, RPar'.ProjPair'. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. - hauto lq:on inv:RPar'.R ctrs:RPar'.R. Qed. Lemma RPar_diamond n (c a1 b1 : PTm n) : RPar.R c a1 -> RPar.R c b1 -> exists d2, RPar.R a1 d2 /\ RPar.R b1 d2. Proof. hauto l:on use:RPar_triangle. Qed. Lemma RPar'_diamond n (c a1 b1 : PTm n) : RPar'.R c a1 -> RPar'.R c b1 -> exists d2, RPar'.R a1 d2 /\ RPar'.R b1 d2. Proof. hauto l:on use:RPar'_triangle. Qed. Lemma RPar_confluent n (c a1 b1 : PTm n) : rtc RPar.R c a1 -> rtc RPar.R c b1 -> exists d2, rtc RPar.R a1 d2 /\ rtc RPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, RPar_diamond. Qed. Lemma RPar'_confluent n (c a1 b1 : PTm n) : rtc RPar'.R c a1 -> rtc RPar'.R c b1 -> exists d2, rtc RPar'.R a1 d2 /\ rtc RPar'.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, RPar'_diamond. Qed. Lemma EPar_confluent n (c a1 b1 : PTm n) : rtc EPar.R c a1 -> rtc EPar.R c b1 -> exists d2, rtc EPar.R a1 d2 /\ rtc EPar.R b1 d2. Proof. sfirstorder use:relations.diamond_confluent, EPar_diamond. Qed. Inductive prov {n} : PTm n -> PTm n -> Prop := | P_Abs h a : (forall b, prov h (subst_PTm (scons b VarPTm) a)) -> prov h (PAbs a) | P_App h a b : prov h a -> prov h (PApp a b) | P_Pair h a b : prov h a -> prov h b -> prov h (PPair a b) | P_Proj h p a : prov h a -> prov h (PProj p a) | P_Const k : prov (PConst k) (PConst k) | P_Var i : prov (VarPTm i) (VarPTm i) | P_Univ i : prov (PUniv i) (PUniv i) | P_Bot : prov PBot PBot. Lemma ERed_EPar n (a b : PTm n) : ERed.R a b -> EPar.R a b. Proof. induction 1; hauto lq:on ctrs:EPar.R use:EPar.refl. Qed. Lemma EPar_ERed n (a b : PTm n) : EPar.R a b -> rtc ERed.R a b. Proof. move => h. elim : n a b /h. - eauto using rtc_r, ERed.AppEta. - eauto using rtc_r, ERed.PairEta. - auto using rtc_refl. - eauto using EReds.AbsCong. - eauto using EReds.AppCong. - eauto using EReds.PairCong. - eauto using EReds.ProjCong. - auto using rtc_refl. - auto using rtc_refl. - auto using rtc_refl. Qed. Lemma EPar_Par n (a b : PTm n) : EPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; qauto ctrs:Par.R. Qed. Lemma RPar_Par n (a b : PTm n) : RPar.R a b -> Par.R a b. Proof. move => h. elim : n a b /h; hauto lq:on ctrs:Par.R. Qed. Lemma rtc_idem n (R : PTm n -> PTm n -> Prop) (a b : PTm n) : rtc (rtc R) a b -> rtc R a b. Proof. induction 1; hauto l:on use:@relations.rtc_transitive, @rtc_r. Qed. Lemma EPars_EReds {n} (a b : PTm n) : rtc EPar.R a b <-> rtc ERed.R a b. Proof. sfirstorder use:@relations.rtc_subrel, EPar_ERed, rtc_idem, ERed_EPar. Qed. Lemma prov_rpar n (u : PTm n) a b : prov u a -> RPar.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. (* - qauto l:on ctrs:prov inv:RPar.R use:@rtc_r, RPar_Par. *) - hauto lq:on ctrs:prov inv:RPar.R use:RPar.substing. - move => h a b ha iha b0. elim /RPar.inv => //= _. + move => a0 a1 b1 b2 h0 h1 [*]. subst. have {}iha : prov h (PAbs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov use:RPar.substing. + move => a0 a1 b1 b2 c0 c1. move => h0 h1 h2 [*]. subst. have {}iha : prov h (PPair a1 b2) by hauto lq:on ctrs:RPar.R. hauto lq:on inv:prov ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - move => h p a ha iha b. elim /RPar.inv => //= _. + move => p0 a0 a1 h0 [*]. subst. have {iha} : prov h (PAbs a1) by hauto lq:on ctrs:RPar.R. hauto