logrelnew #1
1 changed files with 140 additions and 0 deletions
140
theories/logrel.v
Normal file
140
theories/logrel.v
Normal file
|
@ -0,0 +1,140 @@
|
|||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||||
Require Import fp_red.
|
||||
From Hammer Require Import Tactics.
|
||||
From Equations Require Import Equations.
|
||||
Require Import ssreflect ssrbool.
|
||||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||
From stdpp Require Import relations (rtc(..), rtc_subrel).
|
||||
Import Psatz.
|
||||
|
||||
Definition ProdSpace {n} (PA : PTm n -> Prop)
|
||||
(PF : PTm n -> (PTm n -> Prop) -> Prop) b : Prop :=
|
||||
forall a PB, PA a -> PF a PB -> PB (PApp b a).
|
||||
|
||||
Definition SumSpace {n} (PA : PTm n -> Prop)
|
||||
(PF : PTm n -> (PTm n -> Prop) -> Prop) t : Prop :=
|
||||
SNe t \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
|
||||
|
||||
Definition BindSpace {n} p := if p is PPi then @ProdSpace n else SumSpace.
|
||||
|
||||
Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
|
||||
|
||||
Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) -> Prop :=
|
||||
| InterpExt_Ne A :
|
||||
SNe A ->
|
||||
⟦ A ⟧ i ;; I ↘ SNe
|
||||
| InterpExt_Bind p A B PA PF :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
(forall a, PA a -> exists PB, PF a PB) ->
|
||||
(forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) ->
|
||||
⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF
|
||||
|
||||
| InterpExt_Univ j :
|
||||
j < i ->
|
||||
⟦ PUniv j ⟧ i ;; I ↘ (I j)
|
||||
|
||||
| InterpExt_Step A A0 PA :
|
||||
TRedSN A A0 ->
|
||||
⟦ A0 ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PA
|
||||
where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S).
|
||||
|
||||
|
||||
Lemma InterpExt_Univ' n i I j (PF : PTm n -> Prop) :
|
||||
PF = I j ->
|
||||
j < i ->
|
||||
⟦ PUniv j ⟧ i ;; I ↘ PF.
|
||||
Proof. hauto lq:on ctrs:InterpExt. Qed.
|
||||
|
||||
Infix "<?" := Compare_dec.lt_dec (at level 60).
|
||||
|
||||
Equations InterpUnivN n (i : nat) : PTm n -> (PTm n -> Prop) -> Prop by wf i lt :=
|
||||
InterpUnivN n i := @InterpExt n i
|
||||
(fun j A =>
|
||||
match j <? i with
|
||||
| left _ => exists PA, InterpUnivN n j A PA
|
||||
| right _ => False
|
||||
end).
|
||||
Arguments InterpUnivN {n}.
|
||||
|
||||
Lemma InterpExt_lt_impl n i I I' A (PA : PTm n -> Prop) :
|
||||
(forall j, j < i -> I j = I' j) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I' ↘ PA.
|
||||
Proof.
|
||||
move => hI h.
|
||||
elim : A PA /h.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on rew:off ctrs:InterpExt.
|
||||
- hauto q:on ctrs:InterpExt.
|
||||
- hauto lq:on ctrs:InterpExt.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_lt_eq n i I I' A (PA : PTm n -> Prop) :
|
||||
(forall j, j < i -> I j = I' j) ->
|
||||
⟦ A ⟧ i ;; I ↘ PA =
|
||||
⟦ A ⟧ i ;; I' ↘ PA.
|
||||
Proof.
|
||||
move => hI. apply propositional_extensionality.
|
||||
have : forall j, j < i -> I' j = I j by sfirstorder.
|
||||
firstorder using InterpExt_lt_impl.
|
||||
Qed.
|
||||
|
||||
Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70).
|
||||
|
||||
Lemma InterpUnivN_nolt n i :
|
||||
@InterpUnivN n i = @InterpExt n i (fun j (A : PTm n) => exists PA, ⟦ A ⟧ j ↘ PA).
|
||||
Proof.
|
||||
simp InterpUnivN.
|
||||
extensionality A. extensionality PA.
|
||||
set I0 := (fun _ => _).
|
||||
set I1 := (fun _ => _).
|
||||
apply InterpExt_lt_eq.
|
||||
hauto q:on.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||||
|
||||
Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop.
|
||||
|
||||
Lemma InterpExt_cumulative n i j I (A : PTm n) PA :
|
||||
i <= j ->
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ j ;; I ↘ PA.
|
||||
Proof.
|
||||
move => h h0.
|
||||
elim : A PA /h0;
|
||||
hauto l:on ctrs:InterpExt solve+:(by lia).
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_cumulative n i (A : PTm n) PA :
|
||||
⟦ A ⟧ i ↘ PA -> forall j, i <= j ->
|
||||
⟦ A ⟧ j ↘ PA.
|
||||
Proof.
|
||||
hauto l:on rew:db:InterpUniv use:InterpExt_cumulative.
|
||||
Qed.
|
||||
|
||||
Definition CR {n} (P : PTm n -> Prop) :=
|
||||
(forall a, P a -> SN a) /\
|
||||
(forall a, SNe a -> P a).
|
||||
|
||||
Lemma adequacy_ext i n I A PA
|
||||
(hI0 : forall j, j < i -> forall a b, (TRedSN a b) -> I j b -> I j a)
|
||||
(hI : forall j, j < i -> CR (I j))
|
||||
(h : ⟦ A : PTm n ⟧ i ;; I ↘ PA) :
|
||||
CR PA /\ SN A.
|
||||
Proof.
|
||||
elim : A PA / h.
|
||||
- hauto lq:on ctrs:SN unfold:CR.
|
||||
- move => p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
|
||||
have x : fin n by admit.
|
||||
set Bot := VarPTm x.
|
||||
have hb : PA Bot by hauto q:on ctrs:SNe.
|
||||
rewrite /CR.
|
||||
repeat split.
|
||||
+ case : p =>//=.
|
||||
* rewrite /ProdSpace.
|
||||
qauto use:SN_AppInv unfold:CR.
|
||||
* rewrite /SumSpace => a []; first by apply N_SNe.
|
||||
move => [q0][q1]*.
|
||||
have : SN q0 /\ SN q1 by hauto q:on.
|
Loading…
Add table
Reference in a new issue