From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax
  common typing preservation admissible fp_red structural soundness.
Require Import algorithmic.
From stdpp Require Import relations (rtc(..), nsteps(..)).
Require Import ssreflect ssrbool.
From Hammer Require Import Tactics.


Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
| A_AbsAbs a b :
  algo_dom_r a b ->
  (* --------------------- *)
  algo_dom (PAbs a) (PAbs b)

| A_AbsNeu a u :
  ishne u ->
  algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
  (* --------------------- *)
  algo_dom (PAbs a) u

| A_NeuAbs a u :
  ishne u ->
  algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
  (* --------------------- *)
  algo_dom u (PAbs a)

| A_PairPair a0 a1 b0 b1 :
  algo_dom_r a0 a1 ->
  algo_dom_r b0 b1 ->
  (* ---------------------------- *)
  algo_dom (PPair a0 b0) (PPair a1 b1)

| A_PairNeu a0 a1 u :
  ishne u ->
  algo_dom_r a0 (PProj PL u) ->
  algo_dom_r a1 (PProj PR u) ->
  (* ----------------------- *)
  algo_dom (PPair a0 a1) u

| A_NeuPair a0 a1 u :
  ishne u ->
  algo_dom_r (PProj PL u) a0 ->
  algo_dom_r (PProj PR u) a1 ->
  (* ----------------------- *)
  algo_dom u (PPair a0 a1)

| A_UnivCong i j :
  (* -------------------------- *)
  algo_dom (PUniv i) (PUniv j)

| A_BindCong p0 p1 A0 A1 B0 B1 :
  algo_dom_r A0 A1 ->
  algo_dom_r B0 B1 ->
  (* ---------------------------- *)
  algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)

| A_VarCong i j :
  (* -------------------------- *)
  algo_dom (VarPTm i) (VarPTm j)

| A_ProjCong p0 p1 u0 u1 :
  ishne u0 ->
  ishne u1 ->
  algo_dom u0 u1 ->
  (* ---------------------  *)
  algo_dom (PProj p0 u0) (PProj p1 u1)

| A_AppCong u0 u1 a0 a1 :
  ishne u0 ->
  ishne u1 ->
  algo_dom u0 u1 ->
  algo_dom_r a0 a1 ->
  (* ------------------------- *)
  algo_dom (PApp u0 a0) (PApp u1 a1)

with algo_dom_r {n} : PTm n -> PTm n -> Prop :=
| A_NfNf a b :
  algo_dom a b ->
  algo_dom_r a b

| A_HRedL a a' b  :
  HRed.R a a' ->
  algo_dom_r a' b ->
  (* ----------------------- *)
  algo_dom_r a b

| A_HRedR a b b'  :
  ishne a \/ ishf a ->
  HRed.R b b' ->
  algo_dom_r a b' ->
  (* ----------------------- *)
  algo_dom_r a b.

Derive Signature for algo_dom algo_dom_r.
Derive NoConfusion for PTm.
Next Obligation.
Admitted.
Next Obligation.
Admitted.

Derive Dependent Inversion adom_inv with (forall n (a b : PTm n), algo_dom a b) Sort Prop.

Lemma algo_dom_hf_hne n (a b : PTm n) :
  algo_dom a b ->
  (ishf a \/ ishne a) /\ (ishf b \/ ishne b).
Proof.
  induction 1 =>//=; hauto lq:on.
Qed.

Lemma hf_no_hred n (a b : PTm n) :
  ishf a ->
  HRed.R a b ->
  False.
Proof. hauto l:on inv:HRed.R. Qed.

Lemma hne_no_hred n (a b : PTm n) :
  ishne a ->
  HRed.R a b ->
  False.
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.

Definition fin_beq {n} (i j : fin n) : bool.
Proof.
  induction n.
  - by exfalso.
  - refine (match i , j with
            | None, None => true
            | Some i, Some j => IHn i j
            | _, _ => false
            end).
Defined.

Lemma fin_eq_dec {n} (i j : fin n) :
  Bool.reflect (i = j) (fin_beq i j).
Proof.
  revert i j. induction n.
  - destruct i.
  - destruct i; destruct j.
    + specialize (IHn f f0).
      inversion IHn; subst.
      simpl. rewrite -H.
      apply ReflectT.
      reflexivity.
      simpl. rewrite -H.
      apply ReflectF.
      injection. tauto.
    + by apply ReflectF.
    + by apply ReflectF.
    + by apply ReflectT.
Defined.

Scheme Equality for PTag.
Scheme Equality for BTag.

(* Fixpoint PTm_eqb {n} (a b : PTm n) := *)
(*   match a, b with *)
(*   | VarPTm i, VarPTm j => fin_eq i j *)
(*   | PAbs a, PAbs b => PTm_eqb a b *)
(*   | PApp a0 b0, PApp a1 b1 => PTm_eqb a0 a1 && PTm_eqb b0 b1 *)
(*   | PBind p0 A0 B0, PBind p1 A1 B1 => BTag_beq p0 p1 && PTm_eqb A0 A1 && PTm_eqb B0 B1 *)
(*   | PPair a0 b0, PPair a1 b1 => PTm_eqb a0 a1 && PTm_eqb b0 b1 *)
(*   | *)

(* Lemma hred {n} (a : PTm n) : (relations.nf HRed.R a) + {x | HRed.R a x}. *)
(* Proof. *)
(*   induction a. *)
(*   - hauto lq:on inv:HRed.R unfold:relations.nf. *)
(*   - hauto lq:on inv:HRed.R unfold:relations.nf. *)
(*   - clear IHa2. *)
(*     destruct IHa1. *)
(*     destruct a1. *)

Fixpoint hred {n} (a : PTm n) : option (PTm n) :=
    match a with
    | VarPTm i => None
    | PAbs a => None
    | PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
    | PApp a b =>
        match hred a with
        | Some a => Some (PApp a b)
        | None => None
        end
    | PPair a b => None
    | PProj p (PPair a b) => if p is PL then Some a else Some b
    | PProj p a =>
        match hred a with
        | Some a => Some (PProj p a)
        | None => None
        end
    | PUniv i => None
    | PBind p A B => None
    | PBot => None
    | PNat => None
    | PZero => None
    | PSuc a => None
    | PInd P PZero b c => Some b
    | PInd P (PSuc a) b c =>
        Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
    | PInd P a b c =>
        match hred a with
        | Some a => Some (PInd P a b c)
        | None => None
        end
    end.