lq:on ctrs:prov inv:prov use:RPar.substing. + move => p0 a0 a1 b0 b1 h0 h1 [*]. subst. have {iha} : prov h (PPair a1 b1) by hauto lq:on ctrs:RPar.R. qauto l:on inv:prov. + hauto lq:on ctrs:prov. - hauto lq:on ctrs:prov inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. - hauto l:on ctrs:RPar.R inv:RPar.R. Qed. Lemma prov_lam n (u : PTm n) a : prov u a <-> prov u (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))). Proof. split. move => h. constructor. move => b. asimpl. by constructor. inversion 1; subst. specialize H2 with (b := PBot). move : H2. asimpl. inversion 1; subst. done. Qed. Lemma prov_pair n (u : PTm n) a : prov u a <-> prov u (PPair (PProj PL a) (PProj PR a)). Proof. hauto lq:on inv:prov ctrs:prov. Qed. Lemma prov_ered n (u : PTm n) a b : prov u a -> ERed.R a b -> prov u b. Proof. move => h. move : b. elim : u a / h. - move => h a ha iha b. elim /ERed.inv => // _. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov use:ERed.substing. - hauto lq:on inv:ERed.R, prov ctrs:prov. - move => h a b ha iha hb ihb b0. elim /ERed.inv => //_. + move => a0 *. subst. rewrite -prov_lam. by constructor. + move => a0 *. subst. rewrite -prov_pair. by constructor. + hauto lq:on ctrs:prov. + hauto lq:on ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. - hauto lq:on inv:ERed.R, prov ctrs:prov. Qed. Lemma prov_ereds n (u : PTm n) a b : prov u a -> rtc ERed.R a b -> prov u b. Proof. induction 2; sfirstorder use:prov_ered. Qed. Fixpoint extract {n} (a : PTm n) : PTm n := match a with | PAbs a => subst_PTm (scons PBot VarPTm) (extract a) | PApp a b => extract a | PPair a b => extract a | PProj p a => extract a | PConst k => PConst k | VarPTm i => VarPTm i | PUniv i => PUniv i | PBot => PBot end. Lemma ren_extract n m (a : PTm n) (ξ : fin n -> fin m) : extract (ren_PTm ξ a) = ren_PTm ξ (extract a). Proof. move : m ξ. elim : n/a. - sfirstorder. - move => n a ih m ξ /=. rewrite ih. by asimpl. - hauto q:on. - hauto q:on. - hauto q:on. - hauto q:on. - sfirstorder. - sfirstorder. Qed. Lemma ren_morphing n m (a : PTm n) (ρ : fin n -> PTm m) : (forall i, ρ i = extract (ρ i)) -> extract (subst_PTm ρ a) = subst_PTm ρ (extract a). Proof. move : m ρ. elim : n /a => n //=. move => a ha m ρ hi. rewrite ha. - destruct i as [i|] => //. rewrite ren_extract. rewrite -hi. by asimpl. - by asimpl. Qed. Lemma ren_subst_bot n (a : PTm (S n)) : extract (subst_PTm (scons PBot VarPTm) a) = subst_PTm (scons PBot VarPTm) (extract a). Proof. apply ren_morphing. destruct i as [i|] => //=. Qed. Definition prov_extract_spec {n} u (a : PTm n) := match u with | PUniv i => extract a = PUniv i | VarPTm i => extract a = VarPTm i | (PConst i) => extract a = (PConst i) | PBot => extract a = PBot | _ => True end. Lemma prov_extract n u (a : PTm n) : prov u a -> prov_extract_spec u a. Proof. move => h. elim : u a /h. - move => h a ha ih. case : h ha ih => //=. + move => i ha ih. move /(_ PBot) in ih. rewrite -ih. by rewrite ren_subst_bot. + move => p _ /(_ PBot). by rewrite ren_subst_bot. + move => i h /(_ PBot). by rewrite ren_subst_bot => ->. + move /(_ PBot). move => h /(_ PBot). by rewrite ren_subst_bot. - hauto lq:on. - hauto lq:on. - hauto lq:on. - case => //=. - sfirstorder. - sfirstorder. - sfirstorder. Qed. Definition union {A : Type} (R0 R1 : A -> A -> Prop) a b := R0 a b \/ R1 a b. Module ERPar. Definition R {n} (a b : PTm n) := union RPar.R EPar.R a b. Lemma RPar {n} (a b : PTm n) : RPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma EPar {n} (a b : PTm n) : EPar.R a b -> R a b. Proof. sfirstorder. Qed. Lemma refl {n} ( a : PTm n) : ERPar.R a a. Proof. sfirstorder use:RPar.refl, EPar.refl. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : R a0 a1 -> rtc R (PProj p a0) (PProj p a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.ProjCong. - move => h. apply rtc_once. right. by apply EPar.ProjCong. Qed. Lemma AbsCong n (a0 a1 : PTm (S n)) : R a0 a1 -> rtc R (PAbs a0) (PAbs a1). Proof. move => []. - move => h. apply rtc_once. left. by apply RPar.AbsCong. - move => h. apply rtc_once. right. by apply EPar.AbsCong. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> rtc R (PApp a0 b0) (PApp a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.AppCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.AppCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.AppCong, EPar.refl. - sfirstorder use:EPar.AppCong, @rtc_once. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> rtc R (PPair a0 b0) (PPair a1 b1). Proof. move => [] + []. - sfirstorder use:RPar.PairCong, @rtc_once. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - move => h0 h1. apply : rtc_l. left. apply RPar.PairCong; eauto; apply RPar.refl. apply rtc_once. hauto l:on use:EPar.PairCong, EPar.refl. - sfirstorder use:EPar.PairCong, @rtc_once. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. sfirstorder use:EPar.renaming, RPar.renaming. Qed. End ERPar. Hint Resolve ERPar.AppCong ERPar.refl ERPar.AbsCong ERPar.PairCong ERPar.ProjCong : erpar. Module ERPars. #[local]Ltac solve_s_rec := move => *; eapply relations.rtc_transitive; eauto; hauto lq:on db:erpar. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma AbsCong n (a0 a1 : PTm (S n)) : rtc ERPar.R a0 a1 -> rtc ERPar.R (PAbs a0) (PAbs a1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R b0 b1 -> rtc ERPar.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc ERPar.R a0 a1 -> rtc ERPar.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma renaming n (a0 a1 : PTm n) m (ξ : fin n -> fin m) : rtc ERPar.R a0 a1 -> rtc ERPar.R (ren_PTm ξ a0) (ren_PTm ξ a1). Proof. induction 1. - apply rtc_refl. - eauto using ERPar.renaming, rtc_l. Qed. End ERPars. Lemma ERPar_Par n (a b : PTm n) : ERPar.R a b -> Par.R a b. Proof. sfirstorder use:EPar_Par, RPar_Par. Qed. Lemma Par_ERPar n (a b : PTm n) : Par.R a b -> rtc ERPar.R a b. Proof. move => h. elim : n a b /h. - move => n a0 a1 b0 b1 ha iha hb ihb. suff ? : rtc ERPar.R (PApp (PAbs a0) b0) (PApp (PAbs a1) b1). apply : relations.rtc_transitive; eauto. apply rtc_once. apply ERPar.RPar. by apply RPar.AppAbs; eauto using RPar.refl. eauto using ERPars.AppCong,ERPars.AbsCong. - move => n a0 a1 b0 b1 c0 c1 ha iha hb ihb hc ihc. apply : rtc_l. apply ERPar.RPar. apply RPar.AppPair; eauto using RPar.refl. sfirstorder use:ERPars.AppCong, ERPars.PairCong. - move => n p a0 a1 ha iha. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjAbs; eauto using RPar.refl. sfirstorder use:ERPars.AbsCong, ERPars.ProjCong. - move => n p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_l. apply ERPar.RPar. apply RPar.ProjPair; eauto using RPar.refl. hauto lq:on. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.AppEta; eauto using EPar.refl. hauto lq:on ctrs:rtc use:ERPars.AppCong, ERPars.AbsCong, ERPars.renaming. - move => n a0 a1 ha iha. apply : rtc_l. apply ERPar.EPar. apply EPar.PairEta; eauto using EPar.refl. sfirstorder use:ERPars.PairCong, ERPars.ProjCong. - sfirstorder. - sfirstorder use:ERPars.AbsCong. - sfirstorder use:ERPars.AppCong. - sfirstorder use:ERPars.PairCong. - sfirstorder use:ERPars.ProjCong. - sfirstorder. - sfirstorder. - sfirstorder. Qed. Lemma Pars_ERPar n (a b : PTm n) : rtc Par.R a b -> rtc ERPar.R a b. Proof. induction 1; hauto l:on use:Par_ERPar, @relations.rtc_transitive. Qed. Lemma Par_ERPar_iff n (a b : PTm n) : rtc Par.R a b <-> rtc ERPar.R a b. Proof. split. sfirstorder use:Pars_ERPar, @relations.rtc_subrel. sfirstorder use:ERPar_Par, @relations.rtc_subrel. Qed. Lemma RPar_ERPar n (a b : PTm n) : rtc RPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Lemma EPar_ERPar n (a b : PTm n) : rtc EPar.R a b -> rtc ERPar.R a b. Proof. sfirstorder use:@relations.rtc_subrel. Qed. Module Type HindleyRosen. Parameter A : nat -> Type. Parameter R0 R1 : forall n, A n -> A n -> Prop. Axiom diamond_R0 : forall n, relations.diamond (R0 n). Axiom diamond_R1 : forall n, relations.diamond (R1 n). Axiom commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. End HindleyRosen. Module HindleyRosenFacts (M : HindleyRosen). Import M. Lemma R0_comm : forall n a b c, R0 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R0 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : diamond_R0 h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma R1_comm : forall n a b c, R1 n a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ R1 n c d. Proof. move => n a + c + h. elim : a c /h. - sfirstorder. - move => a0 a1 a2 ha ha0 ih b h. case : ha. + move : commutativity h; repeat move/[apply]. hauto lq:on ctrs:rtc. + move : diamond_R1 h; repeat move/[apply]. hauto lq:on ctrs:rtc. Qed. Lemma U_comm : forall n a b c, (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ (union (R0 n) (R1 n)) c d. Proof. hauto lq:on use:R0_comm, R1_comm. Qed. Lemma U_comms : forall n a b c, rtc (union (R0 n) (R1 n)) a b -> rtc (union (R0 n) (R1 n)) a c -> exists d, rtc (union (R0 n) (R1 n)) b d /\ rtc (union (R0 n) (R1 n)) c d. Proof. move => n a b + h. elim : a b /h. - sfirstorder. - hecrush ctrs:rtc use:U_comm. Qed. End HindleyRosenFacts. Module HindleyRosenER <: HindleyRosen. Definition A := PTm. Definition R0 n := rtc (@RPar.R n). Definition R1 n := rtc (@EPar.R n). Lemma diamond_R0 : forall n, relations.diamond (R0 n). sfirstorder use:RPar_confluent. Qed. Lemma diamond_R1 : forall n, relations.diamond (R1 n). sfirstorder use:EPar_confluent. Qed. Lemma commutativity : forall n, forall a b c, R0 n a b -> R1 n a c -> exists d, R1 n b d /\ R0 n c d. Proof. hauto l:on use:commutativity. Qed. End HindleyRosenER. Module ERFacts := HindleyRosenFacts HindleyRosenER. Lemma rtc_union n (a b : PTm n) : rtc (union RPar.R EPar.R) a b <-> rtc (union (rtc RPar.R) (rtc EPar.R)) a b. Proof. split; first by induction 1; hauto lq:on ctrs:rtc. move => h. elim :a b /h. - sfirstorder. - move => a0 a1 a2. case. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. + move => h0 h1 ih. apply : relations.rtc_transitive; eauto. move : h0. apply relations.rtc_subrel. sfirstorder. Qed. Lemma prov_erpar n (u : PTm n) a b : prov u a -> ERPar.R a b -> prov u b. Proof. move => h []. - sfirstorder use:prov_rpar. - move /EPar_ERed. sfirstorder use:prov_ereds. Qed. Lemma prov_pars n (u : PTm n) a b : prov u a -> rtc Par.R a b -> prov u b. Proof. move => h /Pars_ERPar. move => h0. move : h. elim : a b /h0. - done. - hauto lq:on use:prov_erpar. Qed. Lemma Par_confluent n (a b c : PTm n) : rtc Par.R a b -> rtc Par.R a c -> exists d, rtc Par.R b d /\ rtc Par.R c d. Proof. move : n a b c. suff : forall (n : nat) (a b c : PTm n), rtc ERPar.R a b -> rtc ERPar.R a c -> exists d : PTm n, rtc ERPar.R b d /\ rtc ERPar.R c d. move => h n a b c h0 h1. apply Par_ERPar_iff in h0, h1. move : h h0 h1; repeat move/[apply]. hauto lq:on use:Par_ERPar_iff. have h := ERFacts.U_comms. move => n a b c. rewrite /HindleyRosenER.R0 /HindleyRosenER.R1 in h. specialize h with (n := n). rewrite /HindleyRosenER.A in h. rewrite /ERPar.R. have eq : (fun a0 b0 : PTm n => union RPar.R EPar.R a0 b0) = union RPar.R EPar.R by reflexivity. rewrite !{}eq. move /rtc_union => + /rtc_union. move : h; repeat move/[apply]. hauto lq:on use:rtc_union. Qed. Lemma pars_univ_inv n i (c : PTm n) : rtc Par.R (PUniv i) c -> extract c = PUniv i. Proof. have : prov (PUniv i) (PUniv i : PTm n) by sfirstorder. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_const_inv n i (c : PTm n) : rtc Par.R (PConst i) c -> extract c = PConst i. Proof. have : prov (PConst i) (PConst i : PTm n) by sfirstorder. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_var_inv n (i : fin n) C : rtc Par.R (VarPTm i) C -> extract C = VarPTm i. Proof. have : prov (VarPTm i) (VarPTm i) by hauto lq:on ctrs:prov, rtc. move : prov_pars. repeat move/[apply]. apply prov_extract. Qed. Lemma pars_univ_inj n i j (C : PTm n) : rtc Par.R (PUniv i) C -> rtc Par.R (PUniv j) C -> i = j. Proof. sauto l:on use:pars_univ_inv. Qed. Lemma pars_const_inj n i j (C : PTm n) : rtc Par.R (PConst i) C -> rtc Par.R (PConst j) C -> i = j. Proof. sauto l:on use:pars_const_inv. Qed. Definition join {n} (a b : PTm n) := exists c, rtc Par.R a c /\ rtc Par.R b c. Lemma join_transitive n (a b c : PTm n) : join a b -> join b c -> join a c. Proof. rewrite /join. move => [ab [h0 h1]] [bc [h2 h3]]. move : Par_confluent h1 h2; repeat move/[apply]. move => [abc [h4 h5]]. eauto using relations.rtc_transitive. Qed. Lemma join_symmetric n (a b : PTm n) : join a b -> join b a. Proof. sfirstorder unfold:join. Qed. Lemma join_refl n (a : PTm n) : join a a. Proof. hauto lq:on ctrs:rtc unfold:join. Qed. Lemma join_univ_inj n i j : join (PUniv i : PTm n) (PUniv j) -> i = j. Proof. sfirstorder use:pars_univ_inj. Qed. Lemma join_const_inj n i j : join (PConst i : PTm n) (PConst j) -> i = j. Proof. sfirstorder use:pars_const_inj. Qed. Lemma join_substing n m (a b : PTm n) (ρ : fin n -> PTm m) : join a b -> join (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto lq:on unfold:join use:Pars.substing. Qed. Fixpoint ne {n} (a : PTm n) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => false | PUniv _ => false | PProj _ a => ne a | PPair _ _ => false | PConst _ => false | PBot => true end with