logrelnew #1

Merged
yiyunliu merged 18 commits from logrelnew into master 2025-02-06 00:26:46 -05:00
Showing only changes of commit 7f29fe0347 - Show all commits

View file

@ -13,7 +13,7 @@ Definition ProdSpace {n} (PA : PTm n -> Prop)
Definition SumSpace {n} (PA : PTm n -> Prop)
(PF : PTm n -> (PTm n -> Prop) -> Prop) t : Prop :=
SNe t \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
(exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b).
Definition BindSpace {n} p := if p is PPi then @ProdSpace n else SumSpace.
@ -22,7 +22,7 @@ Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70).
Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) -> Prop :=
| InterpExt_Ne A :
SNe A ->
A i ;; I SNe
A i ;; I (fun a => exists v, rtc TRedSN a v /\ SNe v)
| InterpExt_Bind p A B PA PF :
A i ;; I PA ->
(forall a, PA a -> exists PB, PF a PB) ->
@ -95,6 +95,25 @@ Qed.
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
Lemma InterpUniv_ind
: forall (n i : nat) (P : PTm n -> (PTm n -> Prop) -> Prop),
(forall A : PTm n, SNe A -> P A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) ->
(forall (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop)
(PF : PTm n -> (PTm n -> Prop) -> Prop),
A i PA ->
P A PA ->
(forall a : PTm n, PA a -> exists PB : PTm n -> Prop, PF a PB) ->
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> subst_PTm (scons a VarPTm) B i PB) ->
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P (subst_PTm (scons a VarPTm) B) PB) ->
P (PBind p A B) (BindSpace p PA PF)) ->
(forall j : nat, j < i -> P (PUniv j) (fun A => exists PA, A j PA)) ->
(forall (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> A0 i PA -> P A0 PA -> P A PA) ->
forall (p : PTm n) (P0 : PTm n -> Prop), p i P0 -> P p P0.
Proof.
elim /Wf_nat.lt_wf_ind => n ih i . simp InterpUniv.
apply InterpExt_ind.
Qed.
Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop.
Lemma InterpExt_cumulative n i j I (A : PTm n) PA :
@ -133,7 +152,7 @@ Lemma adequacy_ext i n I A PA
CR PA /\ SN A.
Proof.
elim : A PA / h.
- hauto lq:on ctrs:SN unfold:CR.
- hauto l:on use:N_Exps ctrs:SN,SNe.
- move => p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
have hb : PA PBot by hauto q:on ctrs:SNe.
have hb' : SN PBot by hauto q:on ctrs:SN, SNe.
@ -142,16 +161,13 @@ Proof.
+ case : p =>//=.
* rewrite /ProdSpace.
qauto use:SN_AppInv unfold:CR.
* rewrite /SumSpace => a []; first by apply N_SNe.
move => [q0][q1]*.
have : SN q0 /\ SN q1 by hauto q:on.
hauto lq:on use:N_Pair,N_Exps.
* hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps.
+ move => a ha.
case : p=>/=.
* rewrite /ProdSpace => a0 *.
suff : SNe (PApp a a0) by sfirstorder.
hauto q:on use:N_App.
* rewrite /SumSpace. tauto.
* sfirstorder.
+ apply N_Bind=>//=.
have : SN (PApp (PAbs B) PBot).
apply : N_Exp; eauto using N_β.
@ -160,3 +176,72 @@ Proof.
- sfirstorder.
- hauto l:on ctrs:SN unfold:CR.
Qed.
Lemma InterpExt_Steps i n I A A0 PA :
rtc TRedSN A A0 ->
A0 : PTm n i ;; I PA ->
A i ;; I PA.
Proof. induction 1; eauto using InterpExt_Step. Qed.
Lemma InterpUniv_Steps i n A A0 PA :
rtc TRedSN A A0 ->
A0 : PTm n i PA ->
A i PA.
Proof. hauto l:on use:InterpExt_Steps rew:db:InterpUniv. Qed.
Lemma adequacy i n A PA
(h : A : PTm n i PA) :
CR PA /\ SN A.
Proof.
move : i A PA h.
elim /Wf_nat.lt_wf_ind => i ih A PA.
simp InterpUniv.
apply adequacy_ext.
hauto lq:on ctrs:rtc use:InterpUniv_Steps.
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
Qed.
Lemma InterpExt_back_clos n i I (A : PTm n) PA
(hI1 : forall j, j < i -> CR (I j))
(hI : forall j, j < i -> forall a b, TRedSN a b -> I j b -> I j a) :
A i ;; I PA ->
forall a b, TRedSN a b ->
PA b -> PA a.
Proof.
move => h.
elim : A PA /h; eauto.
hauto q:on ctrs:rtc.
move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
case : p => //=.
- rewrite /ProdSpace.
move => hba a0 PB ha hPB.
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
apply N_AppL => //=.
hauto q:on use:adequacy_ext.
- hauto lq:on ctrs:rtc unfold:SumSpace.
Qed.
Lemma InterpUniv_back_clos n i (A : PTm n) PA :
A i PA ->
forall a b, TRedSN a b ->
PA b -> PA a.
Proof.
simp InterpUniv. apply InterpExt_back_clos;
hauto l:on use:adequacy unfold:CR ctrs:InterpExt rew:db:InterpUniv.
Qed.
Lemma InterpUniv_back_closs n i (A : PTm n) PA :
A i PA ->
forall a b, rtc TRedSN a b ->
PA b -> PA a.
Proof.
induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos.
Qed.
Lemma InterpExt_Join n i I (A B : PTm n) PA PB :
A i ;; I PA ->
B i ;; I PB ->
DJoin.R A B ->
PA = PB.
Proof.