logrelnew #1
2 changed files with 73 additions and 62 deletions
|
@ -565,6 +565,11 @@ Module RRed.
|
|||
R a b -> False.
|
||||
Proof. move/[swap]. induction 1; hauto qb:on inv:PTm. Qed.
|
||||
|
||||
Lemma FromRedSN n (a b : PTm n) :
|
||||
TRedSN a b ->
|
||||
RRed.R a b.
|
||||
Proof. induction 1; hauto lq:on ctrs:RRed.R. Qed.
|
||||
|
||||
End RRed.
|
||||
|
||||
Module RPar.
|
||||
|
|
|
@ -96,22 +96,24 @@ Qed.
|
|||
#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv.
|
||||
|
||||
Lemma InterpUniv_ind
|
||||
: forall (n i : nat) (P : PTm n -> (PTm n -> Prop) -> Prop),
|
||||
(forall A : PTm n, SNe A -> P A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) ->
|
||||
(forall (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop)
|
||||
: forall n (P : nat -> PTm n -> (PTm n -> Prop) -> Prop),
|
||||
(forall i (A : PTm n), SNe A -> P i A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) ->
|
||||
(forall i (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop)
|
||||
(PF : PTm n -> (PTm n -> Prop) -> Prop),
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
P A PA ->
|
||||
P i A PA ->
|
||||
(forall a : PTm n, PA a -> exists PB : PTm n -> Prop, PF a PB) ->
|
||||
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) ->
|
||||
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P (subst_PTm (scons a VarPTm) B) PB) ->
|
||||
P (PBind p A B) (BindSpace p PA PF)) ->
|
||||
(forall j : nat, j < i -> P (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) ->
|
||||
(forall (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P A0 PA -> P A PA) ->
|
||||
forall (p : PTm n) (P0 : PTm n -> Prop), ⟦ p ⟧ i ↘ P0 -> P p P0.
|
||||
(forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) ->
|
||||
P i (PBind p A B) (BindSpace p PA PF)) ->
|
||||
(forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) ->
|
||||
(forall i (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) ->
|
||||
forall i (p : PTm n) (P0 : PTm n -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0.
|
||||
Proof.
|
||||
elim /Wf_nat.lt_wf_ind => n ih i . simp InterpUniv.
|
||||
apply InterpExt_ind.
|
||||
move => n P hSN hBind hUniv hRed.
|
||||
elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv.
|
||||
move => A PA. move => h. set I := fun _ => _ in h.
|
||||
elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto.
|
||||
Qed.
|
||||
|
||||
Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop.
|
||||
|
@ -145,15 +147,13 @@ Proof.
|
|||
induction 1; eauto using N_Exp.
|
||||
Qed.
|
||||
|
||||
Lemma adequacy_ext i n I A PA
|
||||
(hI0 : forall j, j < i -> forall a b, (TRedSN a b) -> I j b -> I j a)
|
||||
(hI : forall j, j < i -> CR (I j))
|
||||
(h : ⟦ A : PTm n ⟧ i ;; I ↘ PA) :
|
||||
Lemma adequacy : forall i n A PA,
|
||||
⟦ A : PTm n ⟧ i ↘ PA ->
|
||||
CR PA /\ SN A.
|
||||
Proof.
|
||||
elim : A PA / h.
|
||||
move => + n. apply : InterpUniv_ind.
|
||||
- hauto l:on use:N_Exps ctrs:SN,SNe.
|
||||
- move => p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
|
||||
- move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF.
|
||||
have hb : PA PBot by hauto q:on ctrs:SNe.
|
||||
have hb' : SN PBot by hauto q:on ctrs:SN, SNe.
|
||||
rewrite /CR.
|
||||
|
@ -173,62 +173,38 @@ Proof.
|
|||
apply : N_Exp; eauto using N_β.
|
||||
hauto lq:on.
|
||||
qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv.
|
||||
- sfirstorder.
|
||||
- hauto l:on ctrs:InterpExt rew:db:InterpUniv.
|
||||
- hauto l:on ctrs:SN unfold:CR.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Steps i n I A A0 PA :
|
||||
rtc TRedSN A A0 ->
|
||||
⟦ A0 : PTm n ⟧ i ;; I ↘ PA ->
|
||||
⟦ A ⟧ i ;; I ↘ PA.
|
||||
Proof. induction 1; eauto using InterpExt_Step. Qed.
|
||||
Lemma InterpUniv_Step i n A A0 PA :
|
||||
TRedSN A A0 ->
|
||||
⟦ A0 : PTm n ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ i ↘ PA.
|
||||
Proof. simp InterpUniv. apply InterpExt_Step. Qed.
|
||||
|
||||
Lemma InterpUniv_Steps i n A A0 PA :
|
||||
rtc TRedSN A A0 ->
|
||||
⟦ A0 : PTm n ⟧ i ↘ PA ->
|
||||
⟦ A ⟧ i ↘ PA.
