logrelnew #1
3 changed files with 294 additions and 178 deletions
11
syntax.sig
11
syntax.sig
|
@ -1,15 +1,18 @@
|
|||
PTm(VarPTm) : Type
|
||||
PTag : Type
|
||||
Ty : Type
|
||||
BTag : Type
|
||||
|
||||
Fun : Ty -> Ty -> Ty
|
||||
Prod : Ty -> Ty -> Ty
|
||||
Void : Ty
|
||||
nat : Type
|
||||
|
||||
PL : PTag
|
||||
PR : PTag
|
||||
|
||||
PPi : BTag
|
||||
PSig : BTag
|
||||
|
||||
PAbs : (bind PTm in PTm) -> PTm
|
||||
PApp : PTm -> PTm -> PTm
|
||||
PPair : PTm -> PTm -> PTm
|
||||
PProj : PTag -> PTm -> PTm
|
||||
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
||||
PUniv : nat -> PTm
|
|
@ -5,6 +5,20 @@ Require Import Setoid Morphisms Relation_Definitions.
|
|||
|
||||
Module Core.
|
||||
|
||||
Inductive BTag : Type :=
|
||||
| PPi : BTag
|
||||
| PSig : BTag.
|
||||
|
||||
Lemma congr_PPi : PPi = PPi.
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
Qed.
|
||||
|
||||
Lemma congr_PSig : PSig = PSig.
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
Qed.
|
||||
|
||||
Inductive PTag : Type :=
|
||||
| PL : PTag
|
||||
| PR : PTag.
|
||||
|
@ -24,7 +38,9 @@ Inductive PTm (n_PTm : nat) : Type :=
|
|||
| PAbs : PTm (S n_PTm) -> PTm n_PTm
|
||||
| PApp : PTm n_PTm -> PTm n_PTm -> PTm n_PTm
|
||||
| PPair : PTm n_PTm -> PTm n_PTm -> PTm n_PTm
|
||||
| PProj : PTag -> PTm n_PTm -> PTm n_PTm.
|
||||
| PProj : PTag -> PTm n_PTm -> PTm n_PTm
|
||||
| PBind : BTag -> PTm n_PTm -> PTm (S n_PTm) -> PTm n_PTm
|
||||
| PUniv : nat -> PTm n_PTm.
|
||||
|
||||
Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)}
|
||||
(H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0.
|
||||
|
@ -56,6 +72,23 @@ exact (eq_trans (eq_trans eq_refl (ap (fun x => PProj m_PTm x s1) H0))
|
|||
(ap (fun x => PProj m_PTm t0 x) H1)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_PBind {m_PTm : nat} {s0 : BTag} {s1 : PTm m_PTm}
|
||||
{s2 : PTm (S m_PTm)} {t0 : BTag} {t1 : PTm m_PTm} {t2 : PTm (S m_PTm)}
|
||||
(H0 : s0 = t0) (H1 : s1 = t1) (H2 : s2 = t2) :
|
||||
PBind m_PTm s0 s1 s2 = PBind m_PTm t0 t1 t2.
|
||||
Proof.
|
||||
exact (eq_trans
|
||||
(eq_trans (eq_trans eq_refl (ap (fun x => PBind m_PTm x s1 s2) H0))
|
||||
(ap (fun x => PBind m_PTm t0 x s2) H1))
|
||||
(ap (fun x => PBind m_PTm t0 t1 x) H2)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_PUniv {m_PTm : nat} {s0 : nat} {t0 : nat} (H0 : s0 = t0) :
|
||||
PUniv m_PTm s0 = PUniv m_PTm t0.
|
||||
Proof.
|
||||
exact (eq_trans eq_refl (ap (fun x => PUniv m_PTm x) H0)).
|
||||
Qed.
|
||||
|
||||
Lemma upRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) :
|
||||
fin (S m) -> fin (S n).
|
||||
Proof.
|
||||
|
@ -76,6 +109,9 @@ Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat}
|
|||
| PApp _ s0 s1 => PApp n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1)
|
||||
| PPair _ s0 s1 => PPair n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1)
|
||||
| PProj _ s0 s1 => PProj n_PTm s0 (ren_PTm xi_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
PBind n_PTm s0 (ren_PTm xi_PTm s1) (ren_PTm (upRen_PTm_PTm xi_PTm) s2)
|
||||
| PUniv _ s0 => PUniv n_PTm s0
|
||||
end.
