Require Import core fintype. Require Import Setoid Morphisms Relation_Definitions. Module Core. Inductive PTag : Type := | PL : PTag | PR : PTag. Lemma congr_PL : PL = PL. Proof. exact (eq_refl). Qed. Lemma congr_PR : PR = PR. Proof. exact (eq_refl). Qed. Inductive PTm (n_PTm : nat) : Type := | VarPTm : fin n_PTm -> PTm n_PTm | PAbs : PTm (S n_PTm) -> PTm n_PTm | PApp : PTm n_PTm -> PTm n_PTm -> PTm n_PTm | PPair : PTm n_PTm -> PTm n_PTm -> PTm n_PTm | PProj : PTag -> PTm n_PTm -> PTm n_PTm. Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)} (H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0. Proof. exact (eq_trans eq_refl (ap (fun x => PAbs m_PTm x) H0)). Qed. Lemma congr_PApp {m_PTm : nat} {s0 : PTm m_PTm} {s1 : PTm m_PTm} {t0 : PTm m_PTm} {t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PApp m_PTm s0 s1 = PApp m_PTm t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PApp m_PTm x s1) H0)) (ap (fun x => PApp m_PTm t0 x) H1)). Qed. Lemma congr_PPair {m_PTm : nat} {s0 : PTm m_PTm} {s1 : PTm m_PTm} {t0 : PTm m_PTm} {t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PPair m_PTm s0 s1 = PPair m_PTm t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PPair m_PTm x s1) H0)) (ap (fun x => PPair m_PTm t0 x) H1)). Qed. Lemma congr_PProj {m_PTm : nat} {s0 : PTag} {s1 : PTm m_PTm} {t0 : PTag} {t1 : PTm m_PTm} (H0 : s0 = t0) (H1 : s1 = t1) : PProj m_PTm s0 s1 = PProj m_PTm t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => PProj m_PTm x s1) H0)) (ap (fun x => PProj m_PTm t0 x) H1)). Qed. Lemma upRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) : fin (S m) -> fin (S n). Proof. exact (up_ren xi). Defined. Lemma upRen_list_PTm_PTm (p : nat) {m : nat} {n : nat} (xi : fin m -> fin n) : fin (plus p m) -> fin (plus p n). Proof. exact (upRen_p p xi). Defined. Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (s : PTm m_PTm) {struct s} : PTm n_PTm := match s with | VarPTm _ s0 => VarPTm n_PTm (xi_PTm s0) | PAbs _ s0 => PAbs n_PTm (ren_PTm (upRen_PTm_PTm xi_PTm) s0) | PApp _ s0 s1 => PApp n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PPair _ s0 s1 => PPair n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PProj _ s0 s1 => PProj n_PTm s0 (ren_PTm xi_PTm s1) end. Lemma up_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) : fin (S m) -> PTm (S n_PTm). Proof. exact (scons (VarPTm (S n_PTm) var_zero) (funcomp (ren_PTm shift) sigma)). Defined. Lemma up_list_PTm_PTm (p : nat) {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) : fin (plus p m) -> PTm (plus p n_PTm). Proof. exact (scons_p p (funcomp (VarPTm (plus p n_PTm)) (zero_p p)) (funcomp (ren_PTm (shift_p p)) sigma)). Defined. Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat} (sigma_PTm : fin m_PTm -> PTm n_PTm) (s : PTm m_PTm) {struct s} : PTm n_PTm := match s with | VarPTm _ s0 => sigma_PTm s0 | PAbs _ s0 => PAbs n_PTm (subst_PTm (up_PTm_PTm sigma_PTm) s0) | PApp _ s0 s1 => PApp n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PPair _ s0 s1 => PPair n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PProj _ s0 s1 => PProj n_PTm s0 (subst_PTm sigma_PTm s1) end. Lemma upId_PTm_PTm {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm) (Eq : forall x, sigma x = VarPTm m_PTm x) : forall x, up_PTm_PTm sigma x = VarPTm (S m_PTm) x. Proof. exact (fun n => match n with | Some fin_n => ap (ren_PTm shift) (Eq fin_n) | None => eq_refl end). Qed. Lemma upId_list_PTm_PTm {p : nat} {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm) (Eq : forall x, sigma x = VarPTm m_PTm x) : forall x, up_list_PTm_PTm p sigma x = VarPTm (plus p m_PTm) x. Proof. exact (fun n => scons_p_eta (VarPTm (plus p m_PTm)) (fun n => ap (ren_PTm (shift_p p)) (Eq n)) (fun n => eq_refl)). Qed. Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm) (Eq_PTm : forall x, sigma_PTm x = VarPTm m_PTm x) (s : PTm m_PTm) {struct s} : subst_PTm sigma_PTm s = s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (idSubst_PTm sigma_PTm Eq_PTm s0) (idSubst_PTm sigma_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (idSubst_PTm sigma_PTm Eq_PTm s0) (idSubst_PTm sigma_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1) end. Lemma upExtRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) (zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) : forall x, upRen_PTm_PTm xi x = upRen_PTm_PTm zeta x. Proof. exact (fun n => match n with | Some fin_n => ap shift (Eq fin_n) | None => eq_refl end). Qed. Lemma upExtRen_list_PTm_PTm {p : nat} {m : nat} {n : nat} (xi : fin m -> fin n) (zeta : fin m -> fin n) (Eq : forall x, xi x = zeta x) : forall x, upRen_list_PTm_PTm p xi x = upRen_list_PTm_PTm p zeta x. Proof. exact (fun n => scons_p_congr (fun n => eq_refl) (fun n => ap (shift_p p) (Eq n))). Qed. Fixpoint extRen_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (zeta_PTm : fin m_PTm -> fin n_PTm) (Eq_PTm : forall x, xi_PTm x = zeta_PTm x) (s : PTm m_PTm) {struct s} : ren_PTm xi_PTm s = ren_PTm zeta_PTm s := match s with | VarPTm _ s0 => ap (VarPTm n_PTm) (Eq_PTm s0) | PAbs _ s0 => congr_PAbs (extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) (upExtRen_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) end. Lemma upExt_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) (tau : fin m -> PTm n_PTm) (Eq : forall x, sigma x = tau x) : forall x, up_PTm_PTm sigma x = up_PTm_PTm tau x. Proof. exact (fun n => match n with | Some fin_n => ap (ren_PTm shift) (Eq fin_n) | None => eq_refl end). Qed. Lemma upExt_list_PTm_PTm {p : nat} {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) (tau : fin m -> PTm n_PTm) (Eq : forall x, sigma x = tau x) : forall x, up_list_PTm_PTm p sigma x = up_list_PTm_PTm p tau x. Proof. exact (fun n => scons_p_congr (fun n => eq_refl) (fun n => ap (ren_PTm (shift_p p)) (Eq n))). Qed. Fixpoint ext_PTm {m_PTm : nat} {n_PTm : nat} (sigma_PTm : fin m_PTm -> PTm n_PTm) (tau_PTm : fin m_PTm -> PTm n_PTm) (Eq_PTm : forall x, sigma_PTm x = tau_PTm x) (s : PTm m_PTm) {struct s} : subst_PTm sigma_PTm s = subst_PTm tau_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) (upExt_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) end. Lemma up_ren_ren_PTm_PTm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) (zeta : fin l -> fin m) (rho : fin k -> fin m) (Eq : forall x, funcomp zeta xi x = rho x) : forall x, funcomp (upRen_PTm_PTm zeta) (upRen_PTm_PTm xi) x = upRen_PTm_PTm rho x. Proof. exact (up_ren_ren xi zeta rho Eq). Qed. Lemma up_ren_ren_list_PTm_PTm {p : nat} {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) (zeta : fin l -> fin m) (rho : fin k -> fin m) (Eq : forall x, funcomp zeta xi x = rho x) : forall x, funcomp (upRen_list_PTm_PTm p zeta) (upRen_list_PTm_PTm p xi) x = upRen_list_PTm_PTm p rho x. Proof. exact (up_ren_ren_p Eq). Qed. Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) (rho_PTm : fin m_PTm -> fin l_PTm) (Eq_PTm : forall x, funcomp zeta_PTm xi_PTm x = rho_PTm x) (s : PTm m_PTm) {struct s} : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm rho_PTm s := match s with | VarPTm _ s0 => ap (VarPTm l_PTm) (Eq_PTm s0) | PAbs _ s0 => congr_PAbs (compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) end. Lemma up_ren_subst_PTm_PTm {k : nat} {l : nat} {m_PTm : nat} (xi : fin k -> fin l) (tau : fin l -> PTm m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp tau xi x = theta x) : forall x, funcomp (up_PTm_PTm