|
||||
Proof. hauto l:on use:InterpExt_Steps rew:db:InterpUniv. Qed.
|
||||
|
||||
Lemma adequacy i n A PA
|
||||
(h : ⟦ A : PTm n ⟧ i ↘ PA) :
|
||||
CR PA /\ SN A.
|
||||
Proof.
|
||||
move : i A PA h.
|
||||
elim /Wf_nat.lt_wf_ind => i ih A PA.
|
||||
simp InterpUniv.
|
||||
apply adequacy_ext.
|
||||
hauto lq:on ctrs:rtc use:InterpUniv_Steps.
|
||||
hauto l:on use:InterpExt_Ne rew:db:InterpUniv.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_back_clos n i I (A : PTm n) PA
|
||||
(hI1 : forall j, j < i -> CR (I j))
|
||||
(hI : forall j, j < i -> forall a b, TRedSN a b -> I j b -> I j a) :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
forall a b, TRedSN a b ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
move => h.
|
||||
elim : A PA /h; eauto.
|
||||
hauto q:on ctrs:rtc.
|
||||
|
||||
move => p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||||
case : p => //=.
|
||||
- rewrite /ProdSpace.
|
||||
move => hba a0 PB ha hPB.
|
||||
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
|
||||
apply N_AppL => //=.
|
||||
hauto q:on use:adequacy_ext.
|
||||
- hauto lq:on ctrs:rtc unfold:SumSpace.
|
||||
Qed.
|
||||
Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed.
|
||||
|
||||
Lemma InterpUniv_back_clos n i (A : PTm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
forall a b, TRedSN a b ->
|
||||
PA b -> PA a.
|
||||
Proof.
|
||||
simp InterpUniv. apply InterpExt_back_clos;
|
||||
hauto l:on use:adequacy unfold:CR ctrs:InterpExt rew:db:InterpUniv.
|
||||
move : i A PA . apply : InterpUniv_ind; eauto.
|
||||
- hauto q:on ctrs:rtc.
|
||||
- move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr.
|
||||
case : p => //=.
|
||||
+ rewrite /ProdSpace.
|
||||
move => hba a0 PB ha hPB.
|
||||
suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on.
|
||||
apply N_AppL => //=.
|
||||
hauto q:on use:adequacy.
|
||||
+ hauto lq:on ctrs:rtc unfold:SumSpace.
|
||||
- hauto l:on use:InterpUniv_Step.
|
||||
Qed.
|
||||
|
||||
Lemma InterpUniv_back_closs n i (A : PTm n) PA :
|
||||
|
@ -239,9 +215,39 @@ Proof.
|
|||
induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos.
|
||||
Qed.
|
||||
|
||||
Lemma InterpExt_Join n i I (A B : PTm n) PA PB :
|
||||
⟦ A ⟧ i ;; I ↘ PA ->
|
||||
⟦ B ⟧ i ;; I ↘ PB ->
|
||||
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
|
||||
|
||||
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
|
||||
|
||||
Lemma InterpUniv_case n i (A : PTm n) PA :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
exists H, rtc TRedSN A H /\ (SNe H \/ isbind H \/ isuniv H).
|
||||
Proof.
|
||||
move : i A PA. apply InterpUniv_ind => //=; hauto ctrs:rtc l:on.
|
||||
Qed.
|
||||
|
||||
Lemma redsn_preservation_mutual n :
|
||||
(forall (a : PTm n) (s : SNe a), forall b, TRedSN a b -> SNe b) /\
|
||||
(forall (a : PTm n) (s : SN a), forall b, TRedSN a b -> SN b) /\
|
||||
(forall (a b : PTm n) (_ : TRedSN a b), forall c, TRedSN a c -> b = c).
|
||||
Proof.
|
||||
move : n. apply sn_mutual; sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma redsns_preservation : forall n a b, @SN n a -> rtc TRedSN a b -> SN b.
|
||||
Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed.
|
||||
|
||||
Lemma InterpUniv_Join n i (A B : PTm n) PA PB :
|
||||
⟦ A ⟧ i ↘ PA ->
|
||||
⟦ B ⟧ i ↘ PB ->
|
||||
DJoin.R A B ->
|
||||
PA = PB.
|
||||
Proof.
|
||||
move => hA.
|
||||
move : i A PA hA B PB.
|
||||
apply : InterpUniv_ind.
|
||||
- move => i A hA B PB hPB hAB.
|
||||
have [*] : SN B /\ SN A by hauto l:on use:adequacy.
|
||||
move /InterpUniv_case : hPB.
|
||||
move => [H [h ?]].
|
||||
(* have ? : SN H by sfirstorder use:redsns_preservation. *)
|
||||
|
|
Loading…
Add table
Reference in a new issue