|
||||
|
||||
Lemma up_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) :
|
||||
|
@ -102,6 +138,10 @@ Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat}
|
|||
| PPair _ s0 s1 =>
|
||||
PPair n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1)
|
||||
| PProj _ s0 s1 => PProj n_PTm s0 (subst_PTm sigma_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
PBind n_PTm s0 (subst_PTm sigma_PTm s1)
|
||||
(subst_PTm (up_PTm_PTm sigma_PTm) s2)
|
||||
| PUniv _ s0 => PUniv n_PTm s0
|
||||
end.
|
||||
|
||||
Lemma upId_PTm_PTm {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm)
|
||||
|
@ -140,6 +180,10 @@ Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm)
|
|||
(idSubst_PTm sigma_PTm Eq_PTm s1)
|
||||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1)
|
||||
(idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma upExtRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n)
|
||||
|
@ -180,6 +224,11 @@ ren_PTm xi_PTm s = ren_PTm zeta_PTm s :=
|
|||
(extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
|
||||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1)
|
||||
(extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm)
|
||||
(upExtRen_PTm_PTm _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma upExt_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm)
|
||||
|
@ -221,6 +270,11 @@ subst_PTm sigma_PTm s = subst_PTm tau_PTm s :=
|
|||
(ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
|
||||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1)
|
||||
(ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm)
|
||||
(upExt_PTm_PTm _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma up_ren_ren_PTm_PTm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l)
|
||||
|
@ -262,6 +316,12 @@ Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
|
|||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0)
|
||||
(compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0)
|
||||
(compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1)
|
||||
(compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm)
|
||||
(upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma up_ren_subst_PTm_PTm {k : nat} {l : nat} {m_PTm : nat}
|
||||
|
@ -312,6 +372,12 @@ Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
|
|||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0)
|
||||
(compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0)
|
||||
(compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1)
|
||||
(compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm)
|
||||
(up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma up_subst_ren_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat}
|
||||
|
@ -382,6 +448,12 @@ ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s :=
|
|||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0)
|
||||
(compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0)
|
||||
(compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1)
|
||||
(compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm)
|
||||
(up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma up_subst_subst_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat}
|
||||
|
@ -454,6 +526,12 @@ subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s :=
|
|||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0)
|
||||
(compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0)
|
||||
(compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1)
|
||||
(compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm)
|
||||
(up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma renRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat}
|
||||
|
@ -566,6 +644,11 @@ Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat}
|
|||
(rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
|
||||
| PProj _ s0 s1 =>
|
||||
congr_PProj (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
|
||||
| PBind _ s0 s1 s2 =>
|
||||
congr_PBind (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1)
|
||||
(rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm)
|
||||
(rinstInst_up_PTm_PTm _ _ Eq_PTm) s2)
|
||||
| PUniv _ s0 => congr_PUniv (eq_refl s0)
|
||||
end.
|
||||
|
||||
Lemma rinstInst'_PTm {m_PTm : nat} {n_PTm : nat}
|
||||
|
@ -637,30 +720,6 @@ Proof.
|
|||
exact (fun x => eq_refl).
|
||||
Qed.
|
||||
|
||||
Inductive Ty : Type :=
|
||||
| Fun : Ty -> Ty -> Ty
|
||||
| Prod : Ty -> Ty -> Ty
|
||||
| Void : Ty.
|
||||
|
||||
Lemma congr_Fun {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0)
|
||||
(H1 : s1 = t1) : Fun s0 s1 = Fun t0 t1.
|
||||
Proof.
|
||||
exact (eq_trans (eq_trans eq_refl (ap (fun x => Fun x s1) H0))
|
||||
(ap (fun x => Fun t0 x) H1)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Prod {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0)
|
||||
(H1 : s1 = t1) : Prod s0 s1 = Prod t0 t1.
|
||||
Proof.
|
||||
exact (eq_trans (eq_trans eq_refl (ap (fun x => Prod x s1) H0))
|
||||
(ap (fun x => Prod t0 x) H1)).
|
||||
Qed.
|
||||
|
||||
Lemma congr_Void : Void = Void.
|
||||
Proof.
|
||||
exact (eq_refl).
|
||||
Qed.
|
||||
|
||||
Class Up_PTm X Y :=
|
||||
up_PTm : X -> Y.
|
||||
|
||||
|
@ -796,6 +855,10 @@ Core.
|
|||
|
||||
Arguments VarPTm {n_PTm}.
