From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. Require Import Arith.Wf_nat (well_founded_lt_compat). Require Import Psatz. From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn). From Hammer Require Import Tactics. Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import Btauto. Require Import Cdcl.Itauto. Ltac2 spec_refl () := List.iter (fun a => match a with | (i, _, _) => let h := Control.hyp i in try (specialize $h with (1 := eq_refl)) end) (Control.hyps ()). Ltac spec_refl := ltac2:(spec_refl ()). Module EPar. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : R a0 a1 -> R (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 | PairEta a0 a1 : R a0 a1 -> R (PPair (PProj PL a0) (PProj PR a0)) a1 (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | VarTm i : R (VarPTm i) (VarPTm i) | Univ i : R (PUniv i) (PUniv i) | BindCong p A0 A1 B0 B1 : R A0 A1 -> R B0 B1 -> R (PBind p A0 B0) (PBind p A1 B1) | BotCong : R PBot PBot. Lemma refl n (a : PTm n) : R a a. Proof. elim : n / a; hauto lq:on ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma AppEta' n a0 a1 (u : PTm n) : u = (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) -> R a0 a1 -> R u a1. Proof. move => ->. apply AppEta. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a0 a1 ha iha m ξ /=. eapply AppEta'; eauto. by asimpl. all : qauto ctrs:R. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b / h => n. move => a0 a1 ha iha m ρ0 ρ1 hρ /=. eapply AppEta'; eauto. by asimpl. all : hauto lq:on ctrs:R use:morphing_up. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. End EPar. Inductive SNe {n} : PTm n -> Prop := | N_Var i : SNe (VarPTm i) | N_App a b : SNe a -> SN b -> SNe (PApp a b) | N_Proj p a : SNe a -> SNe (PProj p a) | N_Bot : SNe PBot with SN {n} : PTm n -> Prop := | N_Pair a b : SN a -> SN b -> SN (PPair a b) | N_Abs a : SN a -> SN (PAbs a) | N_SNe a : SNe a -> SN a | N_Exp a b : TRedSN a b -> SN b -> SN a | N_Bind p A B : SN A -> SN B -> SN (PBind p A B) | N_Univ i : SN (PUniv i) with TRedSN {n} : PTm n -> PTm n -> Prop := | N_β a b : SN b -> TRedSN (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | N_AppL a0 a1 b : SN b -> TRedSN a0 a1 -> TRedSN (PApp a0 b) (PApp a1 b) | N_ProjPairL a b : SN b -> TRedSN (PProj PL (PPair a b)) a | N_ProjPairR a b : SN a -> TRedSN (PProj PR (PPair a b)) b | N_ProjCong p a b : TRedSN a b -> TRedSN (PProj p a) (PProj p b). Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop. Definition ishf {n} (a : PTm n) := match a with | PPair _ _ => true | PAbs _ => true | PUniv _ => true | PBind _ _ _ => true | _ => false end. Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false. Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false. Definition ispair {n} (a : PTm n) := match a with | PPair _ _ => true | _ => false end. Definition isabs {n} (a : PTm n) := match a with | PAbs _ => true | _ => false end. Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) : ishf (ren_PTm ξ a) = ishf a. Proof. case : a => //=. Qed. Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) : isabs (ren_PTm ξ a) = isabs a. Proof. case : a => //=. Qed. Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) : ispair (ren_PTm ξ a) = ispair a. Proof. case : a => //=. Qed. Lemma PProj_imp n p a : @ishf n a -> ~~ ispair a -> ~ SN (PProj p a). Proof. move => + + h. move E : (PProj p a) h => u h. move : p a E. elim : n u / h => //=. hauto lq:on inv:SNe,PTm. hauto lq:on inv:TRedSN. Qed. Lemma PAbs_imp n a b : @ishf n a -> ~~ isabs a -> ~ SN (PApp a b). Proof. move => + + h. move E : (PApp a b) h => u h. move : a b E. elim : n u /h=>//=. hauto lq:on inv:SNe,PTm. hauto lq:on inv:TRedSN. Qed. Lemma PProjAbs_imp n p (a : PTm (S n)) : ~ SN (PProj p (PAbs a)). Proof. move E : (PProj p (PAbs a)) => u hu. move : p a E. elim : n u / hu=>//=. hauto lq:on inv:SNe. hauto lq:on inv:TRedSN. Qed. Lemma PAppPair_imp n (a b0 b1 : PTm n ) : ~ SN (PApp (PPair b0 b1) a). Proof. move E : (PApp (PPair b0 b1) a) => u hu. move : a b0 b1 E. elim : n u / hu=>//=. hauto lq:on inv:SNe. hauto lq:on inv:TRedSN. Qed. Lemma PAppBind_imp n p (A : PTm n) B b : ~ SN (PApp (PBind p A B) b). Proof. move E :(PApp (PBind p A B) b) => u hu. move : p A B b E. elim : n u /hu=> //=. hauto lq:on inv:SNe. hauto lq:on inv:TRedSN. Qed. Lemma PProjBind_imp n p p' (A : PTm n) B : ~ SN (PProj p (PBind p' A B)). Proof. move E :(PProj p (PBind p' A B)) => u hu. move : p p' A B E. elim : n u /hu=>//=. hauto lq:on inv:SNe. hauto lq:on inv:TRedSN. Qed. Scheme sne_ind := Induction for SNe Sort Prop with sn_ind := Induction for SN Sort Prop with sred_ind := Induction for TRedSN Sort Prop. Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind. Fixpoint ne {n} (a : PTm n) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => false | PPair _ _ => false | PProj _ a => ne a | PUniv _ => false | PBind _ _ _ => false | PBot => true end with nf {n} (a : PTm n) := match a with | VarPTm i => true | PApp a b => ne a && nf b | PAbs a => nf a | PPair a b => nf a && nf b | PProj _ a => ne a | PUniv _ => true | PBind _ A B => nf A && nf B | PBot => true end. Lemma ne_nf n a : @ne n a -> nf a. Proof. elim : a => //=. Qed. Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop := | T_Refl : TRedSN' a a | T_Once b : TRedSN a b -> TRedSN' a b. Lemma SN_Proj n p (a : PTm n) : SN (PProj p a) -> SN a. Proof. move E : (PProj p a) => u h. move : a E. elim : n u / h => n //=; sauto. Qed. Lemma N_β' n a (b : PTm n) u : u = (subst_PTm (scons b VarPTm) a) -> SN b -> TRedSN (PApp (PAbs a) b) u. Proof. move => ->. apply N_β. Qed. Lemma sn_renaming n : (forall (a : PTm n) (s : SNe a), forall m (ξ : fin n -> fin m), SNe (ren_PTm ξ a)) /\ (forall (a : PTm n) (s : SN a), forall m (ξ : fin n -> fin m), SN (ren_PTm ξ a)) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin n -> fin m), TRedSN (ren_PTm ξ a) (ren_PTm ξ b)). Proof. move : n. apply sn_mutual => n; try qauto ctrs:SN, SNe, TRedSN depth:1. move => a b ha iha m ξ /=. apply N_β'. by asimpl. eauto. Qed. #[export]Hint Constructors SN SNe TRedSN : sn. Ltac2 rec solve_anti_ren () := let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in intro $x; lazy_match! Constr.type (Control.hyp x) with | fin _ -> _ _ => (ltac1:(case;qauto depth:2 db:sn)) | _ => solve_anti_ren () end. Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). Lemma sn_antirenaming n : (forall (a : PTm n) (s : SNe a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SN b) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin m -> fin n) a0, a = ren_PTm ξ a0 -> exists b0, TRedSN a0 b0 /\ b = ren_PTm ξ b0). Proof. move : n. apply sn_mutual => n; try solve_anti_ren. move => a b ha iha m ξ []//= u u0 [+ ?]