Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect. From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. From Hammer Require Import Tactics. Inductive lookup : nat -> list PTm -> PTm -> Prop := | here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A) | there i Γ A B : lookup i Γ A -> lookup (S i) (cons B Γ) (ren_PTm shift A). Lemma lookup_deter i Γ A B : lookup i Γ A -> lookup i Γ B -> A = B. Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed. Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U. Proof. move => ->. apply here. Qed. Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A -> lookup (S i) (cons B Γ) U. Proof. move => ->. apply there. Qed. Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A). Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) := forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A). Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j. Lemma up_injective (ξ : nat -> nat) : ren_inj ξ -> ren_inj (upRen_PTm_PTm ξ). Proof. move => h i j. case : i => //=; case : j => //=. move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj. Qed. Local Ltac2 rec solve_anti_ren () := let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in intro $x; lazy_match! Constr.type (Control.hyp x) with | nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj)) | _ => solve_anti_ren () end. Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). Lemma ren_injective (a b : PTm) (ξ : nat -> nat) : ren_inj ξ -> ren_PTm ξ a = ren_PTm ξ b -> a = b. Proof. move : ξ b. elim : a => //; try solve_anti_ren. move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective. Qed. Inductive HF : Set := | H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot. Definition ishf (a : PTm) := match a with | PPair _ _ => true | PAbs _ => true | PUniv _ => true | PBind _ _ _ => true | PNat => true | PSuc _ => true | PZero => true | _ => false end. Definition toHF (a : PTm) := match a with | PPair _ _ => H_Pair | PAbs _ => H_Abs | PUniv _ => H_Univ | PBind p _ _ => H_Bind p | PNat => H_Nat | PSuc _ => H_Suc | PZero => H_Zero | _ => H_Bot end. Fixpoint ishne (a : PTm) := match a with | VarPTm _ => true | PApp a _ => ishne a | PProj _ a => ishne a | PInd _ n _ _ => ishne n | _ => false end. Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false. Definition isuniv (a : PTm) := if a is PUniv _ then true else false. Definition ispair (a : PTm) := match a with | PPair _ _ => true | _ => false end. Definition isnat (a : PTm) := if a is PNat then true else false. Definition iszero (a : PTm) := if a is PZero then true else false. Definition issuc (a : PTm) := if a is PSuc _ then true else false. Definition isabs (a : PTm) := match a with | PAbs _ => true | _ => false end. Definition ishf_ren (a : PTm) (ξ : nat -> nat) : ishf (ren_PTm ξ a) = ishf a. Proof. case : a => //=. Qed. Definition isabs_ren (a : PTm) (ξ : nat -> nat) : isabs (ren_PTm ξ a) = isabs a. Proof. case : a => //=. Qed. Definition ispair_ren (a : PTm) (ξ : nat -> nat) : ispair (ren_PTm ξ a) = ispair a. Proof. case : a => //=. Qed. Definition ishne_ren (a : PTm) (ξ : nat -> nat) : ishne (ren_PTm ξ a) = ishne a. Proof. move : ξ. elim : a => //=. Qed. Lemma renaming_shift Γ A : renaming_ok (cons A Γ) Γ shift. Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed. Lemma subst_scons_id (a : PTm) : subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a. Proof. have E : subst_PTm VarPTm a = a by asimpl. rewrite -{2}E. apply ext_PTm. case => //=. Qed. Module HRed. Inductive R : PTm -> PTm -> Prop := (****************** Beta ***********************) | AppAbs a b : R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) | IndZero P b c : R (PInd P PZero b c) b | IndSuc P a b c : R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) (*************** Congruence ********************) | AppCong a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | IndCong P a0 a1 b c : R a0 a1 -> R (PInd P a0 b c) (PInd P a1 b c). End HRed.