Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable. From Hammer Require Import Tactics. Require Import ssreflect ssrbool. From stdpp Require Import relations (nsteps (..), rtc(..)). Import Psatz. Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a. Proof. case : a; case : b => //=. Qed. #[export]Hint Constructors algo_dom algo_dom_r : adom. Lemma algo_dom_r_inv a b : algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0. Proof. induction 1; hauto lq:on ctrs:rtc. Qed. Lemma A_HRedsL a a' b : rtc HRed.R a a' -> algo_dom_r a' b -> algo_dom_r a b. induction 1; sfirstorder use:A_HRedL. Qed. Lemma A_HRedsR a b b' : HRed.nf a -> rtc HRed.R b b' -> algo_dom a b' -> algo_dom_r a b. Proof. induction 2; sauto. Qed. Lemma algo_dom_sym : (forall a b (h : algo_dom a b), algo_dom b a) /\ (forall a b (h : algo_dom_r a b), algo_dom_r b a). Proof. apply algo_dom_mutual; try qauto use:tm_conf_sym db:adom. move => a a' b hr h ih. move /algo_dom_r_inv : ih => [a0][b0][ih0][ih1]ih2. have nfa0 : HRed.nf a0 by sfirstorder use:algo_dom_no_hred. sauto use:A_HRedsL, A_HRedsR. Qed. Definition term_metric k (a b : PTm) := exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k. Lemma term_metric_sym k (a b : PTm) : term_metric k a b -> term_metric k b a. Proof. hauto lq:on unfold:term_metric solve+:lia. Qed. Lemma term_metric_case k (a b : PTm) : term_metric k a b -> (ishf a \/ ishne a) \/ exists k' a', HRed.R a a' /\ term_metric k' a' b /\ k' < k. Proof. move=>[i][j][va][vb][h0] [h1][h2][h3]h4. case : a h0 => //=; try firstorder. - inversion h0 as [|A B C D E F]; subst. hauto qb:on use:ne_hne. inversion E; subst => /=. + hauto lq:on use:HRed.AppAbs unfold:term_metric solve+:lia. + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia. + sfirstorder qb:on use:ne_hne. - inversion h0 as [|A B C D E F]; subst. hauto qb:on use:ne_hne. inversion E; subst => /=. + hauto lq:on use:HRed.ProjPair unfold:term_metric solve+:lia. + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia. - inversion h0 as [|A B C D E F]; subst. hauto qb:on use:ne_hne. inversion E; subst => /=. + hauto lq:on use:HRed.IndZero unfold:term_metric solve+:lia. + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia. + sfirstorder use:ne_hne. + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia. + sfirstorder use:ne_hne. + sfirstorder use:ne_hne. Qed. Lemma A_Conf' a b : ishf a \/ ishne a -> ishf b \/ ishne b -> tm_conf a b -> algo_dom_r a b. Proof. move => ha hb. have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred. have {}hb : HRed.nf b by sfirstorder use:hf_no_hred, hne_no_hred. move => ?. apply A_NfNf. by apply A_Conf. Qed. Lemma term_metric_abs : forall k a b, term_metric k (PAbs a) (PAbs b) -> exists k', k' < k /\ term_metric k' a b. Proof. move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h. apply lored_nsteps_abs_inv in hva, hvb. move : hva => [a'][hva]?. subst. move : hvb => [b'][hvb]?. subst. simpl in *. exists (k - 1). hauto lq:on unfold:term_metric solve+:lia. Qed. Lemma term_metric_pair : forall k a0 b0 a1 b1, term_metric k (PPair a0 b0) (PPair a1 b1) -> exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1. Proof. move => k a0 b0 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h. apply lored_nsteps_pair_inv in hva, hvb. decompose record hva => {hva}. decompose record hvb => {hvb}. subst. simpl in *. exists (k - 1). hauto lqb:on solve+:lia. Qed. Lemma term_metric_bind : forall k p0 a0 b0 p1 a1 b1, term_metric k (PBind p0 a0 b0) (PBind p1 a1 b1) -> exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1. Proof. move => k p0 a0 b0 p1 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h. apply lored_nsteps_bind_inv in hva, hvb. decompose record hva => {hva}. decompose record hvb => {hvb}. subst. simpl in *. exists (k - 1). hauto lqb:on solve+:lia. Qed. Lemma term_metric_suc : forall k a b, term_metric k (PSuc a) (PSuc b) -> exists k', k' < k /\ term_metric k' a b. Proof. move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h. apply lored_nsteps_suc_inv in hva, hvb. move : hva => [a'][hva]?. subst. move : hvb => [b'][hvb]?. subst. simpl in *. exists (k - 1). hauto lq:on unfold:term_metric solve+:lia. Qed. Lemma term_metric_abs_neu k (a0 : PTm) u : term_metric k (PAbs a0) u -> ishne u -> exists j, j < k /\ term_metric j a0 (PApp (ren_PTm shift u) (VarPTm var_zero)). Proof. move => [i][j][va][vb][h0][h1][h2][h3]h4 neu. have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps. move /lored_nsteps_abs_inv : h0 => [a1][h01]?. subst. exists (k - 1). simpl in *. split. lia. exists i,j,a1,(PApp (ren_PTm shift vb) (VarPTm var_zero)). repeat split => //=. apply lored_nsteps_app_cong. by apply lored_nsteps_renaming. by rewrite ishne_ren. rewrite Bool.andb_true_r. sfirstorder use:ne_nf_ren. rewrite size_PTm_ren. lia. Qed. Lemma term_metric_pair_neu k (a0 b0 : PTm) u : term_metric k (PPair a0 b0) u -> ishne u -> exists j, j < k /\ term_metric j (PProj PL u) a0 /\ term_metric j (PProj PR u) b0. Proof. move => [i][j][va][vb][h0][h1][h2][h3]h4 neu. have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps. move /lored_nsteps_pair_inv : h0 => [i0][j0][a1][b1][?][?][?][?]