. subst. case : u => //= => u [*]. subst. spec_refl. eexists. split. apply N_β=>//. by asimpl. move => a b hb ihb m ξ[]//= p p0 [? +]. subst. case : p0 => //= p p0 [*]. subst. spec_refl. by eauto with sn. move => a b ha iha m ξ[]//= u u0 [? ]. subst. case : u0 => //=. move => p p0 [*]. subst. spec_refl. by eauto with sn. Qed. Lemma sn_unmorphing n : (forall (a : PTm n) (s : SNe a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SN b) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall m (ρ : fin m -> PTm n) a0, a = subst_PTm ρ a0 -> (exists b0, b = subst_PTm ρ b0 /\ TRedSN a0 b0) \/ SNe a0). Proof. move : n. apply sn_mutual => n; try solve_anti_ren. - move => a b ha iha m ξ b0. case : b0 => //=. + hauto lq:on rew:off db:sn. + move => p p0 [+ ?]. subst. case : p => //=. hauto lq:on db:sn. move => p [?]. subst. asimpl. left. spec_refl. eexists. split; last by eauto using N_β. by asimpl. - move => a0 a1 b hb ihb ha iha m ρ []//=. + hauto lq:on rew:off db:sn. + move => t0 t1 [*]. subst. spec_refl. case : iha. * move => [u [? hu]]. subst. left. eexists. split; eauto using N_AppL. reflexivity. * move => h. right. apply N_App => //. - move => a b hb ihb m ρ []//=. + hauto l:on ctrs:TRedSN. + move => p p0 [?]. subst. case : p0 => //=. * hauto lq:on rew:off db:sn. * move => p p0 [*]. subst. hauto lq:on db:sn. - move => a b ha iha m ρ []//=; first by hauto l:on db:sn. hauto q:on inv:PTm db:sn. - move => p a b ha iha m ρ []//=; first by hauto l:on db:sn. move => t0 t1 [*]. subst. spec_refl. case : iha. + move => [b0 [? h]]. subst. left. eexists. split; last by eauto with sn. reflexivity. + hauto lq:on db:sn. Qed. Lemma SN_AppInv : forall n (a b : PTm n), SN (PApp a b) -> SN a /\ SN b. Proof. move => n a b. move E : (PApp a b) => u hu. move : a b E. elim : n u /hu=>//=. hauto lq:on rew:off inv:SNe db:sn. move => n a b ha hb ihb a0 b0 ?. subst. inversion ha; subst. move {ihb}. hecrush use:sn_unmorphing. hauto lq:on db:sn. Qed. Lemma SN_ProjInv : forall n p (a : PTm n), SN (PProj p a) -> SN a. Proof. move => n p a. move E : (PProj p a) => u hu. move : p a E. elim : n u / hu => //=. hauto lq:on rew:off inv:SNe db:sn. hauto lq:on rew:off inv:TRedSN db:sn. Qed. Lemma epar_sn_preservation n : (forall (a : PTm n) (s : SNe a), forall b, EPar.R a b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall b, EPar.R a b -> SN b) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall c, EPar.R a c -> exists d, TRedSN' c d /\ EPar.R b d). Proof. move : n. apply sn_mutual => n. - sauto lq:on. - sauto lq:on. - sauto lq:on. - sauto lq:on. - move => a b ha iha hb ihb b0. inversion 1; subst. + have /iha : (EPar.R (PProj PL a0) (PProj PL b0)) by sauto lq:on. sfirstorder use:SN_Proj. + sauto lq:on. - move => a ha iha b. inversion 1; subst. + have : EPar.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)). apply EPar.AppCong; eauto using EPar.refl. sfirstorder use:EPar.renaming. move /iha. move /SN_AppInv => [+ _]. hauto l:on use:sn_antirenaming. + sauto lq:on. - sauto lq:on. - sauto lq:on. - sauto lq:on. - sauto lq:on. - move => a b ha iha c h0. inversion h0; subst. inversion H1; subst. + exists (PApp a1 b1). split. sfirstorder. asimpl. sauto lq:on. + have {}/iha := H3 => iha. exists (subst_PTm (scons b1 VarPTm) a2). split. sauto lq:on. hauto lq:on use:EPar.morphing, EPar.refl inv:option. - sauto. - move => a b hb ihb c. elim /EPar.inv => //= _. move => p a0 a1 ha [*]. subst. elim /EPar.inv : ha => //= _. + move => a0 a2 ha' [*]. subst. exists (PProj PL a1). split. sauto. sauto lq:on. + sauto lq:on rew:off. - move => a b ha iha c. elim /EPar.inv => //=_. move => p a0 a1 + [*]. subst. elim /EPar.inv => //=_. + move => a0 a2 h1 [*]. subst. exists (PProj PR a1). split. sauto. sauto lq:on. + sauto lq:on. - sauto. Qed. Module RRed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppAbs a b : R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | BindCong0 p A0 A1 B : R A0 A1 -> R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> R (PBind p A B0) (PBind p A B1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma AppAbs' n a (b : PTm n) u : u = (subst_PTm (scons b VarPTm) a) -> R (PApp (PAbs a) b) u. Proof. move => ->. by apply AppAbs. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a b m ξ /=. apply AppAbs'. by asimpl. all : qauto ctrs:R. Qed. Ltac2 rec solve_anti_ren () := let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in intro $x; lazy_match! Constr.type (Control.hyp x) with | fin _ -> _ _ => (ltac1:(case;hauto q:on depth:2 ctrs:RRed.R)) | _ => solve_anti_ren () end. Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. Proof. move E : (ren_PTm ξ a) => u h. move : n ξ a E. elim : m u b/h; try solve_anti_ren. - move => n a b m ξ []//=. move => []//= t t0 [*]. subst. eexists. split. apply AppAbs. by asimpl. - move => n p a b m ξ []//=. move => p0 []//=. hauto q:on ctrs:R. Qed. Lemma nf_imp n (a b : PTm n) : nf a -> R a b -> False. Proof. move/[swap]. induction 1; hauto qb:on inv:PTm. Qed. Lemma FromRedSN n (a b : PTm n) : TRedSN a b -> RRed.R a b. Proof. induction 1; hauto lq:on ctrs:RRed.R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. move => h. move : m ρ. elim : n a b / h => n. move => a b m ρ /=. eapply AppAbs'; eauto; cycle 1. by asimpl. all : hauto lq:on ctrs:R. Qed. End RRed. Module RPar. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Beta ***********************) | AppAbs a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) | ProjPair p a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | VarTm i : R (VarPTm i) (VarPTm i) | Univ i : R (PUniv i) (PUniv i) | BindCong p A0 A1 B0 B1 : R A0 A1 -> R B0 B1 -> R (PBind p A0 B0) (PBind p A1 B1) | BotCong : R PBot PBot. Lemma refl n (a : PTm n) : R a a. Proof. elim : n / a; hauto lq:on ctrs:R. Qed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma AppAbs' n a0 a1 (b0 b1 : PTm n) u : u = (subst_PTm (scons b1 VarPTm) a1) -> R a0 a1 -> R b0 b1 -> R (PApp (PAbs a0) b0) u. Proof. move => ->. apply AppAbs. Qed. Lemma ProjPair' n p u (a0 a1 b0 b1 : PTm n) : u = (if p is PL then a1 else b1) -> R a0 a1 -> R b0 b1 -> R (PProj p (PPair a0 b0)) u. Proof. move => ->. apply ProjPair. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a0 a1 b0 b1 ha iha hb ihb m ξ /=. eapply AppAbs'; eauto. by asimpl. all : qauto ctrs:R use:ProjPair'. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). Proof. eauto using renaming. Qed. Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : R a b -> (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). Proof. hauto q:on inv:option. Qed. Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, R (ρ0 i) (ρ1 i)) -> R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b / h => n. move => a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. eapply AppAbs'; eauto; cycle 1. sfirstorder use:morphing_up. by asimpl. all : hauto lq:on ctrs:R use:morphing_up, ProjPair'. Qed. Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto l:on use:morphing, refl. Qed. Lemma cong n (a0 a1 : PTm (S n)) b0 b1 : R a0 a1 -> R b0 b1 -> R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1). Proof. move => h0 h1. apply morphing=>//. hauto q:on inv:option ctrs:R. Qed. Lemma FromRRed n (a b : PTm n) : RRed.R a b -> RPar.R a b. Proof. induction 1; qauto l:on use:RPar.refl ctrs:RPar.R. Qed. Function tstar {n} (a : PTm n) := match a with | VarPTm i => a | PAbs a => PAbs (tstar a) | PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a) | PApp a b => PApp (tstar a) (tstar b) | PPair a b => PPair (tstar a) (tstar b) | PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b) | PProj p a => PProj p (tstar a) | PUniv i => PUniv i | PBind p A B => PBind p (tstar A) (tstar B) | PBot => PBot end. Lemma triangle n (a b : PTm n) : RPar.R a b -> RPar.R b (tstar a). Proof. move : b. apply tstar_ind => {}n{}a. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. - hauto lq:on rew:off inv:R use:cong ctrs:R. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. - move => p a0 b ? ? ih b0. subst. elim /inv => //=_. + move => p a1 a2 b1 b2 h0 h1[*]. subst. by apply ih. + move => p a1 a2 ha [*]. subst. elim /inv : ha => //=_. move => a1 a3 b0 b1 h0 h1 [*]. subst. apply : ProjPair'; eauto using refl. - move => p a0 b ? p0 ?. subst. case : p0 => //= _. move => ih b0. elim /inv => //=_. + hauto l:on. + move => p a1 a2 ha [*]. subst. elim /inv : ha => //=_ > ? ? [*]. subst. apply : ProjPair'; eauto using refl. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. Qed. Lemma diamond n (a b c : PTm n) : R a b -> R a c -> exists d, R b d /\ R c d. Proof. eauto using triangle. Qed. End RPar. Lemma red_sn_preservation n : (forall (a : PTm n) (s : SNe a), forall b, RPar.R a b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall b, RPar.R a b -> SN b) /\ (forall (a b : PTm n) (_ : TRedSN a b), forall c, RPar.R a c -> exists d, TRedSN' c d /\ RPar.R b d). Proof. move : n. apply sn_mutual => n. - hauto l:on inv:RPar.R. - qauto l:on inv:RPar.R,SNe,SN ctrs:SNe. - hauto lq:on inv:RPar.R, SNe ctrs:SNe. - hauto lq:on inv:RPar.R, SNe ctrs:SNe. - qauto l:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN. - hauto q:on ctrs:SN inv:SN, TRedSN'. - hauto lq:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN inv:RPar.R. - move => a b ha iha hb ihb. elim /RPar.inv : ihb => //=_. + move => a0 a1 b0 b1 ha0 hb0 [*]. subst. eauto using RPar.cong, T_Refl. + move => a0 a1 b0 b1 h0 h1 [*]. subst. elim /RPar.inv : h0 => //=_. move => a0 a2 h [*]. subst. eexists. split. apply T_Once. hauto lq:on ctrs:TRedSN. eauto using RPar.cong. - move => a0 a1 b hb ihb ha iha c. elim /RPar.inv => //=_. + qauto l:on inv:TRedSN. + move => a2 a3 b0 b1 h0 h1 [*]. subst. have {}/iha := h0. move => [d [iha0 iha1]]. hauto lq:on rew:off inv:TRedSN' ctrs:TRedSN, RPar.R, TRedSN'. - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. - sauto. Qed. Module RReds. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RRed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc RRed.R a b -> rtc RRed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc RRed.R a0 a1 -> rtc RRed.R b0 b1 -> rtc RRed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc RRed.R a0 a1 -> rtc RRed.R b0 b1 -> rtc RRed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc RRed.R a0 a1 -> rtc RRed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc RRed.R A0 A1 -> rtc RRed.R B0 B1 -> rtc RRed.R (PBind p A0 B0) (PBind p A1 B1). Proof. solve_s. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : a b /h; hauto lq:on ctrs:rtc use:RRed.renaming. Qed. Lemma FromRPar n (a b : PTm n) (h : RPar.R a b) : rtc RRed.R a b. Proof. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. move => n a0 a1 b0 b1 ha iha hb ihb. apply : rtc_r; last by apply RRed.AppAbs. by eauto using AppCong, AbsCong. move => n p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_r; last by apply RRed.ProjPair. by eauto using PairCong, ProjCong. Qed. Lemma RParIff n (a b : PTm n) : rtc RRed.R a b <-> rtc RPar.R a b. Proof. split. induction 1; hauto l:on ctrs:rtc use:RPar.FromRRed, @relations.rtc_transitive. induction 1; hauto l:on ctrs:rtc use:FromRPar, @relations.rtc_transitive. Qed. Lemma nf_refl n (a b : PTm n) : rtc RRed.R a b -> nf a -> a = b. Proof. induction 1; sfirstorder use:RRed.nf_imp. Qed. Lemma FromRedSNs n (a b : PTm n) : rtc TRedSN a b -> rtc RRed.R a b. Proof. induction 1; hauto lq:on ctrs:rtc use:RRed.FromRedSN. Qed. End RReds. Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) : (ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)). Proof. move : m ξ. elim : n / a => //=; solve [hauto b:on]. Qed. Module NeEPar. Inductive R_nonelim {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta a0 a1 : ~~ ishf a0 -> R_elim a0 a1 -> R_nonelim (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 | PairEta a0 a1 : ~~ ishf a0 -> R_elim a0 a1 -> R_nonelim (PPair (PProj PL a0) (PProj PR a0)) a1 (*************** Congruence ********************) | AbsCong a0 a1 : R_nonelim a0 a1 -> R_nonelim (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R_elim a0 a1 -> R_nonelim b0 b1 -> R_nonelim (PApp a0 b0) (PApp a1 b1) | PairCong a0 a1 b0 b1 : R_nonelim a0 a1 -> R_nonelim b0 b1 -> R_nonelim (PPair a0 b0) (PPair a1 b1) | ProjCong p a0 a1 : R_elim a0 a1 -> R_nonelim (PProj p a0) (PProj p a1) | VarTm i : R_nonelim (VarPTm i) (VarPTm i) | Univ i : R_nonelim (PUniv i) (PUniv i) | BindCong p A0 A1 B0 B1 : R_nonelim A0 A1 -> R_nonelim B0 B1 -> R_nonelim (PBind p A0 B0) (PBind p A1 B1) | BotCong : R_nonelim PBot PBot with R_elim {n} : PTm n -> PTm n -> Prop := | NAbsCong a0 a1 : R_nonelim a0 a1 -> R_elim (PAbs a0) (PAbs a1) | NAppCong a0 a1 b0 b1 : R_elim a0 a1 -> R_nonelim b0 b1 -> R_elim (PApp a0 b0) (PApp a1 b1) | NPairCong a0 a1 b0 b1 : R_nonelim a0 a1 -> R_nonelim b0 b1 -> R_elim (PPair a0 b0) (PPair a1 b1) | NProjCong p a0 a1 : R_elim a0 a1 -> R_elim (PProj p a0) (PProj p a1) | NVarTm i : R_elim (VarPTm i) (VarPTm i) | NUniv i : R_elim (PUniv i) (PUniv i) | NBindCong p A0 A1 B0 B1 : R_nonelim A0 A1 -> R_nonelim B0 B1 -> R_elim (PBind p A0 B0) (PBind p A1 B1) | NBotCong : R_elim PBot PBot. Scheme epar_elim_ind := Induction for R_elim Sort Prop with epar_nonelim_ind := Induction for R_nonelim Sort Prop. Combined Scheme epar_mutual from epar_elim_ind, epar_nonelim_ind. Lemma R_elim_nf n : (forall (a b : PTm n), R_elim a b -> nf b -> nf a) /\ (forall (a b : PTm n), R_nonelim a b -> nf b -> nf a). Proof. move : n. apply epar_mutual => n //=. - move => a0 a1 b0 b1 h ih h' ih' /andP [h0 h1]. have hb0 : nf b0 by