|
||||
|
||||
Arguments PUniv {n_PTm}.
|
||||
|
||||
Arguments PBind {n_PTm}.
|
||||
|
||||
Arguments PProj {n_PTm}.
|
||||
|
||||
Arguments PPair {n_PTm}.
|
||||
|
|
|
@ -47,7 +47,13 @@ Module EPar.
|
|||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1)
|
||||
| VarTm i :
|
||||
R (VarPTm i) (VarPTm i).
|
||||
R (VarPTm i) (VarPTm i)
|
||||
| Univ i :
|
||||
R (PUniv i) (PUniv i)
|
||||
| BindCong p A0 A1 B0 B1 :
|
||||
R A0 A1 ->
|
||||
R B0 B1 ->
|
||||
R (PBind p A0 B0) (PBind p A1 B1).
|
||||
|
||||
Lemma refl n (a : PTm n) : R a a.
|
||||
Proof.
|
||||
|
@ -126,6 +132,12 @@ with SN {n} : PTm n -> Prop :=
|
|||
TRedSN a b ->
|
||||
SN b ->
|
||||
SN a
|
||||
| N_Bind p A B :
|
||||
SN A ->
|
||||
SN B ->
|
||||
SN (PBind p A B)
|
||||
| N_Univ i :
|
||||
SN (PUniv i)
|
||||
with TRedSN {n} : PTm n -> PTm n -> Prop :=
|
||||
| N_β a b :
|
||||
SN b ->
|
||||
|
@ -146,6 +158,63 @@ with TRedSN {n} : PTm n -> PTm n -> Prop :=
|
|||
|
||||
Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop.
|
||||
|
||||
Definition ishf {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| PAbs _ => true
|
||||
| PUniv _ => true
|
||||
| PBind _ _ _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition ispair {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition isabs {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PAbs _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
ishf (ren_PTm ξ a) = ishf a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
isabs (ren_PTm ξ a) = isabs a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
ispair (ren_PTm ξ a) = ispair a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
|
||||
Lemma PProj_imp n p a :
|
||||
@ishf n a ->
|
||||
~~ ispair a ->
|
||||
~ SN (PProj p a).
|
||||
Proof.
|
||||
move => + + h. move E : (PProj p a) h => u h.
|
||||
move : p a E.
|
||||
elim : n u / h => //=.
|
||||
hauto lq:on inv:SNe,PTm.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PAbs_imp n a b :
|
||||
@ishf n a ->
|
||||
~~ isabs a ->
|
||||
~ SN (PApp a b).
|
||||
Proof.
|
||||
move => + + h. move E : (PApp a b) h => u h.
|
||||
move : a b E. elim : n u /h=>//=.
|
||||
hauto lq:on inv:SNe,PTm.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PProjAbs_imp n p (a : PTm (S n)) :
|
||||
~ SN (PProj p (PAbs a)).
|
||||
Proof.
|
||||
|
@ -156,7 +225,7 @@ Proof.
|
|||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PProjPair_imp n (a b0 b1 : PTm n ) :
|
||||
Lemma PAppPair_imp n (a b0 b1 : PTm n ) :
|
||||
~ SN (PApp (PPair b0 b1) a).
|
||||
Proof.
|
||||
move E : (PApp (PPair b0 b1) a) => u hu.
|
||||
|
@ -166,6 +235,26 @@ Proof.
|
|||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PAppBind_imp n p (A : PTm n) B b :
|
||||
~ SN (PApp (PBind p A B) b).
|
||||
Proof.
|
||||
move E :(PApp (PBind p A B) b) => u hu.
|
||||
move : p A B b E.
|
||||
elim : n u /hu=> //=.
|
||||
hauto lq:on inv:SNe.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Lemma PProjBind_imp n p p' (A : PTm n) B :
|
||||
~ SN (PProj p (PBind p' A B)).
|
||||
Proof.
|
||||
move E :(PProj p (PBind p' A B)) => u hu.
|
||||
move : p p' A B E.
|
||||
elim : n u /hu=>//=.
|
||||
hauto lq:on inv:SNe.
|
||||
hauto lq:on inv:TRedSN.
|
||||
Qed.
|
||||
|
||||
Scheme sne_ind := Induction for SNe Sort Prop
|
||||
with sn_ind := Induction for SN Sort Prop
|
||||
with sred_ind := Induction for TRedSN Sort Prop.