?. subst. exists (k-1). sauto qb:on use:lored_nsteps_proj_cong unfold:term_metric solve+:lia. Qed. Lemma term_metric_app k (a0 b0 a1 b1 : PTm) : term_metric k (PApp a0 b0) (PApp a1 b1) -> ishne a0 -> ishne a1 -> exists j, j < k /\ term_metric j a0 a1 /\ term_metric j b0 b1. Proof. move => [i][j][va][vb][h0][h1][h2][h3]h4. move => hne0 hne1. move : lored_nsteps_app_inv h0 (hne0);repeat move/[apply]. move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst. move : lored_nsteps_app_inv h1 (hne1);repeat move/[apply]. move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst. simpl in *. exists (k - 1). hauto lqb:on use:lored_nsteps_app_cong, ne_nf unfold:term_metric solve+:lia. Qed. Lemma term_metric_proj k p0 p1 (a0 a1 : PTm) : term_metric k (PProj p0 a0) (PProj p1 a1) -> ishne a0 -> ishne a1 -> exists j, j < k /\ term_metric j a0 a1. Proof. move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1. move : lored_nsteps_proj_inv h0 (hne0);repeat move/[apply]. move => [i0][a2][hi][?]ha02. subst. move : lored_nsteps_proj_inv h1 (hne1);repeat move/[apply]. move => [i1][a3][hj][?]ha13. subst. exists (k- 1). hauto q:on use:ne_nf solve+:lia. Qed. Lemma term_metric_ind k P0 (a0 : PTm ) b0 c0 P1 a1 b1 c1 : term_metric k (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) -> ishne a0 -> ishne a1 -> exists j, j < k /\ term_metric j P0 P1 /\ term_metric j a0 a1 /\ term_metric j b0 b1 /\ term_metric j c0 c1. Proof. move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1. move /lored_nsteps_ind_inv /(_ hne0) : h0. move =>[iP][ia][ib][ic][P2][a2][b2][c2][?][?][?][?][?][?][?][?]?. subst. move /lored_nsteps_ind_inv /(_ hne1) : h1. move =>[iP0][ia0][ib0][ic0][P3][a3][b3][c3][?][?][?][?][?][?][?][?]?. subst. exists (k -1). simpl in *. hauto lq:on rew:off use:ne_nf b:on solve+:lia. Qed. Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b. Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed. Lemma term_metric_algo_dom : forall k a b, term_metric k a b -> algo_dom_r a b. Proof. move => [:hneL]. elim /Wf_nat.lt_wf_ind. move => n ih a b h. case /term_metric_case : (h); cycle 1. move => [k'][a'][h0][h1]h2. by apply : A_HRedL; eauto. case /term_metric_sym /term_metric_case : (h); cycle 1. move => [k'][b'][hb][/term_metric_sym h0]h1. move => ha. have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred. by apply : A_HRedR; eauto. move => /[swap]. case => hfa; case => hfb. - move : hfa hfb h. case : a; case : b => //=; eauto 5 using A_Conf' with adom. + hauto lq:on use:term_metric_abs db:adom. + hauto lq:on use:term_metric_pair db:adom. + hauto lq:on use:term_metric_bind db:adom. + hauto lq:on use:term_metric_suc db:adom. - abstract : hneL n ih a b h hfa hfb. case : a hfa h => //=. + hauto lq:on use:term_metric_abs_neu db:adom. + scrush use:term_metric_pair_neu db:adom. + case : b hfb => //=; eauto 5 using A_Conf' with adom. + case : b hfb => //=; eauto 5 using A_Conf' with adom. + case : b hfb => //=; eauto 5 using A_Conf' with adom. + case : b hfb => //=; eauto 5 using A_Conf' with adom. + case : b hfb => //=; eauto 5 using A_Conf' with adom. - hauto q:on use:algo_dom_sym, term_metric_sym. - move {hneL}. case : b hfa hfb h => //=; case a => //=; eauto 5 using A_Conf' with adom. + move => a0 b0 a1 b1 nfa0 nfa1. move /term_metric_app /(_ nfa0 nfa1) => [j][hj][ha]hb. apply A_NfNf. apply A_AppCong => //; eauto. have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred. have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred. eauto using algo_dom_r_algo_dom. + move => p0 A0 p1 A1 neA0 neA1. have {}nfa0 : HRed.nf A0 by sfirstorder use:hne_no_hred. have {}nfb0 : HRed.nf A1 by sfirstorder use:hne_no_hred. hauto lq:on use:term_metric_proj, algo_dom_r_algo_dom db:adom. + move => P0 a0 b0 c0 P1 a1 b1 c1 nea0 nea1. have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred. have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred. hauto lq:on use:term_metric_ind, algo_dom_r_algo_dom db:adom. Qed. Lemma sn_term_metric (a b : PTm) : SN a -> SN b -> exists k, term_metric k a b. Proof. move /LoReds.FromSN => [va [ha0 ha1]]. move /LoReds.FromSN => [vb [hb0 hb1]]. eapply relations.rtc_nsteps in ha0. eapply relations.rtc_nsteps in hb0. hauto lq:on unfold:term_metric solve+:lia. Qed. Lemma sn_algo_dom a b : SN a -> SN b -> algo_dom_r a b. Proof. move : sn_term_metric; repeat move/[apply]. move => [k]+. eauto using term_metric_algo_dom. Qed.