tau) (upRen_PTm_PTm xi) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | Some fin_n => ap (ren_PTm shift) (Eq fin_n) | None => eq_refl end). Qed. Lemma up_ren_subst_list_PTm_PTm {p : nat} {k : nat} {l : nat} {m_PTm : nat} (xi : fin k -> fin l) (tau : fin l -> PTm m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp tau xi x = theta x) : forall x, funcomp (up_list_PTm_PTm p tau) (upRen_list_PTm_PTm p xi) x = up_list_PTm_PTm p theta x. Proof. exact (fun n => eq_trans (scons_p_comp' _ _ _ n) (scons_p_congr (fun z => scons_p_head' _ _ z) (fun z => eq_trans (scons_p_tail' _ _ (xi z)) (ap (ren_PTm (shift_p p)) (Eq z))))). Qed. Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) (theta_PTm : fin m_PTm -> PTm l_PTm) (Eq_PTm : forall x, funcomp tau_PTm xi_PTm x = theta_PTm x) (s : PTm m_PTm) {struct s} : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm) (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) end. Lemma up_subst_ren_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} (sigma : fin k -> PTm l_PTm) (zeta_PTm : fin l_PTm -> fin m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp (ren_PTm zeta_PTm) sigma x = theta x) : forall x, funcomp (ren_PTm (upRen_PTm_PTm zeta_PTm)) (up_PTm_PTm sigma) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | Some fin_n => eq_trans (compRenRen_PTm shift (upRen_PTm_PTm zeta_PTm) (funcomp shift zeta_PTm) (fun x => eq_refl) (sigma fin_n)) (eq_trans (eq_sym (compRenRen_PTm zeta_PTm shift (funcomp shift zeta_PTm) (fun x => eq_refl) (sigma fin_n))) (ap (ren_PTm shift) (Eq fin_n))) | None => eq_refl end). Qed. Lemma up_subst_ren_list_PTm_PTm {p : nat} {k : nat} {l_PTm : nat} {m_PTm : nat} (sigma : fin k -> PTm l_PTm) (zeta_PTm : fin l_PTm -> fin m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp (ren_PTm zeta_PTm) sigma x = theta x) : forall x, funcomp (ren_PTm (upRen_list_PTm_PTm p zeta_PTm)) (up_list_PTm_PTm p sigma) x = up_list_PTm_PTm p theta x. Proof. exact (fun n => eq_trans (scons_p_comp' _ _ _ n) (scons_p_congr (fun x => ap (VarPTm (plus p m_PTm)) (scons_p_head' _ _ x)) (fun n => eq_trans (compRenRen_PTm (shift_p p) (upRen_list_PTm_PTm p zeta_PTm) (funcomp (shift_p p) zeta_PTm) (fun x => scons_p_tail' _ _ x) (sigma n)) (eq_trans (eq_sym (compRenRen_PTm zeta_PTm (shift_p p) (funcomp (shift_p p) zeta_PTm) (fun x => eq_refl) (sigma n))) (ap (ren_PTm (shift_p p)) (Eq n)))))). Qed. Fixpoint compSubstRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) (theta_PTm : fin m_PTm -> PTm l_PTm) (Eq_PTm : forall x, funcomp (ren_PTm zeta_PTm) sigma_PTm x = theta_PTm x) (s : PTm m_PTm) {struct s} : ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm) (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) end. Lemma up_subst_subst_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} (sigma : fin k -> PTm l_PTm) (tau_PTm : fin l_PTm -> PTm m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp (subst_PTm tau_PTm) sigma x = theta x) : forall x, funcomp (subst_PTm (up_PTm_PTm tau_PTm)) (up_PTm_PTm sigma) x = up_PTm_PTm theta x. Proof. exact (fun n => match n with | Some fin_n => eq_trans (compRenSubst_PTm shift (up_PTm_PTm tau_PTm) (funcomp (up_PTm_PTm tau_PTm) shift) (fun x => eq_refl) (sigma fin_n)) (eq_trans (eq_sym (compSubstRen_PTm tau_PTm shift (funcomp (ren_PTm shift) tau_PTm) (fun x => eq_refl) (sigma fin_n))) (ap (ren_PTm shift) (Eq fin_n))) | None => eq_refl end). Qed. Lemma up_subst_subst_list_PTm_PTm {p : nat} {k : nat} {l_PTm : nat} {m_PTm : nat} (sigma : fin k -> PTm l_PTm) (tau_PTm : fin l_PTm -> PTm m_PTm) (theta : fin k -> PTm m_PTm) (Eq : forall x, funcomp (subst_PTm tau_PTm) sigma x = theta x) : forall x, funcomp (subst_PTm (up_list_PTm_PTm p