|
||||
|
@ -179,6 +268,8 @@ Fixpoint ne {n} (a : PTm n) :=
|
|||
| PAbs a => false
|
||||
| PPair _ _ => false
|
||||
| PProj _ a => ne a
|
||||
| PUniv _ => false
|
||||
| PBind _ _ _ => false
|
||||
end
|
||||
with nf {n} (a : PTm n) :=
|
||||
match a with
|
||||
|
@ -187,6 +278,8 @@ with nf {n} (a : PTm n) :=
|
|||
| PAbs a => nf a
|
||||
| PPair a b => nf a && nf b
|
||||
| PProj _ a => ne a
|
||||
| PUniv _ => true
|
||||
| PBind _ A B => nf A && nf B
|
||||
end.
|
||||
|
||||
Lemma ne_nf n a : @ne n a -> nf a.
|
||||
|
@ -350,6 +443,8 @@ Proof.
|
|||
+ sauto lq:on.
|
||||
- sauto lq:on.
|
||||
- sauto lq:on.
|
||||
- sauto lq:on.
|
||||
- sauto lq:on.
|
||||
- move => a b ha iha c h0.
|
||||
inversion h0; subst.
|
||||
inversion H1; subst.
|
||||
|
@ -410,7 +505,13 @@ Module RRed.
|
|||
R (PPair a b0) (PPair a b1)
|
||||
| ProjCong p a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1).
|
||||
R (PProj p a0) (PProj p a1)
|
||||
| BindCong0 p A0 A1 B :
|
||||
R A0 A1 ->
|
||||
R (PBind p A0 B) (PBind p A1 B)
|
||||
| BindCong1 p A B0 B1 :
|
||||
R B0 B1 ->
|
||||
R (PBind p A B0) (PBind p A B1).
|
||||
|
||||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||||
|
||||
|
@ -488,7 +589,13 @@ Module RPar.
|
|||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1)
|
||||
| VarTm i :
|
||||
R (VarPTm i) (VarPTm i).
|
||||
R (VarPTm i) (VarPTm i)
|
||||
| Univ i :
|
||||
R (PUniv i) (PUniv i)
|
||||
| BindCong p A0 A1 B0 B1 :
|
||||
R A0 A1 ->
|
||||
R B0 B1 ->
|
||||
R (PBind p A0 B0) (PBind p A1 B1).
|
||||
|
||||
Lemma refl n (a : PTm n) : R a a.
|
||||
Proof.
|
||||
|
@ -581,6 +688,8 @@ Module RPar.
|
|||
| PPair a b => PPair (tstar a) (tstar b)
|
||||
| PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b)
|
||||
| PProj p a => PProj p (tstar a)
|
||||
| PUniv i => PUniv i
|
||||
| PBind p A B => PBind p (tstar A) (tstar B)
|
||||
end.
|
||||
|
||||
Lemma triangle n (a b : PTm n) :
|
||||
|
@ -609,6 +718,8 @@ Module RPar.
|
|||
elim /inv : ha => //=_ > ? ? [*]. subst.
|
||||
apply : ProjPair'; eauto using refl.
|
||||
- hauto lq:on ctrs:R inv:R.
|
||||
- hauto lq:on ctrs:R inv:R.
|
||||
- hauto lq:on ctrs:R inv:R.
|
||||
Qed.
|
||||
|
||||
Lemma diamond n (a b c : PTm n) :
|
||||
|
@ -629,6 +740,8 @@ Proof.
|
|||
- hauto lq:on ctrs:SN inv:RPar.R.
|
||||
- hauto lq:on ctrs:SN.
|
||||
- hauto q:on ctrs:SN inv:SN, TRedSN'.
|
||||
- hauto lq:on ctrs:SN inv:RPar.R.
|
||||
- hauto lq:on ctrs:SN inv:RPar.R.
|
||||
- move => a b ha iha hb ihb.
|
||||
elim /RPar.inv : ihb => //=_.
|
||||
+ move => a0 a1 b0 b1 ha0 hb0 [*]. subst.
|
||||
|
@ -650,91 +763,6 @@ Proof.
|
|||
- sauto.
|
||||
Qed.
|
||||
|
||||
Module EPar'.