nf {n} (a : PTm n) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => nf a | PUniv _ => true | PProj _ a => ne a | PPair a b => nf a && nf b | PConst _ => true | PBot => true end. Lemma ne_nf n a : @ne n a -> nf a. Proof. elim : a => //=. Qed. Definition wn {n} (a : PTm n) := exists b, rtc RPar'.R a b /\ nf b. Definition wne {n} (a : PTm n) := exists b, rtc RPar'.R a b /\ ne b. (* Weakly neutral implies weakly normal *) Lemma wne_wn n a : @wne n a -> wn a. Proof. sfirstorder use:ne_nf. Qed. (* Normal implies weakly normal *) Lemma nf_wn n v : @nf n v -> wn v. Proof. sfirstorder ctrs:rtc. Qed. Lemma nf_refl n (a b : PTm n) (h : RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Proof. elim : a b /h => //=; solve [hauto b:on]. Qed. Lemma nf_refls n (a b : PTm n) (h : rtc RPar'.R a b) : (nf a -> b = a) /\ (ne a -> b = a). Proof. induction h; sauto lq:on rew:off ctrs:rtc use:nf_refl. Qed. Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) : (ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)). Proof. move : m ξ. elim : n / a => //=; solve [hauto b:on]. Qed. Lemma wne_app n (a b : PTm n) : wne a -> wn b -> wne (PApp a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (PApp a0 b0). hauto b:on drew:off use:RPars'.AppCong. Qed. Lemma wn_abs n a (h : wn a) : @wn n (PAbs a). Proof. move : h => [v [? ?]]. exists (PAbs v). eauto using RPars'.AbsCong. Qed. Require Import Coq.Program.Equality. Lemma wn_abs' n a (h : @wn n (PAbs a)) : wn a. Proof. move : h. move => [a0 [h0 h1]]. dependent induction h0; sauto q:on. Qed. Lemma wn_pair n (a b : PTm n) : wn a -> wn b -> wn (PPair a b). Proof. move => [a0 [? ?]] [b0 [? ?]]. exists (PPair a0 b0). hauto lqb:on use:RPars'.PairCong. Qed. Lemma wne_proj n p (a : PTm n) : wne a -> wne (PProj p a). Proof. move => [a0 [? ?]]. exists (PProj p a0). hauto lqb:on use:RPars'.ProjCong. Qed. Create HintDb nfne. #[export]Hint Resolve nf_wn ne_nf wne_wn nf_refl : nfne. Lemma ne_nf_antiren n m (a : PTm n) (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> (ne (subst_PTm ρ a) -> ne a) /\ (nf (subst_PTm ρ a) -> nf a). Proof. move : m ρ. elim : n / a => //; hauto b:on drew:off use:RPar.var_or_const_up. Qed. Lemma wn_antirenaming n m a (ρ : fin n -> PTm m) : (forall i, var_or_const (ρ i)) -> wn (subst_PTm ρ a) -> wn a. Proof. rewrite /wn => hρ. move => [v [rv nfv]]. move /RPars'.antirenaming : rv. move /(_ hρ) => [b [hb ?]]. subst. exists b. split => //=. move : nfv. by eapply ne_nf_antiren. Qed. Lemma ext_wn n (a : PTm n) : wn (PApp a PBot) -> wn a. Proof. move E : (PApp a (PBot)) => a0 [v [hr hv]]. move : a E. move : hv. elim : a0 v / hr. - hauto q:on inv:PTm ctrs:rtc b:on db: nfne. - move => a0 a1 a2 hr0 hr1 ih hnfa2. move /(_ hnfa2) in ih. move => a. case : a0 hr0=>// => b0 b1. elim /RPar'.inv=>// _. + move => a0 a3 b2 b3 ? ? [? ?] ? [? ?]. subst. have ? : b3 = (PBot) by hauto lq:on inv:RPar'.R. subst. suff : wn (PAbs a3) by hauto lq:on ctrs:RPar'.R, rtc unfold:wn. have : wn (subst_PTm (scons (PBot) VarPTm) a3) by sfirstorder. move => h. apply wn_abs. move : h. apply wn_antirenaming. hauto lq:on rew:off inv:option. + hauto q:on inv:RPar'.R ctrs:rtc b:on. Qed. Module Join. Lemma ProjCong p n (a0 a1 : PTm n) : join a0 a1 -> join (PProj p a0) (PProj p a1). Proof. hauto lq:on use:Pars.ProjCong unfold:join. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : join a0 a1 -> join b0 b1 -> join (PPair a0 b0) (PPair a1 b1). Proof. hauto lq:on use:Pars.PairCong unfold:join. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : join a0 a1 -> join b0 b1 -> join (PApp a0 b0) (PApp a1 b1). Proof. hauto lq:on use:Pars.AppCong. Qed. Lemma AbsCong n (a b : PTm (S n)) : join a b -> join (PAbs a) (PAbs b). Proof. hauto lq:on use:Pars.AbsCong. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : join a b -> join (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto lq:on use:Pars.renaming. Qed. Lemma weakening n (a b : PTm n) : join a b -> join (ren_PTm shift a) (ren_PTm shift b). Proof. apply renaming. Qed. Lemma FromPar n (a b : PTm n) : Par.R a b -> join a b. Proof. hauto lq:on ctrs:rtc use:rtc_once. Qed. End Join. Lemma abs_eq n a (b : PTm n) : join (PAbs a) b <-> join a (PApp (ren_PTm shift b) (VarPTm var_zero)). Proof. split. - move => /Join.weakening h. have {h} : join (PApp (ren_PTm shift (PAbs a)) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)) by hauto l:on use:Join.AppCong, join_refl. simpl. move => ?. apply : join_transitive; eauto. apply join_symmetric. apply Join.FromPar. apply : Par.AppAbs'; eauto using Par.refl. by asimpl. - move /Join.AbsCong. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. apply Par.AppEta. apply Par.refl. Qed. Lemma pair_eq n (a0 a1 b : PTm n) : join (PPair a0 a1) b <-> join a0 (PProj PL b) /\ join a1 (PProj PR b). Proof. split. - move => h. have /Join.ProjCong {}h := h. have h0 : forall p, join (if p is PL then a0 else a1) (PProj p (PPair a0 a1)) by hauto lq:on use:join_symmetric, Join.FromPar, Par.ProjPair', Par.refl. hauto lq:on rew:off use:join_transitive, join_symmetric. - move => [h0 h1]. move : h0 h1. move : Join.PairCong; repeat move/[apply]. move /join_transitive. apply. apply join_symmetric. apply Join.FromPar. hauto lq:on ctrs:Par.R use:Par.refl. Qed. Lemma join_pair_inj n (a0 a1 b0 b1 : PTm n) : join (PPair a0 a1) (PPair b0 b1) <-> join a0 b0 /\ join a1 b1. Proof. split; last by hauto lq:on use:Join.PairCong. move /pair_eq => [h0 h1]. have : join (PProj PL (PPair b0 b1)) b0 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. have : join (PProj PR (PPair b0 b1)) b1 by hauto lq:on use:Join.FromPar, Par.refl, Par.ProjPair'. eauto using join_transitive. Qed. Lemma rpars_wn n (a b : PTm n) : rtc RPar'.R a b -> wn a -> wn b. Proof. move => h [b0 [h0 h1]]. have : exists c, rtc RPar'.R b c /\ rtc RPar'.R b0 c by eauto using RPar'_confluent. move => [c [h2 h3]]. have ? : c = b0 by sfirstorder use:nf_refls. subst. sfirstorder use:@relations.rtc_transitive. Qed. Lemma rpar_wn n (a b : PTm n) : RPar'.R a b -> wn a -> wn b. Proof. hauto lq:on use:rpars_wn ctrs:rtc. Qed. Definition norm {n} (a b : PTm n) := rtc RPar'.R a b /\ nf b. Lemma epar_wn n (a b : PTm n) : ERed.R b a -> wn a -> wn b. Proof. move => h. move => [v [h0 h1]]. move : b h1 h. elim : a v /h0 . - admit. - move => a b v ha iha hb b0 hv hr. specialize hb with (1 := hv). - move => a h. apply wn_abs' in h. have {h} : wn (PApp a PBot) by admit. apply ext_wn. - move => a ha. have [h0 h1] : wn (PProj PL a) /\ wn (PProj PR a) by admit. admit. - hauto q:on use:wn_abs, wn_abs'. - move => a0 a1 b ha iha hb.