eauto. suff : ne a0 by qauto b:on. hauto q:on inv:R_elim. - hauto lb:on. - hauto lq:on inv:R_elim. - hauto b:on. - move => a0 a1 /negP ha' ha ih ha1. have {ih} := ih ha1. move => ha0. suff : ne a0 by hauto lb:on drew:off use:ne_nf_ren. inversion ha; subst => //=. - move => a0 a1 /negP ha' ha ih ha1. have {}ih := ih ha1. have : ne a0 by hauto lq:on inv:PTm. qauto lb:on. - move => a0 a1 b0 b1 ha iha hb ihb /andP [h0 h1]. have {}ihb := ihb h1. have {}iha := iha ltac:(eauto using ne_nf). suff : ne a0 by hauto lb:on. move : ha h0. hauto lq:on inv:R_elim. - hauto lb: on drew: off. - hauto lq:on rew:off inv:R_elim. - sfirstorder b:on. Qed. Lemma R_nonelim_nothf n (a b : PTm n) : R_nonelim a b -> ~~ ishf a -> R_elim a b. Proof. move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_elim. Qed. Lemma R_elim_nonelim n (a b : PTm n) : R_elim a b -> R_nonelim a b. move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_nonelim. Qed. Lemma ToEPar : forall n, (forall (a b : PTm n), R_elim a b -> EPar.R a b) /\ (forall (a b : PTm n), R_nonelim a b -> EPar.R a b). Proof. apply epar_mutual; qauto l:on ctrs:EPar.R. Qed. End NeEPar. Module Type NoForbid. Parameter P : forall n, PTm n -> Prop. Arguments P {n}. Axiom P_EPar : forall n (a b : PTm n), EPar.R a b -> P a -> P b. Axiom P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. (* Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). *) (* Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). *) (* Axiom P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). *) (* Axiom P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). *) Axiom PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). Axiom PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Axiom P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B. Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. End NoForbid. Module Type NoForbid_FactSig (M : NoForbid). Axiom P_EPars : forall n (a b : PTm n), rtc EPar.R a b -> M.P a -> M.P b. Axiom P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> M.P a -> M.P b. End NoForbid_FactSig. Module NoForbid_Fact (M : NoForbid) : NoForbid_FactSig M. Import M. Lemma P_EPars : forall n (a b : PTm n), rtc EPar.R a b -> P a -> P b. Proof. induction 1; eauto using P_EPar, rtc_l, rtc_refl. Qed. Lemma P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> P a -> P b. Proof. induction 1; eauto using P_RRed, rtc_l, rtc_refl. Qed. End NoForbid_Fact. Module SN_NoForbid <: NoForbid. Definition P := @SN. Arguments P {n}. Lemma P_EPar : forall n (a b : PTm n), EPar.R a b -> P a -> P b. Proof. sfirstorder use:epar_sn_preservation. Qed. Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed. Lemma PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). sfirstorder use:fp_red.PAbs_imp. Qed. Lemma PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). sfirstorder use:fp_red.PProj_imp. Qed. Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Proof. sfirstorder use:SN_AppInv. Qed. Lemma P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. move => n a b. move E : (PPair a b) => u h. move : a b E. elim : n u / h; sauto lq:on rew:off. Qed. Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. Proof. sfirstorder use:SN_ProjInv. Qed. Lemma P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B. Proof. move => n p A B. move E : (PBind p A B) => u hu. move : p A B E. elim : n u /hu=>//=;sauto lq:on rew:off. Qed. Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Proof. move => n a. move E : (PAbs a) => u h. move : E. move : a. induction h; sauto lq:on rew:off. Qed. Lemma P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. Proof. hauto lq:on use:sn_antirenaming, sn_renaming. Qed. Lemma P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). Proof. sfirstorder use:PProjBind_imp. Qed. Lemma P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). Proof. sfirstorder use:PAppBind_imp. Qed. End SN_NoForbid. Module NoForbid_FactSN := NoForbid_Fact SN_NoForbid. Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). Import M MFacts. #[local]Hint Resolve P_EPar P_RRed PAbs_imp PProj_imp : forbid. Lemma η_split n (a0 a1 : PTm n) : EPar.R a0 a1 -> P a0 -> exists b, rtc RRed.R a0 b /\ NeEPar.R_nonelim b a1. Proof. move => h. elim : n a0 a1 /h . - move => n a0 a1 ha ih /[dup] hP. move /P_AbsInv /P_AppInv => [/P_renaming ha0 _]. have {ih} := ih ha0. move => [b [ih0 ih1]]. case /orP : (orNb (ishf b)). exists (PAbs (PApp (ren_PTm shift b) (VarPTm var_zero))). split. apply RReds.AbsCong. apply RReds.AppCong; auto using rtc_refl. by eauto using RReds.renaming. apply NeEPar.AppEta=>//. sfirstorder use:NeEPar.R_nonelim_nothf. case /orP : (orbN (isabs b)). + case : b ih0 ih1 => //= p ih0 ih1 _ _. set q := PAbs _. suff : rtc RRed.R q (PAbs p) by sfirstorder. subst q. apply : rtc_r. apply RReds.AbsCong. apply RReds.AppCong. by eauto using RReds.renaming. apply rtc_refl. apply : RRed.AbsCong => /=. apply RRed.AppAbs'. by asimpl. (* violates SN *) + move /P_AbsInv in hP. have {}hP : P (PApp (ren_PTm shift b) (VarPTm var_zero)) by sfirstorder use:P_RReds, RReds.AppCong, @rtc_refl, RReds.renaming. move => ? ?. have ? : ~~ isabs (ren_PTm shift b) by scongruence use:isabs_ren. have ? : ishf (ren_PTm shift b) by scongruence use:ishf_ren. exfalso. sfirstorder use:PAbs_imp. - move => n a0 a1 h ih /[dup] hP. move /P_PairInv => [/P_ProjInv + _]. move : ih => /[apply]. move => [b [ih0 ih1]]. case /orP : (orNb (ishf b)). exists (PPair (PProj PL b) (PProj PR b)). split. sfirstorder use:RReds.PairCong,RReds.ProjCong. hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf. case /orP : (orbN (ispair b)). + case : b ih0 ih1 => //=. move => t0 t1 ih0 h1 _ _. exists (PPair t0 t1). split => //=. apply RReds.PairCong. apply : rtc_r; eauto using RReds.ProjCong. apply RRed.ProjPair. apply : rtc_r; eauto using RReds.ProjCong. apply RRed.ProjPair. + move => ? ?. exfalso. move/P_PairInv : hP=>[hP _]. have : rtc RRed.R (PProj PL a0) (PProj PL b) by eauto using RReds.ProjCong. move : P_RReds hP. repeat move/[apply] => /=. sfirstorder use:PProj_imp. - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.AbsCong, P_AbsInv. - move => n a0 a1 b0 b1 ha iha hb ihb. move => /[dup] hP /P_AppInv [hP0 hP1]. have {iha} [a2 [iha0 iha1]] := iha hP0. have {ihb} [b2 [ihb0 ihb1]] := ihb hP1. case /orP : (orNb (ishf a2)) => [h|]. + exists (PApp a2 b2). split; first by eauto using RReds.AppCong. hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf. + case /orP : (orbN (isabs a2)). (* case : a2 iha0 iha1 => //=. *) * case : a2 iha0 iha1 => //= p h0 h1 _ _. inversion h1; subst. ** exists (PApp a2 b2). split. apply : rtc_r. apply RReds.AppCong; eauto. apply RRed.AppAbs'. by asimpl. hauto lq:on