|
||||
Inductive R {n} : PTm n -> PTm n -> Prop :=
|
||||
(****************** Eta ***********************)
|
||||
| AppEta a :
|
||||
R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a
|
||||
| PairEta a :
|
||||
R (PPair (PProj PL a) (PProj PR a)) a
|
||||
(*************** Congruence ********************)
|
||||
| AbsCong a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (PAbs a0) (PAbs a1)
|
||||
| AppCong0 a0 a1 b :
|
||||
R a0 a1 ->
|
||||
R (PApp a0 b) (PApp a1 b)
|
||||
| AppCong1 a b0 b1 :
|
||||
R b0 b1 ->
|
||||
R (PApp a b0) (PApp a b1)
|
||||
| PairCong0 a0 a1 b :
|
||||
R a0 a1 ->
|
||||
R (PPair a0 b) (PPair a1 b)
|
||||
| PairCong1 a b0 b1 :
|
||||
R b0 b1 ->
|
||||
R (PPair a b0) (PPair a b1)
|
||||
| ProjCong p a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1).
|
||||
|
||||
Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop.
|
||||
|
||||
Lemma AppEta' n a (u : PTm n) :
|
||||
u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) ->
|
||||
R u a.
|
||||
Proof. move => ->. apply AppEta. Qed.
|
||||
|
||||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||||
R a b -> R (ren_PTm ξ a) (ren_PTm ξ b).
|
||||
Proof.
|
||||
move => h. move : m ξ.
|
||||
elim : n a b /h.
|
||||
|
||||
move => n a m ξ /=.
|
||||
eapply AppEta'; eauto. by asimpl.
|
||||
all : qauto ctrs:R.
|
||||
Qed.
|
||||
|
||||
Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) :
|
||||
(forall i, R (ρ0 i) (ρ1 i)) ->
|
||||
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
|
||||
Proof. eauto using renaming. Qed.
|
||||
|
||||
End EPar'.
|
||||
|
||||
Module EPars.
|
||||
|
||||
#[local]Ltac solve_s_rec :=
|
||||
move => *; eapply rtc_l; eauto;
|
||||
hauto lq:on ctrs:EPar'.R.
|
||||
|
||||
#[local]Ltac solve_s :=
|
||||
repeat (induction 1; last by solve_s_rec); apply rtc_refl.
|
||||
|
||||
Lemma AbsCong n (a b : PTm (S n)) :
|
||||
rtc EPar'.R a b ->
|
||||
rtc EPar'.R (PAbs a) (PAbs b).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma AppCong n (a0 a1 b0 b1 : PTm n) :
|
||||
rtc EPar'.R a0 a1 ->
|
||||
rtc EPar'.R b0 b1 ->
|
||||
rtc EPar'.R (PApp a0 b0) (PApp a1 b1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma PairCong n (a0 a1 b0 b1 : PTm n) :
|
||||
rtc EPar'.R a0 a1 ->
|
||||
rtc EPar'.R b0 b1 ->
|
||||
rtc EPar'.R (PPair a0 b0) (PPair a1 b1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma ProjCong n p (a0 a1 : PTm n) :
|
||||
rtc EPar'.R a0 a1 ->
|
||||
rtc EPar'.R (PProj p a0) (PProj p a1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
End EPars.
|
||||
|
||||
Module RReds.
|
||||
|
||||
#[local]Ltac solve_s_rec :=
|
||||
|
@ -766,6 +794,12 @@ Module RReds.
|
|||
rtc RRed.R (PProj p a0) (PProj p a1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma BindCong n p (A0 A1 : PTm n) B0 B1 :
|
||||
rtc RRed.R A0 A1 ->
|
||||
rtc RRed.R B0 B1 ->
|
||||
rtc RRed.R (PBind p A0 B0) (PBind p A1 B1).
|
||||
Proof. solve_s. Qed.
|
||||
|
||||
Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||||
rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b).
|
||||
Proof.
|
||||
|
@ -775,7 +809,7 @@ Module RReds.
|
|||
Lemma FromRPar n (a b : PTm n) (h : RPar.R a b) :
|
||||
rtc RRed.R a b.
|
||||
Proof.
|
||||
elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl.
|
||||
elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong.
|
||||
move => n a0 a1 b0 b1 ha iha hb ihb.
|
||||
apply : rtc_r; last by apply RRed.AppAbs.
|
||||
by eauto using AppCong, AbsCong.
|
||||
|
@ -806,19 +840,6 @@ Proof.
|
|||
move : m ξ. elim : n / a => //=; solve [hauto b:on].
|
||||
Qed.
|
||||
|
||||
Lemma ne_epar n (a b : PTm n) (h : EPar'.R a b ) :
|
||||
(ne a -> ne b) /\ (nf a -> nf b).