Lemma hred_complete n (a b : PTm n) :
  HRed.R a b -> hred a = Some b.
Proof.
  induction 1; hauto lq:on rew:off inv:HRed.R b:on.
Qed.

Lemma hred_sound n (a b : PTm n):
  hred a = Some b -> HRed.R a b.
Proof.
  elim : a b; hauto q:on dep:on ctrs:HRed.R.
Qed.

Lemma hred_deter n (a b0 b1 : PTm n) :
  HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
Proof.
  move /hred_complete => + /hred_complete. congruence.
Qed.

Definition hred_fancy n (a : PTm n) :
  relations.nf HRed.R a + {x | HRed.R a x}.
Proof.
  destruct (hred a) as [a'|] eqn:eq .
  - right. exists a'. hauto q:on use:hred_sound.
  - left.
    move => [a' h].
    move /hred_complete in h.
    congruence.
Defined.

Ltac check_equal_triv :=
  intros;subst;
  lazymatch goal with
  (* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
  | [h : algo_dom _ _ |- _] => try inversion h; by subst
  | _ => idtac
  end.

(* Program Fixpoint check_equal {n} (a b : PTm n) (h : algo_dom a b) {struct h} : bool := *)
(*   match a, b with *)
(*   | VarPTm i, VarPTm j => fin_beq i j *)
(*   | PAbs a, PAbs b => check_equal_r a b ltac:(check_equal_triv) *)
(*   | _, _ => false *)
(*   end *)
(* with check_equal_r {n} (a b : PTm n) (h : algo_dom_r a b) {struct h} : bool := *)
(*   match hred_fancy _ a with *)
(*   | inr a' => check_equal_r (proj1_sig a') b _ *)
(*   | _ => false *)
(*   end. *)
(* Next Obligation. *)
(*   simpl. *)

Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
  bool by struct h :=
  check_equal (VarPTm i) (VarPTm j) h := fin_beq i j;
  check_equal (PAbs a) (PAbs b) h := check_equal_r a b ltac:(check_equal_triv);
  check_equal (PAbs a) b h := check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) ltac:(check_equal_triv);
  check_equal a (PAbs b) h := check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b ltac:(check_equal_triv);
  check_equal (PPair a0 b0) (PPair a1 b1) h :=
    check_equal_r a0 a1 ltac:(check_equal_triv) && check_equal_r b0 b1 ltac:(check_equal_triv);
  check_equal (PPair a0 b0) u h :=
    check_equal_r a0 (PProj PL u) ltac:(check_equal_triv) && check_equal_r b0 (PProj PR u) ltac:(check_equal_triv);
  check_equal u (PPair a1 b1) h :=
    check_equal_r (PProj PL u) a1 ltac:(check_equal_triv) && check_equal_r (PProj PR u) b1 ltac:(check_equal_triv);
  check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) h :=
    BTag_beq p0 p1 && check_equal_r A0 A1 ltac:(check_equal_triv) && check_equal_r B0 B1 ltac:(check_equal_triv);
  check_equal PNat PNat _ := true;
  check_equal PZero PZero _ := true;
  check_equal (PSuc a) (PSuc b) h := check_equal_r a b ltac:(check_equal_triv);
  check_equal (PUniv i) (PUniv j) _ := Nat.eqb i j;
  check_equal a b h := false;
  with check_equal_r {n} (a b : PTm n) (h : algo_dom_r a b) :
  bool by struct h :=
  check_equal_r a b h with hred_fancy _ a =>
    { check_equal_r a b h (inr a') := check_equal_r (proj1_sig a') b _;
      check_equal_r a b h (inl _) with hred_fancy _ b =>
        { check_equal_r a b h (inl _) (inl _) := check_equal a b _;
          check_equal_r a b h (inl _) (inr b') := check_equal_r a (proj1_sig b')  _}} .


Next Obligation.
  move => /= ih ihr n a nfa b nfb.
  inversion 1; subst=>//=.
  exfalso. sfirstorder.
  exfalso. sfirstorder.
Defined.

Next Obligation.
  simpl.
  move => /= ih ihr n a nfa b [b' hb'].
  inversion 1; subst =>//=.
  exfalso. hauto lq:on use:algo_dom_hf_hne, hf_no_hred, hne_no_hred.
  exfalso. sfirstorder.
  have ? : b' = b'0 by eauto using hred_deter.
  subst.
  assumption.
Defined.

Next Obligation.
  simpl => ih ihr n a [a' ha'] b.
  inversion 1; subst => //=.
  exfalso. hauto lq:on use:algo_dom_hf_hne, hf_no_hred, hne_no_hred.
  suff ? : a'0 = a' by subst; assumption.
  by eauto using hred_deter.
  exfalso. hauto lq:on use:hf_no_hred, hne_no_hred.
Defined.


Search (Bool.reflect (is_true _) _).
Check idP.

Definition metric {n} k (a b : PTm n) :=
  exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\
  nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.

Search (nat -> nat -> bool).