ctrs:NeEPar.R_nonelim. ** hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.AppCong. (* Impossible *) * move =>*. exfalso. have : P (PApp a2 b0) by sfirstorder use:RReds.AppCong, @rtc_refl, P_RReds. sfirstorder use:PAbs_imp. - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.PairCong, P_PairInv. - move => n p a0 a1 ha ih /[dup] hP /P_ProjInv. move : ih => /[apply]. move => [a2 [iha0 iha1]]. case /orP : (orNb (ishf a2)) => [h|]. exists (PProj p a2). split. eauto using RReds.ProjCong. qauto l:on ctrs:NeEPar.R_nonelim, NeEPar.R_elim use:NeEPar.R_nonelim_nothf. case /orP : (orNb (ispair a2)). + move => *. exfalso. have : rtc RRed.R (PProj p a0) (PProj p a2) by sfirstorder use:RReds.ProjCong ctrs:rtc. move : P_RReds hP. repeat move/[apply]. sfirstorder use:PProj_imp. + case : a2 iha0 iha1 => //= u0 u1 iha0 iha1 _ _. inversion iha1; subst. * exists (PProj p a2). split. apply : rtc_r. apply RReds.ProjCong; eauto. clear. hauto l:on inv:PTag. hauto lq:on ctrs:NeEPar.R_nonelim. * hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.ProjCong. - hauto lq:on ctrs:rtc, NeEPar.R_nonelim. - hauto l:on. - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. Qed. Lemma eta_postponement n a b c : @P n a -> EPar.R a b -> RRed.R b c -> exists d, rtc RRed.R a d /\ EPar.R d c. Proof. move => + h. move : c. elim : n a b /h => //=. - move => n a0 a1 ha iha c /[dup] hP /P_AbsInv /P_AppInv [/P_renaming hP' _] hc. move : iha (hP') (hc); repeat move/[apply]. move => [d [h0 h1]]. exists (PAbs (PApp (ren_PTm shift d) (VarPTm var_zero))). split. hauto lq:on rew:off ctrs:rtc use:RReds.AbsCong, RReds.AppCong, RReds.renaming. hauto lq:on ctrs:EPar.R. - move => n a0 a1 ha iha c /P_PairInv [/P_ProjInv + _]. move /iha => /[apply]. move => [d [h0 h1]]. exists (PPair (PProj PL d) (PProj PR d)). hauto lq:on ctrs:EPar.R use:RReds.PairCong, RReds.ProjCong. - move => n a0 a1 ha iha c /P_AbsInv /[swap]. elim /RRed.inv => //=_. move => a2 a3 + [? ?]. subst. move : iha; repeat move/[apply]. hauto lq:on use:RReds.AbsCong ctrs:EPar.R. - move => n a0 a1 b0 b1 ha iha hb ihb c hP. elim /RRed.inv => //= _. + move => a2 b2 [*]. subst. have [hP' hP''] : P a0 /\ P b0 by sfirstorder use:P_AppInv. move {iha ihb}. move /η_split /(_ hP') : ha. move => [b [h0 h1]]. inversion h1; subst. * inversion H0; subst. exists (subst_PTm (scons b0 VarPTm) a3). split; last by scongruence use:EPar.morphing. apply : relations.rtc_transitive. apply RReds.AppCong. eassumption. apply rtc_refl. apply : rtc_l. apply RRed.AppCong0. apply RRed.AbsCong. simpl. apply RRed.AppAbs. asimpl. apply rtc_once. apply RRed.AppAbs. * exfalso. move : hP h0. clear => hP h0. have : rtc RRed.R (PApp a0 b0) (PApp (PPair (PProj PL a1) (PProj PR a1)) b0) by qauto l:on ctrs:rtc use:RReds.AppCong. move : P_RReds hP. repeat move/[apply]. sfirstorder use:PAbs_imp. * exists (subst_PTm (scons b0 VarPTm) a1). split. apply : rtc_r; last by apply RRed.AppAbs. hauto lq:on ctrs:rtc use:RReds.AppCong. hauto l:on inv:option use:EPar.morphing,NeEPar.ToEPar. + move => a2 a3 b2 ha2 [*]. subst. move : iha (ha2) {ihb} => /[apply]. have : P a0 by sfirstorder use:P_AppInv. move /[swap]/[apply]. move => [d [h0 h1]]. exists (PApp d b0). hauto lq:on ctrs:EPar.R, rtc use:RReds.AppCong. + move => a2 b2 b3 hb2 [*]. subst. move {iha}. have : P b0 by sfirstorder use:P_AppInv. move : ihb hb2; repeat move /[apply]. hauto lq:on rew:off ctrs:EPar.R, rtc use:RReds.AppCong. - move => n a0 a1 b0 b1 ha iha hb ihb c /P_PairInv [hP hP']. elim /RRed.inv => //=_; hauto lq:on rew:off ctrs:EPar.R, rtc use:RReds.PairCong. - move => n p a0 a1 ha iha c /[dup] hP /P_ProjInv hP'. elim / RRed.inv => //= _. + move => p0 a2 b0 [*]. subst. move : η_split hP' ha; repeat move/[apply]. move => [a1 [h0 h1]]. inversion h1; subst. * sauto q:on ctrs:rtc use:RReds.ProjCong, PProj_imp, P_RReds. * inversion H0; subst. exists (if p is PL then a1 else b1). split; last by scongruence use:NeEPar.ToEPar. apply : relations.rtc_transitive. apply RReds.ProjCong; eauto. apply : rtc_l. apply RRed.ProjCong. apply RRed.PairCong0. apply RRed.ProjPair. apply : rtc_l. apply RRed.ProjCong. apply RRed.PairCong1. apply RRed.ProjPair. apply rtc_once. apply RRed.ProjPair. * exists (if p is PL then a3 else b1). split; last by hauto lq:on use:NeEPar.ToEPar. apply : relations.rtc_transitive. eauto using RReds.ProjCong. apply rtc_once. apply RRed.ProjPair. + move => p0 a2 a3 h0 [*]. subst. move : iha hP' h0;repeat move/[apply]. hauto lq:on ctrs:rtc, EPar.R use:RReds.ProjCong. - hauto lq:on inv:RRed.R. - hauto lq:on inv:RRed.R ctrs:rtc. - sauto lq:on ctrs:EPar.R, rtc use:RReds.BindCong, P_BindInv, @relations.rtc_transitive. - hauto lq:on inv:RRed.R ctrs:rtc. Qed. Lemma η_postponement_star n a b c : @P n a -> EPar.R a b -> rtc RRed.R b c -> exists d, rtc RRed.R a d /\ EPar.R d c. Proof. move => + + h. move : a. elim : b c / h. - sfirstorder. - move => a0 a1 a2 ha ha' iha u hu hu'. move : eta_postponement (hu) ha hu'; repeat move/[apply]. move => [d [h0 h1]]. have : P d by sfirstorder use:P_RReds. move : iha h1; repeat move/[apply]. sfirstorder use:@relations.rtc_transitive. Qed. Lemma η_postponement_star' n a b c : @P n a -> EPar.R a b -> rtc RRed.R b c -> exists d, rtc RRed.R a d /\ NeEPar.R_nonelim d c. Proof. move => h0 h1 h2. have : exists d, rtc RRed.R a d /\ EPar.R d c by eauto using η_postponement_star. move => [d [h3 /η_split]]. move /(_ ltac:(eauto using P_RReds)). sfirstorder use:@relations.rtc_transitive. Qed. End UniqueNF. Module SN_UniqueNF := UniqueNF SN_NoForbid NoForbid_FactSN. Module ERed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) | AppEta a : R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a | PairEta a : R (PPair (PProj PL a) (PProj PR a)) a (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | BindCong0 p A0 A1 B : R A0 A1 -> R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> R (PBind p A B0) (PBind p A B1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. Lemma ToEPar n (a b : PTm n) : ERed.R a b -> EPar.R a b. Proof. induction 1; hauto lq:on use:EPar.refl ctrs:EPar.R. Qed. Ltac2 rec solve_anti_ren () := let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in intro $x; lazy_match! Constr.type (Control.hyp x) with | fin _ -> _ _ => (ltac1:(case;hauto q:on depth:2 ctrs:ERed.R)) | _ => solve_anti_ren () end. Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). (* Definition down n m (ξ : fin n -> fin m) (a : fin (S n)) : fin m. *) (* destruct a. *) (* exact (ξ f). *) Lemma up_injective n m (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j. Proof. sblast inv:option. Qed. Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> ren_PTm ξ a = ren_PTm ξ b -> a = b. Proof. move : m ξ b. elim : n / a => //; try solve_anti_ren. move => n a iha m ξ []//=. move => u hξ [h]. apply iha in h. by subst. destruct i, j=>//=. hauto l:on. move => n p A ihA B ihB m ξ []//=. move => b A0 B0 hξ [?]