tau_PTm)) (up_list_PTm_PTm p sigma) x = up_list_PTm_PTm p theta x. Proof. exact (fun n => eq_trans (scons_p_comp' (funcomp (VarPTm (plus p l_PTm)) (zero_p p)) _ _ n) (scons_p_congr (fun x => scons_p_head' _ (fun z => ren_PTm (shift_p p) _) x) (fun n => eq_trans (compRenSubst_PTm (shift_p p) (up_list_PTm_PTm p tau_PTm) (funcomp (up_list_PTm_PTm p tau_PTm) (shift_p p)) (fun x => eq_refl) (sigma n)) (eq_trans (eq_sym (compSubstRen_PTm tau_PTm (shift_p p) _ (fun x => eq_sym (scons_p_tail' _ _ x)) (sigma n))) (ap (ren_PTm (shift_p p)) (Eq n)))))). Qed. Fixpoint compSubstSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) (theta_PTm : fin m_PTm -> PTm l_PTm) (Eq_PTm : forall x, funcomp (subst_PTm tau_PTm) sigma_PTm x = theta_PTm x) (s : PTm m_PTm) {struct s} : subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) end. Lemma renRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) (s : PTm m_PTm) : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm (funcomp zeta_PTm xi_PTm) s. Proof. exact (compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma renRen'_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) : pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (ren_PTm xi_PTm)) (ren_PTm (funcomp zeta_PTm xi_PTm)). Proof. exact (fun s => compRenRen_PTm xi_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma renSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) (s : PTm m_PTm) : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm (funcomp tau_PTm xi_PTm) s. Proof. exact (compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma renSubst_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (xi_PTm : fin m_PTm -> fin k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) : pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (ren_PTm xi_PTm)) (subst_PTm (funcomp tau_PTm xi_PTm)). Proof. exact (fun s => compRenSubst_PTm xi_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma substRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) (s : PTm m_PTm) : ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm) s. Proof. exact (compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma substRen_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (zeta_PTm : fin k_PTm -> fin l_PTm) : pointwise_relation _ eq (funcomp (ren_PTm zeta_PTm) (subst_PTm sigma_PTm)) (subst_PTm (funcomp (ren_PTm zeta_PTm) sigma_PTm)). Proof. exact (fun s => compSubstRen_PTm sigma_PTm zeta_PTm _ (fun n => eq_refl) s). Qed. Lemma substSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) (s : PTm m_PTm) : subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm) s. Proof. exact (compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma substSubst_PTm_pointwise {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm k_PTm) (tau_PTm : fin k_PTm -> PTm l_PTm) : pointwise_relation _ eq (funcomp (subst_PTm tau_PTm) (subst_PTm sigma_PTm)) (subst_PTm (funcomp (subst_PTm tau_PTm) sigma_PTm)). Proof. exact (fun s => compSubstSubst_PTm sigma_PTm tau_PTm _ (fun n => eq_refl) s). Qed. Lemma rinstInst_up_PTm_PTm {m : nat} {n_PTm : nat} (xi : fin m -> fin n_PTm) (sigma : fin m -> PTm n_PTm) (Eq : forall x, funcomp (VarPTm n_PTm) xi x = sigma x) : forall x, funcomp (VarPTm (S n_PTm)) (upRen_PTm_PTm xi) x = up_PTm_PTm sigma x. Proof. exact (fun n => match n with | Some fin_n => ap (ren_PTm shift) (Eq fin_n) | None => eq_refl end). Qed. Lemma rinstInst_up_list_PTm_PTm {p : nat} {m : nat} {n_PTm : nat} (xi : fin m -> fin n_PTm) (sigma : fin m -> PTm n_PTm) (Eq : forall x, funcomp (VarPTm n_PTm) xi x = sigma x) : forall x, funcomp (VarPTm (plus p n_PTm)) (upRen_list_PTm_PTm p xi) x = up_list_PTm_PTm p sigma x. Proof. exact (fun n => eq_trans (scons_p_comp' _ _ (VarPTm (plus p n_PTm)) n) (scons_p_congr (fun z => eq_refl) (fun n => ap (ren_PTm (shift_p p)) (Eq n)))). Qed. Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (sigma_PTm : fin m_PTm -> PTm n_PTm) (Eq_PTm : forall x, funcomp (VarPTm n_PTm) xi_PTm x = sigma_PTm x) (s : PTm m_PTm) {struct s} : ren_PTm xi_PTm s = subst_PTm sigma_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 | PAbs _ s0 => congr_PAbs (rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm) (rinstInst_up_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PPair _ s0 s1 => congr_PPair (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) end. Lemma rinstInst'_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (s : PTm m_PTm) : ren_PTm xi_PTm s = subst_PTm (funcomp (VarPTm n_PTm) xi_PTm) s. Proof. exact (rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s). Qed. Lemma rinstInst'_PTm_pointwise {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) : pointwise_relation _ eq (ren_PTm xi_PTm) (subst_PTm (funcomp (VarPTm n_PTm) xi_PTm)). Proof. exact (fun s => rinst_inst_PTm xi_PTm _ (fun n => eq_refl) s). Qed. Lemma instId'_PTm {m_PTm : nat} (s : PTm m_PTm) : subst_PTm (VarPTm m_PTm) s = s. Proof. exact (idSubst_PTm (VarPTm m_PTm) (fun n => eq_refl) s). Qed. Lemma instId'_PTm_pointwise {m_PTm : nat} : pointwise_relation _ eq (subst_PTm (VarPTm m_PTm)) id. Proof. exact (fun s => idSubst_PTm (VarPTm m_PTm) (fun n => eq_refl) s). Qed. Lemma rinstId'_PTm {m_PTm : nat} (s : PTm m_PTm) : ren_PTm id s = s. Proof. exact (eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)). Qed. Lemma rinstId'_PTm_pointwise {m_PTm : nat} : pointwise_relation _ eq (@ren_PTm m_PTm m_PTm id) id. Proof. exact (fun s => eq_ind_r (fun t => t = s) (instId'_PTm s) (rinstInst'_PTm id s)). Qed. Lemma varL'_PTm {m_PTm : nat} {n_PTm : nat} (sigma_PTm : fin m_PTm -> PTm n_PTm) (x : fin m_PTm) : subst_PTm sigma_PTm (VarPTm m_PTm x) = sigma_PTm x. Proof. exact (eq_refl). Qed. Lemma varL'_PTm_pointwise {m_PTm : nat} {n_PTm : nat} (sigma_PTm : fin m_PTm -> PTm n_PTm) : pointwise_relation _ eq (funcomp (subst_PTm sigma_PTm) (VarPTm m_PTm)) sigma_PTm. Proof. exact (fun x => eq_refl). Qed. Lemma varLRen'_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (x : fin m_PTm) : ren_PTm xi_PTm (VarPTm m_PTm x) = VarPTm n_PTm (xi_PTm x). Proof. exact (eq_refl). Qed. Lemma varLRen'_PTm_pointwise {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) : pointwise_relation _ eq (funcomp (ren_PTm xi_PTm) (VarPTm m_PTm)) (funcomp (VarPTm n_PTm) xi_PTm). Proof. exact (fun x => eq_refl). Qed. Inductive Ty : Type := | Fun : Ty -> Ty -> Ty | Prod : Ty -> Ty -> Ty | Void : Ty. Lemma congr_Fun {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) (H1 : s1 = t1) : Fun s0 s1 = Fun t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => Fun x s1) H0)) (ap (fun x => Fun t0 x) H1)). Qed. Lemma congr_Prod {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) (H1 : s1 = t1) : Prod s0 s1 = Prod t0 t1. Proof. exact (eq_trans (eq_trans eq_refl (ap (fun x => Prod x s1) H0)) (ap (fun x => Prod t0 x) H1)). Qed. Lemma congr_Void : Void = Void. Proof. exact (eq_refl). Qed. Class Up_PTm X Y := up_PTm : X -> Y. #[global] Instance Subst_PTm {m_PTm n_PTm : nat}: (Subst1 _ _ _) := (@subst_PTm m_PTm n_PTm). #[global] Instance Up_PTm_PTm {m n_PTm : nat}: (Up_PTm _ _) := (@up_PTm_PTm m n_PTm). #[global] Instance Ren_PTm {m_PTm n_PTm : nat}: (Ren1 _ _ _) := (@ren_PTm m_PTm n_PTm). #[global] Instance VarInstance_PTm {n_PTm : nat}: (Var _ _) := (@VarPTm n_PTm). Notation "[ sigma_PTm ]" := (subst_PTm sigma_PTm) ( at level 1, left associativity, only printing) : fscope. Notation "s [ sigma_PTm ]" := (subst_PTm