|
||||
Proof.
|
||||
elim : n a b /h=>//=; hauto qb:on use:ne_nf_ren, ne_nf.
|
||||
Qed.
|
||||
|
||||
Definition ishf {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| PAbs _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Module NeEPar.
|
||||
Inductive R_nonelim {n} : PTm n -> PTm n -> Prop :=
|
||||
(****************** Eta ***********************)
|
||||
|
@ -847,6 +868,12 @@ Module NeEPar.
|
|||
R_nonelim (PProj p a0) (PProj p a1)
|
||||
| VarTm i :
|
||||
R_nonelim (VarPTm i) (VarPTm i)
|
||||
| Univ i :
|
||||
R_nonelim (PUniv i) (PUniv i)
|
||||
| BindCong p A0 A1 B0 B1 :
|
||||
R_nonelim A0 A1 ->
|
||||
R_nonelim B0 B1 ->
|
||||
R_nonelim (PBind p A0 B0) (PBind p A1 B1)
|
||||
with R_elim {n} : PTm n -> PTm n -> Prop :=
|
||||
| NAbsCong a0 a1 :
|
||||
R_nonelim a0 a1 ->
|
||||
|
@ -863,7 +890,13 @@ Module NeEPar.
|
|||
R_elim a0 a1 ->
|
||||
R_elim (PProj p a0) (PProj p a1)
|
||||
| NVarTm i :
|
||||
R_elim (VarPTm i) (VarPTm i).
|
||||
R_elim (VarPTm i) (VarPTm i)
|
||||
| NUniv i :
|
||||
R_elim (PUniv i) (PUniv i)
|
||||
| NBindCong p A0 A1 B0 B1 :
|
||||
R_nonelim A0 A1 ->
|
||||
R_nonelim B0 B1 ->
|
||||
R_elim (PBind p A0 B0) (PBind p A1 B1).
|
||||
|
||||
Scheme epar_elim_ind := Induction for R_elim Sort Prop
|
||||
with epar_nonelim_ind := Induction for R_nonelim Sort Prop.
|
||||
|
@ -881,6 +914,7 @@ Module NeEPar.
|
|||
qauto l:on inv:R_elim.
|
||||
- hauto lb:on.
|
||||
- hauto lq:on inv:R_elim.
|
||||
- hauto b:on.
|
||||
- move => a0 a1 /negP ha' ha ih ha1.
|
||||
have {ih} := ih ha1.
|
||||
move => ha0.
|
||||
|
@ -897,6 +931,7 @@ Module NeEPar.
|
|||
move : ha h0. hauto lq:on inv:R_elim.
|
||||
- hauto lb: on drew: off.
|
||||
- hauto lq:on rew:off inv:R_elim.
|
||||
- sfirstorder b:on.
|
||||
Qed.
|
||||
|
||||
Lemma R_nonelim_nothf n (a b : PTm n) :
|
||||
|
@ -927,11 +962,17 @@ Module Type NoForbid.
|
|||
|
||||
Axiom P_EPar : forall n (a b : PTm n), EPar.R a b -> P a -> P b.
|
||||
Axiom P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b.
|
||||
Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c).
|
||||
Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)).
|
||||
(* Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). *)
|
||||
(* Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). *)
|
||||
(* Axiom P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). *)
|
||||
(* Axiom P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). *)
|
||||
Axiom PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b).
|
||||
Axiom PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a).
|
||||
|
||||
Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
|
||||
Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
|
||||
Axiom P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B.
|
||||
|
||||
Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b.
|
||||
Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
|
||||
Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a.
|
||||
|
@ -970,11 +1011,10 @@ Module SN_NoForbid <: NoForbid.
|
|||
Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b.
|
||||
Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed.
|
||||
|
||||
Lemma P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c).
|
||||
Proof. sfirstorder use:PProjPair_imp. Qed.
|
||||
|
||||
Lemma P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)).
|
||||
Proof. sfirstorder use:PProjAbs_imp. Qed.
|
||||
Lemma PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b).
|
||||
sfirstorder use:fp_red.PAbs_imp. Qed.
|
||||
Lemma PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a).
|
||||
sfirstorder use:fp_red.PProj_imp. Qed.
|
||||
|
||||
Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
|
||||
Proof. sfirstorder use:SN_AppInv. Qed.
|
||||
|
@ -986,6 +1026,13 @@ Module SN_NoForbid <: NoForbid.