. subst. move => ?. have ? : A0 = A by firstorder. subst. move => ?. have : B = B0. apply : ihB; eauto. sauto. congruence. Qed. Lemma AppEta' n a u : u = (@PApp (S n) (ren_PTm shift a) (VarPTm var_zero)) -> R (PAbs u) a. Proof. move => ->. apply AppEta. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. move => n a m ξ /=. apply AppEta'; eauto. by asimpl. all : qauto ctrs:R. Qed. (* Need to generalize to injective renaming *) Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. Proof. move => hξ. move E : (ren_PTm ξ a) => u hu. move : n ξ a hξ E. elim : m u b / hu; try solve_anti_ren. - move => n a m ξ []//=. move => u hξ []. case : u => //=. move => u0 u1 []. case : u1 => //=. move => i /[swap] []. case : i => //= _ h. have : exists p, ren_PTm shift p = u0 by admit. move => [p ?]. subst. move : h. asimpl. replace (ren_PTm (funcomp shift ξ) p) with (ren_PTm shift (ren_PTm ξ p)); last by asimpl. move /ren_injective. move /(_ ltac:(hauto l:on)). move => ?. subst. exists p. split=>//. apply AppEta. - move => n a m ξ [] //=. move => u u0 hξ []. case : u => //=. case : u0 => //=. move => p p0 p1 p2 [? ?] [? h]. subst. have ? : p0 = p2 by eauto using ren_injective. subst. hauto l:on. - move => n a0 a1 ha iha m ξ []//= p hξ [?]. subst. sauto lq:on use:up_injective. - move => n p A B0 B1 hB ihB m ξ + hξ. case => //= p' A2 B2 [*]. subst. have : (forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j) by sauto. move => {}/ihB => ihB. spec_refl. sauto lq:on. Admitted. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. move => h. move : m ρ. elim : n a b /h => n. move => a m ρ /=. eapply AppEta'; eauto. by asimpl. all : hauto lq:on ctrs:R. Qed. End ERed. Module EReds. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:ERed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc ERed.R a b -> rtc ERed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R b0 b1 -> rtc ERed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc ERed.R a0 a1 -> rtc ERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc ERed.R A0 A1 -> rtc ERed.R B0 B1 -> rtc ERed.R (PBind p A0 B0) (PBind p A1 B1). Proof. solve_s. Qed. Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc ERed.R a b -> rtc ERed.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto l:on use:ERed.renaming ctrs:rtc. Qed. Lemma FromEPar n (a b : PTm n) : EPar.R a b -> rtc ERed.R a b. Proof. move => h. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. - move => n a0 a1 _ h. have {}h : rtc ERed.R (ren_PTm shift a0) (ren_PTm shift a1) by apply renaming. apply : rtc_r. apply AbsCong. apply AppCong; eauto. apply rtc_refl. apply ERed.AppEta. - move => n a0 a1 _ h. apply : rtc_r. apply PairCong; eauto using ProjCong. apply ERed.PairEta. Qed. Lemma FromEPars n (a b : PTm n) : rtc EPar.R a b -> rtc ERed.R a b. Proof. induction 1; hauto l:on use:FromEPar, @relations.rtc_transitive. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : rtc ERed.R a b -> rtc ERed.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; hauto lq:on ctrs:rtc use:ERed.substing. Qed. End EReds. #[export]Hint Constructors ERed.R RRed.R EPar.R : red. Module RERed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Beta ***********************) | AppAbs a b : R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) (****************** Eta ***********************) | AppEta a : R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a | PairEta a : R (PPair (PProj PL a) (PProj PR a)) a (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> R (PProj p a0) (PProj p a1) | BindCong0 p A0 A1 B : R A0 A1 -> R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> R (PBind p A B0) (PBind p A B1). Lemma ToBetaEta n (a b : PTm n) : R a b -> ERed.R a b \/ RRed.R a b. Proof. induction 1; hauto lq:on db:red. Qed. Lemma FromBeta n (a b : PTm n) : RRed.R a b -> RERed.R a b. Proof. induction 1; qauto l:on ctrs:R. Qed. Lemma FromEta n (a b : PTm n) : ERed.R a b -> RERed.R a b. Proof. induction 1; qauto l:on ctrs:R. Qed. Lemma ToBetaEtaPar n (a b : PTm n) : R a b -> EPar.R a b \/ RRed.R a b. Proof. hauto q:on use:ERed.ToEPar, ToBetaEta. Qed. Lemma sn_preservation n (a b : PTm n) : R a b -> SN a -> SN b. Proof. hauto q:on use:ToBetaEtaPar, epar_sn_preservation, red_sn_preservation, RPar.FromRRed. Qed. Lemma bind_preservation n (a b : PTm n) : R a b -> isbind a -> isbind b. Proof. hauto q:on inv:R. Qed. Lemma univ_preservation n (a b : PTm n) : R a b -> isuniv a -> isuniv b. Proof. hauto q:on inv:R. Qed. Lemma sne_preservation n (a b : PTm n) : R a b -> SNe a -> SNe b. Proof. hauto q:on use:ToBetaEtaPar, RPar.FromRRed use:red_sn_preservation, epar_sn_preservation. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : RERed.R a b -> RERed.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto q:on use:ToBetaEta, FromBeta, FromEta, RRed.substing, ERed.substing. Qed. End RERed. Module REReds. Lemma sn_preservation n (a b : PTm n) : rtc RERed.R a b -> SN a -> SN b. Proof. induction 1; eauto using RERed.sn_preservation. Qed. Lemma FromRReds n (a b : PTm n) : rtc RRed.R a b -> rtc RERed.R a b. Proof. induction 1; hauto lq:on ctrs:rtc use:RERed.FromBeta. Qed. Lemma FromEReds n (a b : PTm n) : rtc ERed.R a b -> rtc RERed.R a b. Proof. induction 1; hauto lq:on ctrs:rtc use:RERed.FromEta. Qed. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:RERed.R. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); apply rtc_refl. Lemma AbsCong n (a b : PTm (S n)) : rtc RERed.R a b -> rtc RERed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc RERed.R a0 a1 -> rtc RERed.R b0 b1 -> rtc RERed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc RERed.R a0 a1 -> rtc RERed.R b0 b1 -> rtc RERed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc RERed.R a0 a1 -> rtc RERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc RERed.R A0 A1 -> rtc RERed.R B0 B1 -> rtc RERed.R (PBind p A0 B0) (PBind p A1 B1). Proof. solve_s. Qed. Lemma bind_preservation n (a b : PTm n) : rtc RERed.R a b -> isbind a -> isbind b. Proof. induction 1; qauto l:on ctrs:rtc use:RERed.bind_preservation. Qed. Lemma univ_preservation n (a b : PTm n) : rtc RERed.R a b -> isuniv a -> isuniv b. Proof. induction 1; qauto l:on ctrs:rtc use:RERed.univ_preservation. Qed. Lemma sne_preservation n (a b : PTm n) : rtc RERed.R a b -> SNe a -> SNe b. Proof. induction 1; qauto l:on ctrs:rtc use:RERed.sne_preservation. Qed. Lemma bind_inv n p A B C : rtc (@RERed.R n) (PBind p A B) C -> exists A0 B0, C = PBind p A0 B0 /\ rtc RERed.R A A0 /\ rtc RERed.R B B0. Proof. move E : (PBind p A B) => u hu. move : p A B E. elim : u C / hu; sauto lq:on rew:off. Qed. Lemma univ_inv n i C : rtc (@RERed.R n) (PUniv i) C -> C = PUniv i. Proof. move E : (PUniv i) => u hu. move : i E. elim : u C / hu=>//=. hauto lq:on rew:off ctrs:rtc inv:RERed.R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : rtc RERed.R a b -> rtc RERed.R (subst_PTm ρ a) (subst_PTm ρ b). Proof. induction 1; hauto lq:on ctrs:rtc use:RERed.substing. Qed. End REReds. Module LoRed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Beta ***********************) | AppAbs a b : R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : ~~ ishf a0 -> R a0 a1 -> R (PApp a0 b) (PApp a1 b) | AppCong1 a b0 b1 : ne a -> R b0 b1 -> R (PApp a b0) (PApp a b1) | PairCong0 a0 a1 b : R a0 a1 -> R (PPair a0 b) (PPair a1 b) | PairCong1 a b0 b1 : nf a -> R b0 b1 -> R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : ~~ ishf a0 -> R a0 a1 -> R (PProj p a0) (PProj p a1) | BindCong0 p A0 A1 B : R A0 A1 -> R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : nf A -> R B0 B1 -> R (PBind p A B0) (PBind p A B1). Lemma hf_preservation n (a b : PTm n) : LoRed.R a b -> ishf a -> ishf b. Proof. move => h. elim : n a b /h=>//=. Qed. Lemma ToRRed n (a b : PTm n) : LoRed.R a b -> RRed.R a b. Proof. induction 1; hauto lq:on ctrs:RRed.R. Qed. End LoRed. Module LoReds. Lemma hf_preservation n (a b : PTm n) : rtc LoRed.R a b -> ishf a -> ishf b. Proof. induction 1; eauto using LoRed.hf_preservation. Qed. Lemma hf_ne_imp n (a b : PTm n) : rtc LoRed.R a b -> ne b -> ~~ ishf a. Proof. move : hf_preservation. repeat move/[apply]. case : a; case : b => //=; itauto. Qed. #[local]Ltac solve_s_rec := move => *; eapply rtc_l; eauto; hauto lq:on ctrs:LoRed.R, rtc use:hf_ne_imp. #[local]Ltac solve_s := repeat (induction 1; last by solve_s_rec); (move => *; apply rtc_refl). Lemma AbsCong n (a b : PTm (S n)) : rtc LoRed.R a b -> rtc LoRed.R (PAbs a) (PAbs b). Proof. solve_s. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : rtc LoRed.R a0 a1 -> rtc LoRed.R b0 b1 -> ne a1 -> rtc LoRed.R (PApp a0 b0) (PApp a1 b1). Proof. solve_s. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : rtc LoRed.R a0 a1 -> rtc LoRed.R b0 b1 -> nf a1 -> rtc LoRed.R (PPair a0 b0) (PPair a1 b1). Proof. solve_s. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : rtc LoRed.R a0 a1 -> ne a1 -> rtc LoRed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc LoRed.R A0 A1 -> rtc LoRed.R B0 B1 -> nf A1 -> rtc LoRed.R (PBind p A0 B0) (PBind p A1 B1). Proof. solve_s. Qed. Local Ltac triv := simpl in *; itauto. Lemma FromSN_mutual : forall n, (forall (a : PTm n) (_ : SNe a), exists v, rtc LoRed.R a v /\ ne v) /\ (forall (a : PTm n) (_ : SN a), exists v, rtc LoRed.R a v /\ nf v) /\ (forall (a b : PTm n) (_ : TRedSN a b), LoRed.R a b). Proof. apply sn_mutual. - hauto lq:on ctrs:rtc. - hauto lq:on rew:off use:LoReds.AppCong solve+:triv. - hauto l:on use:LoReds.ProjCong solve+:triv. - hauto lq:on ctrs:rtc. - hauto q:on use:LoReds.PairCong solve+:triv. - hauto q:on use:LoReds.AbsCong solve+:triv. - sfirstorder use:ne_nf. - hauto lq:on ctrs:rtc. - hauto lq:on use:LoReds.BindCong solve+:triv. - hauto lq:on ctrs:rtc. - qauto ctrs:LoRed.R. - move => n a0 a1 b hb ihb h. have : ~~ ishf a0 by inversion h. hauto lq:on ctrs:LoRed.R. - qauto ctrs:LoRed.R. - qauto ctrs:LoRed.R. - move => n p a b h. have : ~~ ishf a by inversion h. hauto lq:on ctrs:LoRed.R. Qed. Lemma FromSN : forall n a, @SN n a -> exists v, rtc LoRed.R a v /\ nf v. Proof. firstorder using FromSN_mutual. Qed. Lemma ToRReds : forall n (a b : PTm n), rtc LoRed.R a b -> rtc RRed.R a b. Proof. induction 1; hauto lq:on ctrs:rtc use:LoRed.ToRRed. Qed. End LoReds. Fixpoint size_PTm {n} (a : PTm n) := match a with | VarPTm _ => 1 | PAbs a => 3 + size_PTm a | PApp a b => 1 + Nat.add (size_PTm a) (size_PTm b) | PProj p a => 1 + size_PTm a | PPair a b => 3 + Nat.add (size_PTm a) (size_PTm b) | PUniv _ => 3 | PBind p A B => 3 + Nat.add (size_PTm A) (size_PTm B) | PBot => 1 end. Lemma size_PTm_ren n m (ξ : fin n -> fin m) a : size_PTm (ren_PTm ξ a) = size_PTm a. Proof. move : m ξ. elim : n / a => //=; scongruence. Qed. #[export]Hint Rewrite size_PTm_ren : sizetm. Lemma ered_size {n} (a b : PTm n) : ERed.R a b -> size_PTm b < size_PTm a. Proof. move => h. elim : n a b /h; hauto l:on rew:db:sizetm. Qed. Lemma ered_sn n (a : PTm n) : sn ERed.R a. Proof. hauto lq:on rew:off use:size_PTm_ren, ered_size, well_founded_lt_compat unfold:well_founded. Qed. Lemma ered_local_confluence n (a b c : PTm n) : ERed.R a b -> ERed.R a c -> exists d, rtc ERed.R b d /\ rtc ERed.R c d. Proof. move => h. move : c. elim : n a b / h => n. - move => a c. elim /ERed.inv => //= _. + move => a0 [+ ?]. subst => h. apply f_equal with (f := subst_PTm (scons (PAbs (VarPTm var_zero)) VarPTm)) in h. move : h. asimpl => ?. subst. eauto using rtc_refl. + move => a0 a1 ha [*]. subst. elim /ERed.inv : ha => //= _. * move => a0 a2 b0 ha [*]. subst. rename a2 into a1. move /ERed.antirenaming : ha. move /(_ ltac:(hauto lq:on)) => [a' [h0 h1]]. subst. hauto lq:on ctrs:rtc, ERed.R. * hauto q:on ctrs:rtc, ERed.R inv:ERed.R. - move => a c ha. elim /ERed.inv : ha => //= _. + hauto l:on. + move => a0 a1 b0 ha [*]. subst. elim /ERed.inv : ha => //= _. move => p a0 a2 ha [*]. subst. hauto q:on ctrs:rtc, ERed.R. + move => a0 b0 b1 ha [*]. subst. elim /ERed.inv : ha => //= _. move => p a0 a2 ha [*]. subst. hauto q:on ctrs:rtc, ERed.R. - move => a0 a1 ha iha c. elim /ERed.inv => //= _. + move => a2 [*]. subst. elim /ERed.inv : ha => //=_. * move => a0 a2 b0 ha [*] {iha}. subst. have [a0 [h0 h1]] : exists a0, ERed.R c a0 /\ a2 = ren_PTm shift a0 by hauto lq:on use:ERed.antirenaming. subst. exists a0. split; last by apply relations.rtc_once. apply relations.rtc_once. apply ERed.AppEta. * hauto q:on inv:ERed.R. + hauto lq:on use:EReds.AbsCong. - move => a0 a1 b ha iha c. elim /ERed.inv => //= _. + hauto lq:on ctrs:rtc use:EReds.AppCong. + hauto lq:on use:@relations.rtc_once ctrs:ERed.R. - move => a b0 b1 hb ihb c. elim /ERed.inv => //=_. + move => a0 a1 a2 ha [*]. subst. move {ihb}. exists (PApp a1 b1). hauto lq:on use:@relations.rtc_once ctrs:ERed.R. + hauto lq:on ctrs:rtc use:EReds.AppCong. - move => a0 a1 b ha iha c. elim /ERed.inv => //= _. + sauto lq:on. + hauto lq:on ctrs:rtc use:EReds.PairCong. + hauto lq:on ctrs:ERed.R use:@relations.rtc_once. - move => a b0 b1 hb hc c. elim /ERed.inv => //= _. + move => ? [*]. subst. sauto lq:on. + hauto lq:on ctrs:ERed.R use:@relations.rtc_once. + hauto lq:on ctrs:rtc use:EReds.PairCong. - qauto l:on inv:ERed.R use:EReds.ProjCong. - move => p A0 A1 B hA ihA u. elim /ERed.inv => //=_; hauto lq:on ctrs:rtc use:EReds.BindCong. - move => p A B0 B1 hB ihB u. elim /ERed.inv => //=_; hauto lq:on ctrs:rtc use:EReds.BindCong. Qed. Lemma ered_confluence n (a