sigma_PTm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "↑__PTm" := up_PTm (only printing) : subst_scope. Notation "↑__PTm" := up_PTm_PTm (only printing) : subst_scope. Notation "⟨ xi_PTm ⟩" := (ren_PTm xi_PTm) ( at level 1, left associativity, only printing) : fscope. Notation "s ⟨ xi_PTm ⟩" := (ren_PTm xi_PTm s) ( at level 7, left associativity, only printing) : subst_scope. Notation "'var'" := VarPTm ( at level 1, only printing) : subst_scope. Notation "x '__PTm'" := (@ids _ _ VarInstance_PTm x) ( at level 5, format "x __PTm", only printing) : subst_scope. Notation "x '__PTm'" := (VarPTm x) ( at level 5, format "x __PTm") : subst_scope. #[global] Instance subst_PTm_morphism {m_PTm : nat} {n_PTm : nat}: (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@subst_PTm m_PTm n_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s t Eq_st => eq_ind s (fun t' => subst_PTm f_PTm s = subst_PTm g_PTm t') (ext_PTm f_PTm g_PTm Eq_PTm s) t Eq_st). Qed. #[global] Instance subst_PTm_morphism2 {m_PTm : nat} {n_PTm : nat}: (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@subst_PTm m_PTm n_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s => ext_PTm f_PTm g_PTm Eq_PTm s). Qed. #[global] Instance ren_PTm_morphism {m_PTm : nat} {n_PTm : nat}: (Proper (respectful (pointwise_relation _ eq) (respectful eq eq)) (@ren_PTm m_PTm n_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s t Eq_st => eq_ind s (fun t' => ren_PTm f_PTm s = ren_PTm g_PTm t') (extRen_PTm f_PTm g_PTm Eq_PTm s) t Eq_st). Qed. #[global] Instance ren_PTm_morphism2 {m_PTm : nat} {n_PTm : nat}: (Proper (respectful (pointwise_relation _ eq) (pointwise_relation _ eq)) (@ren_PTm m_PTm n_PTm)). Proof. exact (fun f_PTm g_PTm Eq_PTm s => extRen_PTm f_PTm g_PTm Eq_PTm s). Qed. Ltac auto_unfold := repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1. Tactic Notation "auto_unfold" "in" "*" := repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1 in *. Ltac asimpl' := repeat (first [ progress setoid_rewrite substSubst_PTm_pointwise | progress setoid_rewrite substSubst_PTm | progress setoid_rewrite substRen_PTm_pointwise | progress setoid_rewrite substRen_PTm | progress setoid_rewrite renSubst_PTm_pointwise | progress setoid_rewrite renSubst_PTm | progress setoid_rewrite renRen'_PTm_pointwise | progress setoid_rewrite renRen_PTm | progress setoid_rewrite varLRen'_PTm_pointwise | progress setoid_rewrite varLRen'_PTm | progress setoid_rewrite varL'_PTm_pointwise | progress setoid_rewrite varL'_PTm | progress setoid_rewrite rinstId'_PTm_pointwise | progress setoid_rewrite rinstId'_PTm | progress setoid_rewrite instId'_PTm_pointwise | progress setoid_rewrite instId'_PTm | progress unfold up_list_PTm_PTm, up_PTm_PTm, upRen_list_PTm_PTm, upRen_PTm_PTm, up_ren | progress cbn[subst_PTm ren_PTm] | progress fsimpl ]). Ltac asimpl := check_no_evars; repeat unfold VarInstance_PTm, Var, ids, Ren_PTm, Ren1, ren1, Up_PTm_PTm, Up_PTm, up_PTm, Subst_PTm, Subst1, subst1 in *; asimpl'; minimize. Tactic Notation "asimpl" "in" hyp(J) := revert J; asimpl; intros J. Tactic Notation "auto_case" := auto_case ltac:(asimpl; cbn; eauto). Ltac substify := auto_unfold; try setoid_rewrite rinstInst'_PTm_pointwise; try setoid_rewrite rinstInst'_PTm. Ltac renamify := auto_unfold; try setoid_rewrite_left rinstInst'_PTm_pointwise; try setoid_rewrite_left rinstInst'_PTm. End Core. Module Extra. Import Core. Arguments VarPTm {n_PTm}. Arguments PProj {n_PTm}. Arguments PPair {n_PTm}. Arguments PApp {n_PTm}. Arguments PAbs {n_PTm}. #[global]Hint Opaque subst_PTm: rewrite. #[global]Hint Opaque ren_PTm: rewrite. End Extra. Module interface. Export Core. Export Extra. End interface. Export interface.