|
|||
Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
|
||||
Proof. sfirstorder use:SN_ProjInv. Qed.
|
||||
|
||||
Lemma P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B.
|
||||
Proof.
|
||||
move => n p A B.
|
||||
move E : (PBind p A B) => u hu.
|
||||
move : p A B E. elim : n u /hu=>//=;sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
|
||||
Proof.
|
||||
move => n a. move E : (PAbs a) => u h.
|
||||
|
@ -996,13 +1043,19 @@ Module SN_NoForbid <: NoForbid.
|
|||
Lemma P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a.
|
||||
Proof. hauto lq:on use:sn_antirenaming, sn_renaming. Qed.
|
||||
|
||||
Lemma P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)).
|
||||
Proof. sfirstorder use:PProjBind_imp. Qed.
|
||||
|
||||
Lemma P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b).
|
||||
Proof. sfirstorder use:PAppBind_imp. Qed.
|
||||
|
||||
End SN_NoForbid.
|
||||
|
||||
Module NoForbid_FactSN := NoForbid_Fact SN_NoForbid.
|
||||
|
||||
Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
||||
Import M MFacts.
|
||||
#[local]Hint Resolve P_EPar P_RRed P_AppPair P_ProjAbs : forbid.
|
||||
#[local]Hint Resolve P_EPar P_RRed PAbs_imp PProj_imp : forbid.
|
||||
|
||||
Lemma η_split n (a0 a1 : PTm n) :
|
||||
EPar.R a0 a1 ->
|
||||
|
@ -1020,9 +1073,8 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
by eauto using RReds.renaming.
|
||||
apply NeEPar.AppEta=>//.
|
||||
sfirstorder use:NeEPar.R_nonelim_nothf.
|
||||
|
||||
case : b ih0 ih1 => //=.
|
||||
+ move => p ih0 ih1 _.
|
||||
case /orP : (orbN (isabs b)).
|
||||
+ case : b ih0 ih1 => //= p ih0 ih1 _ _.
|
||||
set q := PAbs _.
|
||||
suff : rtc RRed.R q (PAbs p) by sfirstorder.
|
||||
subst q.
|
||||
|
@ -1033,16 +1085,14 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
apply : RRed.AbsCong => /=.
|
||||
apply RRed.AppAbs'. by asimpl.
|
||||
(* violates SN *)
|
||||
+ move => p p0 h. exfalso.
|
||||
have : P (PApp (ren_PTm shift a0) (VarPTm var_zero))
|
||||
by sfirstorder use:P_AbsInv.
|
||||
|
||||
have : rtc RRed.R (PApp (ren_PTm shift a0) (VarPTm var_zero))
|
||||
(PApp (ren_PTm shift (PPair p p0)) (VarPTm var_zero))
|
||||
by hauto lq:on use:RReds.AppCong, RReds.renaming, rtc_refl.
|
||||
|
||||
move : P_RReds. repeat move/[apply] => /=.
|
||||
hauto l:on use:P_AppPair.
|
||||
+ move /P_AbsInv in hP.
|
||||
have {}hP : P (PApp (ren_PTm shift b) (VarPTm var_zero))
|
||||
by sfirstorder use:P_RReds, RReds.AppCong, @rtc_refl, RReds.renaming.
|
||||
move => ? ?.
|
||||
have ? : ~~ isabs (ren_PTm shift b) by scongruence use:isabs_ren.
|
||||
have ? : ishf (ren_PTm shift b) by scongruence use:ishf_ren.
|
||||
exfalso.
|
||||
sfirstorder use:PAbs_imp.
|
||||
- move => n a0 a1 h ih /[dup] hP.
|
||||
move /P_PairInv => [/P_ProjInv + _].
|
||||
move : ih => /[apply].
|
||||
|
@ -1051,16 +1101,9 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
exists (PPair (PProj PL b) (PProj PR b)).
|
||||
split. sfirstorder use:RReds.PairCong,RReds.ProjCong.
|
||||
hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf.
|
||||
|
||||
case : b ih0 ih1 => //=.
|
||||
(* violates SN *)
|
||||
+ move => p ?. exfalso.
|
||||
have {}hP : P (PProj PL a0) by sfirstorder use:P_PairInv.
|
||||
have : rtc RRed.R (PProj PL a0) (PProj PL (PAbs p))
|
||||
by eauto using RReds.ProjCong.
|
||||
move : P_RReds hP. repeat move/[apply] => /=.