b c : PTm n) : rtc ERed.R a b -> rtc ERed.R a c -> exists d, rtc ERed.R b d /\ rtc ERed.R c d. Proof. sfirstorder use:relations.locally_confluent_confluent, ered_sn, ered_local_confluence. Qed. Lemma red_confluence n (a b c : PTm n) : rtc RRed.R a b -> rtc RRed.R a c -> exists d, rtc RRed.R b d /\ rtc RRed.R c d. suff : rtc RPar.R a b -> rtc RPar.R a c -> exists d : PTm n, rtc RPar.R b d /\ rtc RPar.R c d by hauto lq:on use:RReds.RParIff. apply relations.diamond_confluent. rewrite /relations.diamond. eauto using RPar.diamond. Qed. Lemma red_uniquenf n (a b c : PTm n) : rtc RRed.R a b -> rtc RRed.R a c -> nf b -> nf c -> b = c. Proof. move : red_confluence; repeat move/[apply]. move => [d [h0 h1]]. move => *. suff [] : b = d /\ c = d by congruence. sfirstorder use:RReds.nf_refl. Qed. Module NeEPars. Lemma R_nonelim_nf n (a b : PTm n) : rtc NeEPar.R_nonelim a b -> nf b -> nf a. Proof. induction 1; sfirstorder use:NeEPar.R_elim_nf. Qed. Lemma ToEReds : forall n, (forall (a b : PTm n), rtc NeEPar.R_nonelim a b -> rtc ERed.R a b). Proof. induction 1; hauto l:on use:NeEPar.ToEPar, EReds.FromEPar, @relations.rtc_transitive. Qed. End NeEPars. Lemma rered_standardization n (a c : PTm n) : SN a -> rtc RERed.R a c -> exists b, rtc RRed.R a b /\ rtc NeEPar.R_nonelim b c. Proof. move => + h. elim : a c /h. by eauto using rtc_refl. move => a b c. move /RERed.ToBetaEtaPar. case. - move => h0 h1 ih hP. have : SN b by qauto use:epar_sn_preservation. move => {}/ih [b' [ihb0 ihb1]]. hauto lq:on ctrs:rtc use:SN_UniqueNF.η_postponement_star'. - hauto lq:on ctrs:rtc use:red_sn_preservation, RPar.FromRRed. Qed. Lemma rered_confluence n (a b c : PTm n) : SN a -> rtc RERed.R a b -> rtc RERed.R a c -> exists d, rtc RERed.R b d /\ rtc RERed.R c d. Proof. move => hP hb hc. have [] : SN b /\ SN c by qauto use:REReds.sn_preservation. move => /LoReds.FromSN [bv [/LoReds.ToRReds /REReds.FromRReds hbv hbv']]. move => /LoReds.FromSN [cv [/LoReds.ToRReds /REReds.FromRReds hcv hcv']]. have [] : SN b /\ SN c by sfirstorder use:REReds.sn_preservation. move : rered_standardization hbv; repeat move/[apply]. move => [bv' [hb0 hb1]]. move : rered_standardization hcv; repeat move/[apply]. move => [cv' [hc0 hc1]]. have [] : rtc RERed.R a bv' /\ rtc RERed.R a cv' by sfirstorder use:@relations.rtc_transitive, REReds.FromRReds. move : rered_standardization (hP). repeat move/[apply]. move => [bv'' [hb3 hb4]]. move : rered_standardization (hP). repeat move/[apply]. move => [cv'' [hc3 hc4]]. have hb2 : rtc NeEPar.R_nonelim bv'' bv by hauto lq:on use:@relations.rtc_transitive. have hc2 : rtc NeEPar.R_nonelim cv'' cv by hauto lq:on use:@relations.rtc_transitive. have [hc5 hb5] : nf cv'' /\ nf bv'' by sfirstorder use:NeEPars.R_nonelim_nf. have ? : bv'' = cv'' by sfirstorder use:red_uniquenf. subst. apply NeEPars.ToEReds in hb2, hc2. move : ered_confluence (hb2) (hc2); repeat move/[apply]. move => [v [hv hv']]. exists v. split. move /NeEPars.ToEReds /REReds.FromEReds : hb1. move /REReds.FromRReds : hb0. move /REReds.FromEReds : hv. eauto using relations.rtc_transitive. move /NeEPars.ToEReds /REReds.FromEReds : hc1. move /REReds.FromRReds : hc0. move /REReds.FromEReds : hv'. eauto using relations.rtc_transitive. Qed. (* Beta joinability *) Module BJoin. Definition R {n} (a b : PTm n) := exists c, rtc RRed.R a c /\ rtc RRed.R b c. Lemma refl n (a : PTm n) : R a a. Proof. sfirstorder use:@rtc_refl unfold:R. Qed. Lemma symmetric n (a b : PTm n) : R a b -> R b a. Proof. sfirstorder unfold:R. Qed. Lemma transitive n (a b c : PTm n) : R a b -> R b c -> R a c. Proof. rewrite /R. move => [ab [ha +]] [bc [+ hc]]. move : red_confluence; repeat move/[apply]. move => [v [h0 h1]]. exists v. sfirstorder use:@relations.rtc_transitive. Qed. Lemma AbsCong n (a b : PTm (S n)) : R a b -> R (PAbs a) (PAbs b). Proof. hauto lq:on use:RReds.AbsCong unfold:R. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1). Proof. hauto lq:on use:RReds.AppCong unfold:R. Qed. End BJoin. Module DJoin. Definition R {n} (a b : PTm n) := exists c, rtc RERed.R a c /\ rtc RERed.R b c. Lemma refl n (a : PTm n) : R a a. Proof. sfirstorder use:@rtc_refl unfold:R. Qed. Lemma symmetric n (a b : PTm n) : R a b -> R b a. Proof. sfirstorder unfold:R. Qed. Lemma transitive n (a b c : PTm n) : SN b -> R a b -> R b c -> R a c. Proof. rewrite /R. move => + [ab [ha +]] [bc [+ hc]]. move : rered_confluence; repeat move/[apply]. move => [v [h0 h1]]. exists v. sfirstorder use:@relations.rtc_transitive. Qed. Lemma AbsCong n (a b : PTm (S n)) : R a b -> R (PAbs a) (PAbs b). Proof. hauto lq:on use:REReds.AbsCong unfold:R. Qed. Lemma AppCong n (a0 a1 b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> R (PApp a0 b0) (PApp a1 b1). Proof. hauto lq:on use:REReds.AppCong unfold:R. Qed. Lemma PairCong n (a0 a1 b0 b1 : PTm n) : R a0 a1 -> R b0 b1 -> R (PPair a0 b0) (PPair a1 b1). Proof. hauto q:on use:REReds.PairCong. Qed. Lemma ProjCong n p (a0 a1 : PTm n) : R a0 a1 -> R (PProj p a0) (PProj p a1). Proof. hauto q:on use:REReds.ProjCong. Qed. Lemma FromRedSNs n (a b : PTm n) : rtc TRedSN a b -> R a b. Proof. move /RReds.FromRedSNs /REReds.FromRReds. sfirstorder use:@rtc_refl unfold:R. Qed. Lemma sne_bind_noconf n (a b : PTm n) : R a b -> SNe a -> isbind b -> False. Proof. move => [c [? ?]] *. have : SNe c /\ isbind c by sfirstorder use:REReds.sne_preservation, REReds.bind_preservation. qauto l:on inv:SNe. Qed. Lemma sne_univ_noconf n (a b : PTm n) : R a b -> SNe a -> isuniv b -> False. Proof. hauto q:on use:REReds.sne_preservation, REReds.univ_preservation inv:SNe. Qed. Lemma bind_univ_noconf n (a b : PTm n) : R a b -> isbind a -> isuniv b -> False. Proof. move => [c [h0 h1]] h2 h3. have {h0 h1 h2 h3} : isbind c /\ isuniv c by hauto l:on use:REReds.bind_preservation, REReds.univ_preservation. case : c => //=; itauto. Qed. Lemma bind_inj n p0 p1 (A0 A1 : PTm n) B0 B1 : DJoin.R (PBind p0 A0 B0) (PBind p1 A1 B1) -> p0 = p1 /\ DJoin.R A0 A1 /\ DJoin.R B0 B1. Proof. rewrite /R. hauto lq:on rew:off use:REReds.bind_inv. Qed. Lemma univ_inj n i j : @R n (PUniv i) (PUniv j) -> i = j. Proof. sauto lq:on rew:off use:REReds.univ_inv. Qed. Lemma FromRRed0 n (a b : PTm n) : RRed.R a b -> R a b. Proof. hauto lq:on ctrs:rtc use:RERed.FromBeta unfold:R. Qed. Lemma FromRRed1 n (a b : PTm n) : RRed.R b a -> R a b. Proof. hauto lq:on ctrs:rtc use:RERed.FromBeta unfold:R. Qed. Lemma FromRReds n (a b : PTm n) : rtc RRed.R b a -> R a b. Proof. hauto lq:on ctrs:rtc use:REReds.FromRReds unfold:R. Qed. Lemma FromBJoin n (a b : PTm n) : BJoin.R a b -> R a b. Proof. hauto lq:on ctrs:rtc use:REReds.FromRReds unfold:R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. hauto lq:on rew:off ctrs:rtc unfold:R use:REReds.substing. Qed. End DJoin.