|
||||
sfirstorder use:P_ProjAbs.
|
||||
+ move => t0 t1 ih0 h1 _.
|
||||
case /orP : (orbN (ispair b)).
|
||||
+ case : b ih0 ih1 => //=.
|
||||
move => t0 t1 ih0 h1 _ _.
|
||||
exists (PPair t0 t1).
|
||||
split => //=.
|
||||
apply RReds.PairCong.
|
||||
|
@ -1068,6 +1111,12 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
apply RRed.ProjPair.
|
||||
apply : rtc_r; eauto using RReds.ProjCong.
|
||||
apply RRed.ProjPair.
|
||||
+ move => ? ?. exfalso.
|
||||
move/P_PairInv : hP=>[hP _].
|
||||
have : rtc RRed.R (PProj PL a0) (PProj PL b)
|
||||
by eauto using RReds.ProjCong.
|
||||
move : P_RReds hP. repeat move/[apply] => /=.
|
||||
sfirstorder use:PProj_imp.
|
||||
- hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.AbsCong, P_AbsInv.
|
||||
- move => n a0 a1 b0 b1 ha iha hb ihb.
|
||||
move => /[dup] hP /P_AppInv [hP0 hP1].
|
||||
|
@ -1076,8 +1125,9 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
case /orP : (orNb (ishf a2)) => [h|].
|
||||
+ exists (PApp a2 b2). split; first by eauto using RReds.AppCong.
|
||||
hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf.
|
||||
+ case : a2 iha0 iha1 => //=.
|
||||
* move => p h0 h1 _.
|
||||
+ case /orP : (orbN (isabs a2)).
|
||||
(* case : a2 iha0 iha1 => //=. *)
|
||||
* case : a2 iha0 iha1 => //= p h0 h1 _ _.
|
||||
inversion h1; subst.
|
||||
** exists (PApp a2 b2).
|
||||
split.
|
||||
|
@ -1087,11 +1137,9 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
hauto lq:on ctrs:NeEPar.R_nonelim.
|
||||
** hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.AppCong.
|
||||
(* Impossible *)
|
||||
* move => u0 u1 h. exfalso.
|
||||
have : rtc RRed.R (PApp a0 b0) (PApp (PPair u0 u1) b0)
|
||||
by hauto lq:on ctrs:rtc use:RReds.AppCong.
|
||||
move : P_RReds hP; repeat move/[apply].
|
||||
sfirstorder use:P_AppPair.
|
||||
* move =>*. exfalso.
|
||||
have : P (PApp a2 b0) by sfirstorder use:RReds.AppCong, @rtc_refl, P_RReds.
|
||||
sfirstorder use:PAbs_imp.
|
||||
- hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.PairCong, P_PairInv.
|
||||
- move => n p a0 a1 ha ih /[dup] hP /P_ProjInv.
|
||||
move : ih => /[apply]. move => [a2 [iha0 iha1]].
|
||||
|
@ -1100,13 +1148,13 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
split. eauto using RReds.ProjCong.
|
||||
qauto l:on ctrs:NeEPar.R_nonelim, NeEPar.R_elim use:NeEPar.R_nonelim_nothf.
|
||||
|
||||
case : a2 iha0 iha1 => //=.
|
||||
+ move => u iha0. exfalso.
|
||||
have : rtc RRed.R (PProj p a0) (PProj p (PAbs u))
|
||||
case /orP : (orNb (ispair a2)).
|
||||
+ move => *. exfalso.
|
||||
have : rtc RRed.R (PProj p a0) (PProj p a2)
|
||||
by sfirstorder use:RReds.ProjCong ctrs:rtc.
|
||||
move : P_RReds hP. repeat move/[apply].
|
||||
sfirstorder use:P_ProjAbs.
|
||||
+ move => u0 u1 iha0 iha1 _.
|
||||
sfirstorder use:PProj_imp.
|
||||
+ case : a2 iha0 iha1 => //= u0 u1 iha0 iha1 _ _.
|
||||
inversion iha1; subst.
|
||||
* exists (PProj p a2). split.
|
||||
apply : rtc_r.
|
||||
|
@ -1115,6 +1163,8 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
|
|||
hauto lq:on ctrs:NeEPar.R_nonelim.
|
||||
* hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.ProjCong.
|
||||
- hauto lq:on ctrs:rtc, NeEPar.R_nonelim.
|
||||
- hauto l:on.
|
||||
- hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv.
|
||||
Qed.
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue