Compare commits

..

51 commits
nat ... master

Author SHA1 Message Date
Yiyun Liu
0e04a7076b Prove PairEta 2025-04-19 00:24:09 -04:00
Yiyun Liu
8e083aad4b Add renaming_comp 2025-04-19 00:07:48 -04:00
2b92845e3e Add E_AppEta 2025-04-18 16:38:34 -04:00
43daff1b27 Fix soundness 2025-04-18 15:46:07 -04:00
d9282fb815 Finish preservation 2025-04-18 15:42:40 -04:00
87b84794b4 Fix structural rules 2025-04-18 14:13:46 -04:00
7c985fa58e Minor 2025-04-17 16:42:57 -04:00
e1fc6b609d Add the extensional representation of pair&abs equality rules 2025-04-17 15:22:45 -04:00
a367591e9a Add extensional version of pair equality rules 2025-04-17 15:15:58 -04:00
ef8feb63c3 Redefine semantic context well-formedness as an inductive 2025-04-17 15:07:14 -04:00
4b2bbeea6f Add SE_FunExt 2025-04-16 23:57:00 -04:00
f9d3a620f4 Remove itauto dependency as it introduces weird axioms 2025-03-11 16:27:31 -04:00
8dbef3e29e Finish refactoring 2025-03-11 16:24:57 -04:00
96ad0a4740 Add stub for the new coqleq_complete' 2025-03-11 00:14:43 -04:00
181e06ae01 Finish the completeness proof for equality 2025-03-10 23:45:19 -04:00
9d68e5d6c9 Finish the conf case 2025-03-10 23:22:09 -04:00
d1771adc48 Use hne and hf instead HRed.nf 2025-03-10 22:44:42 -04:00
30caf75002 Make progress on the refactored lemma 2025-03-10 19:58:19 -04:00
030dccb326 Finish the refactored executable_correct 2025-03-10 19:02:51 -04:00
4021d05d99 Update executable to use salgo_dom for subtyping 2025-03-10 18:18:42 -04:00
e278c6eaef Define salgo_dom 2025-03-10 16:22:37 -04:00
4cbd2ac0fd Save 2025-03-10 15:35:43 -04:00
849d19708e Add new definition of algo_dom 2025-03-10 14:30:36 -04:00
437c97455e Finish the soundness and completeness proof of the subtyping algorithm 2025-03-06 20:42:08 -05:00
fe52d78ec5 Start the soundness proof for check_sub 2025-03-06 19:20:54 -05:00
6f154cc9c6 Add stub for check_sub 2025-03-06 16:20:32 -05:00
96b3139726 Prove termination 2025-03-06 15:39:27 -05:00
Yiyun Liu
b29d567ef0 Add termination 2025-03-05 00:18:28 -05:00
Yiyun Liu
c4f01d7dfc Update the correctness proof of the computable function 2025-03-04 23:48:42 -05:00
Yiyun Liu
c1ff0ae145 Add check_equal_conf case 2025-03-04 23:22:41 -05:00
Yiyun Liu
c05bd10016 Turn off auto equations generation because it produces poor lemmas 2025-03-04 22:43:30 -05:00
Yiyun Liu
68cc482479 Fix the correctness proof 2025-03-04 22:30:21 -05:00
Yiyun Liu
a23be7f9b5 Simplify the definition of algo_dom 2025-03-04 22:28:18 -05:00
Yiyun Liu
5087b8c6ce Add new definition of eq_view 2025-03-04 22:20:12 -05:00
Yiyun Liu
dcd4465310 Finish the proof of completeness for the algorithm 2025-03-04 21:47:57 -05:00
b9b6899764 Half way done with check_equal_complete 2025-03-04 00:39:59 -05:00
0060d3fb86 Factor out the rewriting lemmas 2025-03-04 00:27:42 -05:00
87f6dcd870 Prove the soundness of the computable equality 2025-03-03 23:46:41 -05:00
36d1f95d65 Move HRed to the common .v file 2025-03-03 21:16:42 -05:00
5ac3b21331 Refactor the correctness proof of coquand's algorithm 2025-03-03 21:09:03 -05:00
3a17548a7d Minor 2025-03-03 16:01:28 -05:00
3e8ad2c5bc Work on the refactoring proof 2025-03-03 15:50:08 -05:00
fe418c2a78 Fix preservation and broken cases in logrel 2025-03-03 15:29:50 -05:00
d68adf85f4 Finish refactoring substitution lemmas 2025-03-03 15:22:59 -05:00
Yiyun Liu
896d22ac9b minor 2025-03-03 01:40:12 -05:00
Yiyun Liu
b3bd75ad42 Fix the typing rules 2025-03-03 01:38:22 -05:00
Yiyun Liu
47e21df801 Finish refactoring logical relations 2025-03-03 01:15:21 -05:00
Yiyun Liu
7f38544a1e Finish refactoring fp_red 2025-03-02 22:41:15 -05:00
Yiyun Liu
551dd5c17c Fix the fv proof 2025-03-02 20:19:11 -05:00
226b196d15 Refactor half of fp_red 2025-03-02 17:35:51 -05:00
657c1325c9 Add unscoped syntax 2025-03-02 16:40:39 -05:00
17 changed files with 4005 additions and 3664 deletions

View file

@ -16,12 +16,12 @@ uninstall: $(COQMAKEFILE)
$(MAKE) -f $(COQMAKEFILE) uninstall $(MAKE) -f $(COQMAKEFILE) uninstall
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
.PHONY: clean FORCE .PHONY: clean FORCE
clean: clean:
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) ) test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
FORCE: FORCE:

View file

@ -16,7 +16,6 @@ PPair : PTm -> PTm -> PTm
PProj : PTag -> PTm -> PTm PProj : PTag -> PTm -> PTm
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
PUniv : nat -> PTm PUniv : nat -> PTm
PBot : PTm
PNat : PTm PNat : PTm
PZero : PTm PZero : PTm
PSuc : PTm -> PTm PSuc : PTm -> PTm

View file

@ -1,419 +0,0 @@
(** * Autosubst Header for Scoped Syntax
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
Version: December 11, 2019.
*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Set Implicit Arguments.
Unset Strict Implicit.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
*)
Fixpoint fin (n : nat) : Type :=
match n with
| 0 => False
| S m => option (fin m)
end.
(** Renamings and Injective Renamings
_Renamings_ are mappings between finite types.
*)
Definition ren (m n : nat) : Type := fin m -> fin n.
Definition id {X} := @Datatypes.id X.
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
Definition var_zero {n : nat} : fin (S n) := None.
Definition null {T} (i : fin 0) : T := match i with end.
Definition shift {n : nat} : ren n (S n) :=
Some.
(** Extension of Finite Mappings
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
*)
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
match m with
| None => x
| Some i => f i
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** ** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
(** ** Proofs for substitution primitives *)
(** Forward Function Composition
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** Generic lifting operation for renamings *)
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
var_zero .: xi >> shift.
(** Generic proof that lifting of renamings composes. *)
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [x|].
- cbn. unfold funcomp. now rewrite <- E.
- reflexivity.
Qed.
Arguments up_ren_ren {k l m} xi zeta rho E.
Lemma fin_eta {X} (f g : fin 0 -> X) :
pointwise_relation _ eq f g.
Proof. intros []. Qed.
(** Eta laws *)
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' {n : nat} :
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
(* (scons s f (shift x)) = f x. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} {n:nat} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
Proof.
intros t t' -> sigma tau H.
intros [x|].
cbn. apply H.
reflexivity.
Qed.
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [x|].
cbn. apply H.
reflexivity.
Qed.
(** ** Variadic Substitution Primitives *)
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
fun n => match p with
| 0 => n
| S p => Some (shift_p p n)
end.
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
Proof.
destruct m.
- intros n f g. exact g.
- intros n f g. cbn. apply scons.
+ exact (f var_zero).
+ apply scons_p.
* intros z. exact (f (Some z)).
* exact g.
Defined.
#[export] Hint Opaque scons_p : rewrite.
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau.
intros x.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
Proof.
induction m.
- intros [].
- intros [x|].
+ exact (shift_p 1 (IHm x)).
+ exact var_zero.
Defined.
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
(scons_p f g) (zero_p z) = f z.
Proof.
induction m.
- inversion z.
- destruct z.
+ simpl. simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
Proof.
intros z.
unfold funcomp.
induction m.
- inversion z.
- destruct z.
+ simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
scons_p f g (shift_p m z) = g z.
Proof. induction m; cbn; eauto. Qed.
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
Proof. intros z. induction m; cbn; eauto. Qed.
Lemma destruct_fin {m n} (x : fin (m + n)):
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
Proof.
induction m; simpl in *.
- right. eauto.
- destruct x as [x|].
+ destruct (IHm x) as [[x' ->] |[x' ->]].
* left. now exists (Some x').
* right. eauto.
+ left. exists None. eauto.
Qed.
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
Proof.
intros x.
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
(* TODO better way to solve this? *)
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
now setoid_rewrite scons_p_head_pointwise.
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
now rewrite !scons_p_tail_pointwise.
Qed.
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
(** Generic n-ary lifting operation. *)
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
scons_p (zero_p ) (xi >> shift_p _).
Arguments upRen_p p {m n} xi.
(** Generic proof for composition of n-ary lifting. *)
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
Proof.
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
now rewrite <- E.
Qed.
Arguments zero_p m {n}.
Arguments scons_p {X} m {n} f g.
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
Proof.
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
- rewrite scons_p_head'. eauto.
- rewrite scons_p_tail'. eauto.
Qed.
Arguments scons_p_eta {X} {m n} {f g} h {z}.
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
(** ** Notations for Scoped Syntax *)
Module ScopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End ScopedNotations.
(** ** Tactics for Scoped Syntax *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : fin 0), _] => intros []; t
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
| [|- forall (i : fin (S _)), _] => intros [?|]; t
end).
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
| [|- context[idren >> ?f]] => change (idren >> f) with f
| [|- context[?f >> idren]] => change (f >> idren) with f
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
(* | _ => progress autorewrite with FunctorInstances *)
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
end.

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,213 @@
(** * Autosubst Header for Unnamed Syntax
Version: December 11, 2019.
*)
(* Adrian:
I changed this library a bit to work better with my generated code.
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus. *)
Definition shift := S.
Definition var_zero := 0.
Definition id {X} := @Datatypes.id X.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation
Required to make notation work. *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** *** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
#[export] Instance idsRen : Var nat nat := id.
(** ** Proofs for the substitution primitives. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** A generic lifting of a renaming. *)
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
(** A generic proof that lifting of renamings composes. *)
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
(** Eta laws. *)
Lemma scons_eta' {T} (f : nat -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t -> sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
(** ** Generic lifting of an allfv predicate *)
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
(** ** Notations for unscoped syntax *)
Module UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
(** ** Tactics for unscoped syntax *)
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : nat), _] => intros []; t
end).
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
end.

View file

@ -1,45 +1,88 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing structural. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural.
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
Require Import ssreflect. Require Import ssreflect.
Require Import Psatz. Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality. Require Import Coq.Logic.FunctionalExtensionality.
Derive Dependent Inversion wff_inv with (forall n (Γ : fin n -> PTm n), Γ) Sort Prop. Derive Inversion wff_inv with (forall Γ, Γ) Sort Prop.
Lemma Wff_Cons_Inv n Γ (A : PTm n) : Lemma T_Abs Γ (a : PTm ) A B :
funcomp (ren_PTm shift) (scons A Γ) -> (cons A Γ) a B ->
Γ /\ exists i, Γ A PUniv i.
Proof.
elim /wff_inv => //= _.
move => n0 Γ0 A0 i0 hΓ0 hA0 [? _]. subst.
Equality.simplify_dep_elim.
have h : forall i, (funcomp (ren_PTm shift) (scons A0 Γ0)) i = (funcomp (ren_PTm shift) (scons A Γ)) i by scongruence.
move /(_ var_zero) : (h).
rewrite /funcomp. asimpl.
move /ren_injective. move /(_ ltac:(hauto lq:on rew:off inv:option)).
move => ?. subst.
have : Γ0 = Γ. extensionality i.
move /(_ (Some i)) : h.
rewrite /funcomp. asimpl.
move /ren_injective. move /(_ ltac:(hauto lq:on rew:off inv:option)).
done.
move => ?. subst. sfirstorder.
Qed.
Lemma T_Abs n Γ (a : PTm (S n)) A B :
funcomp (ren_PTm shift) (scons A Γ) a B ->
Γ PAbs a PBind PPi A B. Γ PAbs a PBind PPi A B.
Proof. Proof.
move => ha. move => ha.
have [i hB] : exists i, funcomp (ren_PTm shift) (scons A Γ) B PUniv i by sfirstorder use:regularity. have [i hB] : exists i, (cons A Γ) B PUniv i by sfirstorder use:regularity.
have : funcomp (ren_PTm shift) (scons A Γ) by sfirstorder use:wff_mutual. have : (cons A Γ) by sfirstorder use:wff_mutual.
move /Wff_Cons_Inv : => [][j]hA. hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
hauto lq:on rew:off use:T_Bind', typing.T_Abs.
Qed. Qed.
Lemma E_Bind n Γ i p (A0 A1 : PTm n) B0 B1 :
Lemma App_Inv Γ (b a : PTm) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : Γ u U / hu => //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv Γ (a : PTm) U :
Γ PAbs a U ->
exists A B, (cons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : Γ u U / hu => //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A.
Proof.
move => a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h.
apply : E_Conv; eauto.
apply : E_AppAbs; eauto.
eauto using T_Conv.
Qed.
Lemma T_Eta Γ A a B :
A :: Γ a B ->
A :: Γ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) B.
Proof.
move => ha.
have hΓ' : A :: Γ by sfirstorder use:wff_mutual.
have [i hA] : exists i, Γ A PUniv i by hauto lq:on inv:Wff.
have : Γ by hauto lq:on inv:Wff.
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
econstructor; eauto. sauto l:on use:renaming.
apply T_Var => //.
by constructor.
Qed.
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 A1 PUniv i -> Γ A0 A1 PUniv i ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv i -> (cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i. Γ PBind p A0 B0 PBind p A1 B1 PUniv i.
Proof. Proof.
move => h0 h1. move => h0 h1.
@ -49,7 +92,7 @@ Proof.
firstorder. firstorder.
Qed. Qed.
Lemma E_App n Γ (b0 b1 a0 a1 : PTm n) A B : Lemma E_App Γ (b0 b1 a0 a1 : PTm ) A B :
Γ b0 b1 PBind PPi A B -> Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A -> Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B. Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B.
@ -59,7 +102,7 @@ Proof.
move : E_App h. by repeat move/[apply]. move : E_App h. by repeat move/[apply].
Qed. Qed.
Lemma E_Proj2 n Γ (a b : PTm n) A B : Lemma E_Proj2 Γ (a b : PTm) A B :
Γ a b PBind PSig A B -> Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B. Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B.
Proof. Proof.
@ -67,3 +110,155 @@ Proof.
have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity. have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity.
move : E_Proj2 h; by repeat move/[apply]. move : E_Proj2 h; by repeat move/[apply].
Qed. Qed.
Lemma E_FunExt Γ (a b : PTm) A B :
Γ a PBind PPi A B ->
Γ b PBind PPi A B ->
A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B.
Proof.
hauto l:on use:regularity, E_FunExt.
Qed.
Lemma E_PairExt Γ (a b : PTm) A B :
Γ a PBind PSig A B ->
Γ b PBind PSig A B ->
Γ PProj PL a PProj PL b A ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a b PBind PSig A B. hauto l:on use:regularity, E_PairExt. Qed.
Lemma renaming_comp Γ Δ Ξ ξ0 ξ1 :
renaming_ok Γ Δ ξ0 -> renaming_ok Δ Ξ ξ1 ->
renaming_ok Γ Ξ (funcomp ξ0 ξ1).
rewrite /renaming_ok => h0 h1 i A.
move => {}/h1 {}/h0.
by asimpl.
Qed.
Lemma E_AppEta Γ (b : PTm) A B :
Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B.
Proof.
move => h.
have [i hPi] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
have [j [hA hB]] : exists i, Γ A PUniv i /\ A :: Γ B PUniv i by hauto lq:on use:Bind_Inv.
have {i} {}hPi : Γ PBind PPi A B PUniv j by sfirstorder use:T_Bind, wff_mutual.
have : A :: Γ by hauto lq:on use:Bind_Inv, Wff_Cons'.
have hΓ' : ren_PTm shift A :: A :: Γ by sauto lq:on use:renaming, renaming_shift inv:Wff.
apply E_FunExt; eauto.
apply T_Abs.
eapply T_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
change (PBind _ _ _) with (ren_PTm shift (PBind PPi A B)).
eapply renaming; eauto.
apply renaming_shift.
constructor => //.
by constructor.
apply : E_Transitive. simpl.
apply E_AppAbs' with (i := j)(A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B); eauto.
by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
constructor => //.
by constructor.
asimpl.
eapply T_App' with (A := ren_PTm shift (ren_PTm shift A)) (B := ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B)); cycle 2.
constructor. econstructor; eauto. sauto lq:on use:renaming, renaming_shift.
by constructor. asimpl. substify. by asimpl.
have -> : PBind PPi (ren_PTm shift (ren_PTm shift A)) (ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B))= (ren_PTm (funcomp shift shift) (PBind PPi A B)) by asimpl.
eapply renaming; eauto. by eauto using renaming_shift, renaming_comp.
asimpl. renamify.
eapply E_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
sauto lq:on use:renaming, renaming_shift, E_Refl.
constructor. constructor=>//. constructor.
Qed.
Lemma Proj1_Inv Γ (a : PTm ) U :
Γ PProj PL a U ->
exists A B, Γ a PBind PSig A B /\ Γ A U.
Proof.
move E : (PProj PL a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
eapply regularity in ha.
move : ha => [i].
move /Bind_Inv => [j][h _].
by move /E_Refl /Su_Eq in h.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj2_Inv Γ (a : PTm) U :
Γ PProj PR a U ->
exists A B, Γ a PBind PSig A B /\ Γ subst_PTm (scons (PProj PL a) VarPTm) B U.
Proof.
move E : (PProj PR a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
have ha' := ha.
eapply regularity in ha.
move : ha => [i ha].
move /T_Proj1 in ha'.
apply : bind_inst; eauto.
apply : E_Refl ha'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Pair_Inv Γ (a b : PTm ) U :
Γ PPair a b U ->
exists A B, Γ a A /\
Γ b subst_PTm (scons a VarPTm) B /\
Γ PBind PSig A B U.
Proof.
move E : (PPair a b) => u hu.
move : a b E. elim : Γ u U / hu => //=.
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
exists A,B. repeat split => //=.
move /E_Refl /Su_Eq : hS. apply.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_ProjPair1 : forall (a b : PTm) Γ (A : PTm),
Γ PProj PL (PPair a b) A -> Γ PProj PL (PPair a b) a A.
Proof.
move => a b Γ A.
move /Proj1_Inv. move => [A0][B0][hab]hA0.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move /Su_Sig_Proj1 in hS.
have {hA0} {}hS : Γ A1 A by eauto using Su_Transitive.
apply : E_Conv; eauto.
apply : E_ProjPair1; eauto.
Qed.
Lemma E_ProjPair2 : forall (a b : PTm) Γ (A : PTm),
Γ PProj PR (PPair a b) A -> Γ PProj PR (PPair a b) b A.
Proof.
move => a b Γ A. move /Proj2_Inv.
move => [A0][B0][ha]h.
have hr := ha.
move /Pair_Inv : ha => [A1][B1][ha][hb]hU.
have [i hSig] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity.
have /E_Symmetric : Γ (PProj PL (PPair a b)) a A1 by eauto using E_ProjPair1 with wt.
move /Su_Sig_Proj2 : hU. repeat move/[apply]. move => hB.
apply : E_Conv; eauto.
apply : E_Conv; eauto.
apply : E_ProjPair2; eauto.
Qed.
Lemma E_PairEta Γ a A B :
Γ a PBind PSig A B ->
Γ PPair (PProj PL a) (PProj PR a) a PBind PSig A B.
Proof.
move => h.
have [i hSig] : exists i, Γ PBind PSig A B PUniv i by hauto use:regularity.
apply E_PairExt => //.
eapply T_Pair; eauto with wt.
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
by eauto with wt.
apply E_ProjPair2.
apply : T_Proj2; eauto with wt.
Qed.

File diff suppressed because it is too large Load diff

View file

@ -1,41 +1,71 @@
Require Import Autosubst2.fintype Autosubst2.syntax Autosubst2.core ssreflect. Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
From Equations Require Import Equations.
Derive NoConfusion for nat PTag BTag PTm.
Derive EqDec for BTag PTag PTm.
From Ltac2 Require Ltac2. From Ltac2 Require Ltac2.
Import Ltac2.Notations. Import Ltac2.Notations.
Import Ltac2.Control. Import Ltac2.Control.
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
From stdpp Require Import relations (rtc(..)).
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) := Inductive lookup : nat -> list PTm -> PTm -> Prop :=
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i). | here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
| there i Γ A B :
lookup i Γ A ->
lookup (S i) (cons B Γ) (ren_PTm shift A).
Lemma up_injective n m (ξ : fin n -> fin m) : Lemma lookup_deter i Γ A B :
(forall i j, ξ i = ξ j -> i = j) -> lookup i Γ A ->
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j. lookup i Γ B ->
A = B.
Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed.
Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U.
Proof. move => ->. apply here. Qed.
Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A ->
lookup (S i) (cons B Γ) U.
Proof. move => ->. apply there. Qed.
Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A).
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
Lemma up_injective (ξ : nat -> nat) :
ren_inj ξ ->
ren_inj (upRen_PTm_PTm ξ).
Proof. Proof.
sblast inv:option. move => h i j.
case : i => //=; case : j => //=.
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
Qed. Qed.
Local Ltac2 rec solve_anti_ren () := Local Ltac2 rec solve_anti_ren () :=
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
intro $x; intro $x;
lazy_match! Constr.type (Control.hyp x) with lazy_match! Constr.type (Control.hyp x) with
| fin _ -> _ _ => (ltac1:(case;hauto lq:on rew:off use:up_injective)) | nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
| _ => solve_anti_ren () | _ => solve_anti_ren ()
end. end.
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) : Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
(forall i j, ξ i = ξ j -> i = j) -> ren_inj ξ ->
ren_PTm ξ a = ren_PTm ξ b -> ren_PTm ξ a = ren_PTm ξ b ->
a = b. a = b.
Proof. Proof.
move : m ξ b. elim : n / a => //; try solve_anti_ren. move : ξ b. elim : a => //; try solve_anti_ren.
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
Qed. Qed.
Inductive HF : Set := Inductive HF : Set :=
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot. | H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
Definition ishf {n} (a : PTm n) := Definition ishf (a : PTm) :=
match a with match a with
| PPair _ _ => true | PPair _ _ => true
| PAbs _ => true | PAbs _ => true
@ -47,7 +77,7 @@ Definition ishf {n} (a : PTm n) :=
| _ => false | _ => false
end. end.
Definition toHF {n} (a : PTm n) := Definition toHF (a : PTm) :=
match a with match a with
| PPair _ _ => H_Pair | PPair _ _ => H_Pair
| PAbs _ => H_Abs | PAbs _ => H_Abs
@ -59,54 +89,513 @@ Definition toHF {n} (a : PTm n) :=
| _ => H_Bot | _ => H_Bot
end. end.
Fixpoint ishne {n} (a : PTm n) := Fixpoint ishne (a : PTm) :=
match a with match a with
| VarPTm _ => true | VarPTm _ => true
| PApp a _ => ishne a | PApp a _ => ishne a
| PProj _ a => ishne a | PProj _ a => ishne a
| PBot => true
| PInd _ n _ _ => ishne n | PInd _ n _ _ => ishne n
| _ => false | _ => false
end. end.
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false. Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false. Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
Definition ispair {n} (a : PTm n) := Definition ispair (a : PTm) :=
match a with match a with
| PPair _ _ => true | PPair _ _ => true
| _ => false | _ => false
end. end.
Definition isnat {n} (a : PTm n) := if a is PNat then true else false. Definition isnat (a : PTm) := if a is PNat then true else false.
Definition iszero {n} (a : PTm n) := if a is PZero then true else false. Definition iszero (a : PTm) := if a is PZero then true else false.
Definition issuc {n} (a : PTm n) := if a is PSuc _ then true else false. Definition issuc (a : PTm) := if a is PSuc _ then true else false.
Definition isabs {n} (a : PTm n) := Definition isabs (a : PTm) :=
match a with match a with
| PAbs _ => true | PAbs _ => true
| _ => false | _ => false
end. end.
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) : Definition tm_nonconf (a b : PTm) : bool :=
match a, b with
| PAbs _, _ => (~~ ishf b) || isabs b
| _, PAbs _ => ~~ ishf a
| VarPTm _, VarPTm _ => true
| PPair _ _, _ => (~~ ishf b) || ispair b
| _, PPair _ _ => ~~ ishf a
| PZero, PZero => true
| PSuc _, PSuc _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| PNat, PNat => true
| PUniv _, PUniv _ => true
| PBind _ _ _, PBind _ _ _ => true
| _,_=> false
end.
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
ishf (ren_PTm ξ a) = ishf a. ishf (ren_PTm ξ a) = ishf a.
Proof. case : a => //=. Qed. Proof. case : a => //=. Qed.
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) : Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
isabs (ren_PTm ξ a) = isabs a. isabs (ren_PTm ξ a) = isabs a.
Proof. case : a => //=. Qed. Proof. case : a => //=. Qed.
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) : Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
ispair (ren_PTm ξ a) = ispair a. ispair (ren_PTm ξ a) = ispair a.
Proof. case : a => //=. Qed. Proof. case : a => //=. Qed.
Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) : Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
ishne (ren_PTm ξ a) = ishne a. ishne (ren_PTm ξ a) = ishne a.
Proof. move : m ξ. elim : n / a => //=. Qed. Proof. move : ξ. elim : a => //=. Qed.
Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A : Lemma renaming_shift Γ A :
renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift. renaming_ok (cons A Γ) Γ shift.
Proof. sfirstorder. Qed. Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
Lemma subst_scons_id (a : PTm) :
subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a.
Proof.
have E : subst_PTm VarPTm a = a by asimpl.
rewrite -{2}E.
apply ext_PTm. case => //=.
Qed.
Module HRed.
Inductive R : PTm -> PTm -> Prop :=
(****************** Beta ***********************)
| AppAbs a b :
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
| ProjPair p a b :
R (PProj p (PPair a b)) (if p is PL then a else b)
| IndZero P b c :
R (PInd P PZero b c) b
| IndSuc P a b c :
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
(*************** Congruence ********************)
| AppCong a0 a1 b :
R a0 a1 ->
R (PApp a0 b) (PApp a1 b)
| ProjCong p a0 a1 :
R a0 a1 ->
R (PProj p a0) (PProj p a1)
| IndCong P a0 a1 b c :
R a0 a1 ->
R (PInd P a0 b c) (PInd P a1 b c).
Definition nf a := forall b, ~ R a b.
End HRed.
Inductive algo_dom : PTm -> PTm -> Prop :=
| A_AbsAbs a b :
algo_dom_r a b ->
(* --------------------- *)
algo_dom (PAbs a) (PAbs b)
| A_AbsNeu a u :
ishne u ->
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
(* --------------------- *)
algo_dom (PAbs a) u
| A_NeuAbs a u :
ishne u ->
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
(* --------------------- *)
algo_dom u (PAbs a)
| A_PairPair a0 a1 b0 b1 :
algo_dom_r a0 a1 ->
algo_dom_r b0 b1 ->
(* ---------------------------- *)
algo_dom (PPair a0 b0) (PPair a1 b1)
| A_PairNeu a0 a1 u :
ishne u ->
algo_dom_r a0 (PProj PL u) ->
algo_dom_r a1 (PProj PR u) ->
(* ----------------------- *)
algo_dom (PPair a0 a1) u
| A_NeuPair a0 a1 u :
ishne u ->
algo_dom_r (PProj PL u) a0 ->
algo_dom_r (PProj PR u) a1 ->
(* ----------------------- *)
algo_dom u (PPair a0 a1)
| A_ZeroZero :
algo_dom PZero PZero
| A_SucSuc a0 a1 :
algo_dom_r a0 a1 ->
algo_dom (PSuc a0) (PSuc a1)
| A_UnivCong i j :
(* -------------------------- *)
algo_dom (PUniv i) (PUniv j)
| A_BindCong p0 p1 A0 A1 B0 B1 :
algo_dom_r A0 A1 ->
algo_dom_r B0 B1 ->
(* ---------------------------- *)
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
| A_NatCong :
algo_dom PNat PNat
| A_VarCong i j :
(* -------------------------- *)
algo_dom (VarPTm i) (VarPTm j)
| A_AppCong u0 u1 a0 a1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
algo_dom_r a0 a1 ->
(* ------------------------- *)
algo_dom (PApp u0 a0) (PApp u1 a1)
| A_ProjCong p0 p1 u0 u1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
(* --------------------- *)
algo_dom (PProj p0 u0) (PProj p1 u1)
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
ishne u0 ->
ishne u1 ->
algo_dom_r P0 P1 ->
algo_dom u0 u1 ->
algo_dom_r b0 b1 ->
algo_dom_r c0 c1 ->
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
| A_Conf a b :
ishf a \/ ishne a ->
ishf b \/ ishne b ->
tm_conf a b ->
algo_dom a b
with algo_dom_r : PTm -> PTm -> Prop :=
| A_NfNf a b :
algo_dom a b ->
algo_dom_r a b
| A_HRedL a a' b :
HRed.R a a' ->
algo_dom_r a' b ->
(* ----------------------- *)
algo_dom_r a b
| A_HRedR a b b' :
HRed.nf a ->
HRed.R b b' ->
algo_dom_r a b' ->
(* ----------------------- *)
algo_dom_r a b.
Scheme algo_ind := Induction for algo_dom Sort Prop
with algor_ind := Induction for algo_dom_r Sort Prop.
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
#[export]Hint Constructors algo_dom algo_dom_r : adom.
Definition stm_nonconf a b :=
match a, b with
| PUniv _, PUniv _ => true
| PBind PPi _ _, PBind PPi _ _ => true
| PBind PSig _ _, PBind PSig _ _ => true
| PNat, PNat => true
| VarPTm _, VarPTm _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| _, _ => false
end.
Definition neuneu_nonconf a b :=
match a, b with
| VarPTm _, VarPTm _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| _, _ => false
end.
Lemma stm_tm_nonconf a b :
stm_nonconf a b -> tm_nonconf a b.
Proof. apply /implyP.
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
Qed.
Definition stm_conf a b := ~~ stm_nonconf a b.
Lemma tm_stm_conf a b :
tm_conf a b -> stm_conf a b.
Proof.
rewrite /tm_conf /stm_conf.
apply /contra /stm_tm_nonconf.
Qed.
Inductive salgo_dom : PTm -> PTm -> Prop :=
| S_UnivCong i j :
(* -------------------------- *)
salgo_dom (PUniv i) (PUniv j)
| S_PiCong A0 A1 B0 B1 :
salgo_dom_r A1 A0 ->
salgo_dom_r B0 B1 ->
(* ---------------------------- *)
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
| S_SigCong A0 A1 B0 B1 :
salgo_dom_r A0 A1 ->
salgo_dom_r B0 B1 ->
(* ---------------------------- *)
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
| S_NatCong :
salgo_dom PNat PNat
| S_NeuNeu a b :
neuneu_nonconf a b ->
algo_dom a b ->
salgo_dom a b
| S_Conf a b :
ishf a \/ ishne a ->
ishf b \/ ishne b ->
stm_conf a b ->
salgo_dom a b
with salgo_dom_r : PTm -> PTm -> Prop :=
| S_NfNf a b :
salgo_dom a b ->
salgo_dom_r a b
| S_HRedL a a' b :
HRed.R a a' ->
salgo_dom_r a' b ->
(* ----------------------- *)
salgo_dom_r a b
| S_HRedR a b b' :
HRed.nf a ->
HRed.R b b' ->
salgo_dom_r a b' ->
(* ----------------------- *)
salgo_dom_r a b.
#[export]Hint Constructors salgo_dom salgo_dom_r : sdom.
Scheme salgo_ind := Induction for salgo_dom Sort Prop
with salgor_ind := Induction for salgo_dom_r Sort Prop.
Combined Scheme salgo_dom_mutual from salgo_ind, salgor_ind.
Lemma hf_no_hred (a b : PTm) :
ishf a ->
HRed.R a b ->
False.
Proof. hauto l:on inv:HRed.R. Qed.
Lemma hne_no_hred (a b : PTm) :
ishne a ->
HRed.R a b ->
False.
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
Ltac2 destruct_salgo () :=
lazy_match! goal with
| [_ : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
if Constr.is_var a then destruct $a; ltac1:(done) else ()
| [|- is_true (stm_conf _ _)] =>
unfold stm_conf; ltac1:(done)
end.
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
Lemma algo_dom_r_inv a b :
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
Proof.
induction 1; hauto lq:on ctrs:rtc.
Qed.
Lemma A_HRedsL a a' b :
rtc HRed.R a a' ->
algo_dom_r a' b ->
algo_dom_r a b.
induction 1; sfirstorder use:A_HRedL.
Qed.
Lemma A_HRedsR a b b' :
HRed.nf a ->
rtc HRed.R b b' ->
algo_dom a b' ->
algo_dom_r a b.
Proof. induction 2; sauto. Qed.
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
Proof. case : a; case : b => //=. Qed.
Lemma algo_dom_no_hred (a b : PTm) :
algo_dom a b ->
HRed.nf a /\ HRed.nf b.
Proof.
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred lq:on unfold:HRed.nf.
Qed.
Lemma A_HRedR' a b b' :
HRed.R b b' ->
algo_dom_r a b' ->
algo_dom_r a b.
Proof.
move => hb /algo_dom_r_inv.
move => [a0 [b0 [h0 [h1 h2]]]].
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
hauto lq:on use:A_HRedsL, A_HRedsR.
Qed.
Lemma algo_dom_sym :
(forall a b (h : algo_dom a b), algo_dom b a) /\
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
Proof.
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
Qed.
Lemma salgo_dom_r_inv a b :
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
Proof.
induction 1; hauto lq:on ctrs:rtc.
Qed.
Lemma S_HRedsL a a' b :
rtc HRed.R a a' ->
salgo_dom_r a' b ->
salgo_dom_r a b.
induction 1; sfirstorder use:S_HRedL.
Qed.
Lemma S_HRedsR a b b' :
HRed.nf a ->
rtc HRed.R b b' ->
salgo_dom a b' ->
salgo_dom_r a b.
Proof. induction 2; sauto. Qed.
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
Lemma salgo_dom_no_hred (a b : PTm) :
salgo_dom a b ->
HRed.nf a /\ HRed.nf b.
Proof.
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_no_hred lq:on unfold:HRed.nf.
Qed.
Lemma S_HRedR' a b b' :
HRed.R b b' ->
salgo_dom_r a b' ->
salgo_dom_r a b.
Proof.
move => hb /salgo_dom_r_inv.
move => [a0 [b0 [h0 [h1 h2]]]].
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
hauto lq:on use:S_HRedsL, S_HRedsR.
Qed.
Ltac solve_conf := intros; split;
apply S_Conf; solve [destruct_salgo | sfirstorder ctrs:salgo_dom use:hne_no_hred, hf_no_hred].
Ltac solve_basic := hauto q:on ctrs:salgo_dom, salgo_dom_r, algo_dom use:algo_dom_sym.
Lemma algo_dom_salgo_dom :
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
Proof.
apply algo_dom_mutual => //=; try first [solve_conf | solve_basic].
- case; case; hauto lq:on ctrs:salgo_dom use:algo_dom_sym inv:HRed.R unfold:HRed.nf.
- move => a b ha hb hc. split;
apply S_Conf; hauto l:on use:tm_conf_sym, tm_stm_conf.
- hauto lq:on ctrs:salgo_dom_r use:S_HRedR'.
Qed.
Fixpoint hred (a : PTm) : option (PTm) :=
match a with
| VarPTm i => None
| PAbs a => None
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
| PApp a b =>
match hred a with
| Some a => Some (PApp a b)
| None => None
end
| PPair a b => None
| PProj p (PPair a b) => if p is PL then Some a else Some b
| PProj p a =>
match hred a with
| Some a => Some (PProj p a)
| None => None
end
| PUniv i => None
| PBind p A B => None
| PNat => None
| PZero => None
| PSuc a => None
| PInd P PZero b c => Some b
| PInd P (PSuc a) b c =>
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
| PInd P a b c =>
match hred a with
| Some a => Some (PInd P a b c)
| None => None
end
end.
Lemma hred_complete (a b : PTm) :
HRed.R a b -> hred a = Some b.
Proof.
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
Qed.
Lemma hred_sound (a b : PTm):
hred a = Some b -> HRed.R a b.
Proof.
elim : a b; hauto q:on dep:on ctrs:HRed.R.
Qed.
Lemma hred_deter (a b0 b1 : PTm) :
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
Proof.
move /hred_complete => + /hred_complete. congruence.
Qed.
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
destruct (hred a) eqn:eq.
right. exists p. by apply hred_sound in eq.
left. move => b /hred_complete. congruence.
Defined.
Lemma hreds_nf_refl a b :
HRed.nf a ->
rtc HRed.R a b ->
a = b.
Proof. inversion 2; sfirstorder. Qed.
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.

View file

@ -1,145 +1,350 @@
From Equations Require Import Equations. From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
common typing preservation admissible fp_red structural soundness. Require Import Logic.PropExtensionality (propositional_extensionality).
Require Import algorithmic.
From stdpp Require Import relations (rtc(..), nsteps(..)).
Require Import ssreflect ssrbool. Require Import ssreflect ssrbool.
Import Logic (inspect).
Inductive algo_dom {n} : PTm n -> PTm n -> Prop := From Ltac2 Require Import Ltac2.
| A_AbsAbs a b : Import Ltac2.Constr.
algo_dom a b -> Set Default Proof Mode "Classic".
(* --------------------- *)
algo_dom (PAbs a) (PAbs b)
| A_AbsNeu a u :
ishne u ->
algo_dom a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
(* --------------------- *)
algo_dom (PAbs a) u
| A_NeuAbs a u :
ishne u ->
algo_dom (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
(* --------------------- *)
algo_dom u (PAbs a)
| A_PairPair a0 a1 b0 b1 :
algo_dom a0 a1 ->
algo_dom b0 b1 ->
(* ---------------------------- *)
algo_dom (PPair a0 b0) (PPair a1 b1)
| A_PairNeu a0 a1 u :
ishne u ->
algo_dom a0 (PProj PL u) ->
algo_dom a1 (PProj PR u) ->
(* ----------------------- *)
algo_dom (PPair a0 a1) u
| A_NeuPair a0 a1 u :
ishne u ->
algo_dom (PProj PL u) a0 ->
algo_dom (PProj PR u) a1 ->
(* ----------------------- *)
algo_dom u (PPair a0 a1)
| A_UnivCong i j :
(* -------------------------- *)
algo_dom (PUniv i) (PUniv j)
| A_BindCong p0 p1 A0 A1 B0 B1 :
algo_dom A0 A1 ->
algo_dom B0 B1 ->
(* ---------------------------- *)
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
| A_VarCong i j :
(* -------------------------- *)
algo_dom (VarPTm i) (VarPTm j)
| A_ProjCong p0 p1 u0 u1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
(* --------------------- *)
algo_dom (PProj p0 u0) (PProj p1 u1)
| A_AppCong u0 u1 a0 a1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
algo_dom a0 a1 ->
(* ------------------------- *)
algo_dom (PApp u0 a0) (PApp u1 a1)
| A_HRedL a a' b :
HRed.R a a' ->
algo_dom a' b ->
(* ----------------------- *)
algo_dom a b
| A_HRedR a b b' :
ishne a \/ ishf a ->
HRed.R b b' ->
algo_dom a b' ->
(* ----------------------- *)
algo_dom a b.
Definition fin_eq {n} (i j : fin n) : bool. Require Import ssreflect ssrbool.
Proof. From Hammer Require Import Tactics.
induction n.
- by exfalso. Ltac2 destruct_algo () :=
- refine (match i , j with lazy_match! goal with
| None, None => true | [h : algo_dom ?a ?b |- _ ] =>
| Some i, Some j => IHn i j if is_var a then destruct $a; ltac1:(done) else
(if is_var b then destruct $b; ltac1:(done) else ())
end.
Ltac check_equal_triv :=
intros;subst;
lazymatch goal with
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
| [h : algo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
| _ => idtac
end.
Ltac solve_check_equal :=
try solve [intros *;
match goal with
| [|- _ = _] => sauto
| _ => idtac
end].
Global Set Transparent Obligations.
Local Obligation Tactic := try solve [check_equal_triv | sfirstorder].
Program Fixpoint check_equal (a b : PTm) (h : algo_dom a b) {struct h} : bool :=
match a, b with
| VarPTm i, VarPTm j => nat_eqdec i j
| PAbs a, PAbs b => check_equal_r a b _
| PAbs a, VarPTm _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PApp _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PInd _ _ _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PProj _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| VarPTm _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PApp _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PProj _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PInd _ _ _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PPair a0 b0, PPair a1 b1 =>
check_equal_r a0 a1 _ && check_equal_r b0 b1 _
| PPair a0 b0, VarPTm _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PProj _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PApp _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PInd _ _ _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| VarPTm _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PApp _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PProj _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PInd _ _ _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PNat, PNat => true
| PZero, PZero => true
| PSuc a, PSuc b => check_equal_r a b _
| PProj p0 a, PProj p1 b => PTag_eqdec p0 p1 && check_equal a b _
| PApp a0 b0, PApp a1 b1 => check_equal a0 a1 _ && check_equal_r b0 b1 _
| PInd P0 u0 b0 c0, PInd P1 u1 b1 c1 =>
check_equal_r P0 P1 _ && check_equal u0 u1 _ && check_equal_r b0 b1 _ && check_equal_r c0 c1 _
| PUniv i, PUniv j => nat_eqdec i j
| PBind p0 A0 B0, PBind p1 A1 B1 => BTag_eqdec p0 p1 && check_equal_r A0 A1 _ && check_equal_r B0 B1 _
| _, _ => false | _, _ => false
end). end
Defined. with check_equal_r (a b : PTm) (h : algo_dom_r a b) {struct h} : bool :=
match fancy_hred a with
| inr a' => check_equal_r (proj1_sig a') b _
| inl ha' => match fancy_hred b with
| inr b' => check_equal_r a (proj1_sig b') _
| inl hb' => check_equal a b _
end
end.
Lemma fin_eq_dec {n} (i j : fin n) :
Bool.reflect (i = j) (fin_eq i j).
Proof.
revert i j. induction n.
- destruct i.
- destruct i; destruct j.
+ specialize (IHn f f0).
inversion IHn; subst.
simpl. rewrite -H.
apply ReflectT.
reflexivity.
simpl. rewrite -H.
apply ReflectF.
injection. tauto.
+ by apply ReflectF.
+ by apply ReflectF.
+ by apply ReflectT.
Defined.
Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
bool by struct h :=
check_equal a b h with (@idP (ishne a || ishf a)) := {
| Bool.ReflectT _ _ => _
| Bool.ReflectF _ _ => _
}.
(* check_equal (VarPTm i) (VarPTm j) h := fin_eq i j; *)
(* check_equal (PAbs a) (PAbs b) h := check_equal a b _; *)
(* check_equal (PPair a0 b0) (PPair a1 b1) h := *)
(* check_equal a0 b0 _ && check_equal a1 b1 _; *)
(* check_equal (PUniv i) (PUniv j) _ := _; *)
Next Obligation. Next Obligation.
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
inversion h; subst => //=.
exfalso. sfirstorder use:algo_dom_no_hred.
assert (a' = a'0) by eauto using hred_deter. by subst.
exfalso. sfirstorder.
Defined.
Next Obligation.
simpl. intros. clear Heq_anonymous Heq_anonymous0.
destruct b' as [b' hb']. simpl.
inversion h; subst.
- exfalso.
sfirstorder use:algo_dom_no_hred.
- exfalso.
sfirstorder.
- assert (b' = b'0) by eauto using hred_deter. by subst.
Defined.
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
Next Obligation.
move => /= a b hdom ha _ hb _.
inversion hdom; subst.
- assumption.
- exfalso; sfirstorder.
- exfalso; sfirstorder.
Defined.
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
Proof. reflexivity. Qed.
Lemma check_equal_abs_neu a u neu h : check_equal (PAbs a) u (A_AbsNeu a u neu h) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_neu_abs a u neu h : check_equal u (PAbs a) (A_NeuAbs a u neu h) = check_equal_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_pair_pair a0 b0 a1 b1 a h :
check_equal (PPair a0 b0) (PPair a1 b1) (A_PairPair a0 a1 b0 b1 a h) =
check_equal_r a0 a1 a && check_equal_r b0 b1 h.
Proof. reflexivity. Qed.
Lemma check_equal_pair_neu a0 a1 u neu h h'
: check_equal (PPair a0 a1) u (A_PairNeu a0 a1 u neu h h') = check_equal_r a0 (PProj PL u) h && check_equal_r a1 (PProj PR u) h'.
Proof.
case : u neu h h' => //=.
Qed.
Lemma check_equal_neu_pair a0 a1 u neu h h'
: check_equal u (PPair a0 a1) (A_NeuPair a0 a1 u neu h h') = check_equal_r (PProj PL u) a0 h && check_equal_r (PProj PR u) a1 h'.
Proof.
case : u neu h h' => //=.
Qed.
Lemma check_equal_bind_bind p0 A0 B0 p1 A1 B1 h0 h1 :
check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) (A_BindCong p0 p1 A0 A1 B0 B1 h0 h1) =
BTag_eqdec p0 p1 && check_equal_r A0 A1 h0 && check_equal_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_equal_proj_proj p0 u0 p1 u1 neu0 neu1 h :
check_equal (PProj p0 u0) (PProj p1 u1) (A_ProjCong p0 p1 u0 u1 neu0 neu1 h) =
PTag_eqdec p0 p1 && check_equal u0 u1 h.
Proof. reflexivity. Qed.
Lemma check_equal_app_app u0 a0 u1 a1 hu0 hu1 hdom hdom' :
check_equal (PApp u0 a0) (PApp u1 a1) (A_AppCong u0 u1 a0 a1 hu0 hu1 hdom hdom') =
check_equal u0 u1 hdom && check_equal_r a0 a1 hdom'.
Proof. reflexivity. Qed.
Lemma check_equal_ind_ind P0 u0 b0 c0 P1 u1 b1 c1 neu0 neu1 domP domu domb domc :
check_equal (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
(A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP domu domb domc) =
check_equal_r P0 P1 domP && check_equal u0 u1 domu && check_equal_r b0 b1 domb && check_equal_r c0 c1 domc.
Proof. reflexivity. Qed.
Lemma hred_none a : HRed.nf a -> hred a = None.
Proof.
destruct (hred a) eqn:eq;
sfirstorder use:hred_complete, hred_sound.
Qed.
Ltac simp_check_r := with_strategy opaque [check_equal] simpl in *.
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
Proof.
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
simp_check_r.
destruct (fancy_hred a).
destruct (fancy_hred b).
reflexivity.
exfalso. hauto l:on use:hred_complete.
exfalso. hauto l:on use:hred_complete.
Qed.
Lemma check_equal_hredl a b a' ha doma :
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
Proof.
simpl. simpl.
intros ih. destruct (fancy_hred a).
Admitted. - hauto q:on unfold:HRed.nf.
- destruct s as [x ?].
have ? : x = a' by eauto using hred_deter. subst.
simpl.
f_equal.
apply PropExtensionality.proof_irrelevance.
Qed.
Search (Bool.reflect (is_true _) _). Lemma check_equal_hredr a b b' hu r a0 :
Check idP. check_equal_r a b (A_HRedR a b b' hu r a0) =
check_equal_r a b' a0.
Proof.
simpl.
destruct (fancy_hred a).
- simpl.
destruct (fancy_hred b) as [|[b'' hb']].
+ hauto lq:on unfold:HRed.nf.
+ simpl.
have ? : (b'' = b') by eauto using hred_deter. subst.
f_equal.
apply PropExtensionality.proof_irrelevance.
- exfalso.
sfirstorder use:hne_no_hred, hf_no_hred.
Qed.
Definition metric {n} k (a b : PTm n) := Lemma check_equal_univ i j :
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ check_equal (PUniv i) (PUniv j) (A_UnivCong i j) = nat_eqdec i j.
nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k. Proof. reflexivity. Qed.
Search (nat -> nat -> bool). Lemma check_equal_conf a b nfa nfb nfab :
check_equal a b (A_Conf a b nfa nfb nfab) = false.
Proof. destruct a; destruct b => //=. Qed.
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
Ltac2 destruct_salgo () :=
lazy_match! goal with
| [h : salgo_dom ?a ?b |- _ ] =>
if is_var a then destruct $a; ltac1:(done) else
(if is_var b then destruct $b; ltac1:(done) else ())
end.
Ltac check_sub_triv :=
intros;subst;
lazymatch goal with
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
| [_ : salgo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
| _ => idtac
end.
Local Obligation Tactic := try solve [check_sub_triv | sfirstorder].
Program Fixpoint check_sub (a b : PTm) (h : salgo_dom a b) {struct h} :=
match a, b with
| PBind PPi A0 B0, PBind PPi A1 B1 =>
check_sub_r A1 A0 _ && check_sub_r B0 B1 _
| PBind PSig A0 B0, PBind PSig A1 B1 =>
check_sub_r A0 A1 _ && check_sub_r B0 B1 _
| PUniv i, PUniv j =>
PeanoNat.Nat.leb i j
| PNat, PNat => true
| PApp _ _ , PApp _ _ => check_equal a b _
| VarPTm _, VarPTm _ => check_equal a b _
| PInd _ _ _ _, PInd _ _ _ _ => check_equal a b _
| PProj _ _, PProj _ _ => check_equal a b _
| _, _ => false
end
with check_sub_r (a b : PTm) (h : salgo_dom_r a b) {struct h} :=
match fancy_hred a with
| inr a' => check_sub_r (proj1_sig a') b _
| inl ha' => match fancy_hred b with
| inr b' => check_sub_r a (proj1_sig b') _
| inl hb' => check_sub a b _
end
end.
Next Obligation.
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
inversion h; subst => //=.
exfalso. sfirstorder use:salgo_dom_no_hred.
assert (a' = a'0) by eauto using hred_deter. by subst.
exfalso. sfirstorder.
Defined.
Next Obligation.
simpl. intros. clear Heq_anonymous Heq_anonymous0.
destruct b' as [b' hb']. simpl.
inversion h; subst.
- exfalso.
sfirstorder use:salgo_dom_no_hred.
- exfalso.
sfirstorder.
- assert (b' = b'0) by eauto using hred_deter. by subst.
Defined.
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
Next Obligation.
move => /= a b hdom ha _ hb _.
inversion hdom; subst.
- assumption.
- exfalso; sfirstorder.
- exfalso; sfirstorder.
Defined.
Lemma check_sub_pi_pi A0 B0 A1 B1 h0 h1 :
check_sub (PBind PPi A0 B0) (PBind PPi A1 B1) (S_PiCong A0 A1 B0 B1 h0 h1) =
check_sub_r A1 A0 h0 && check_sub_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_sub_sig_sig A0 B0 A1 B1 h0 h1 :
check_sub (PBind PSig A0 B0) (PBind PSig A1 B1) (S_SigCong A0 A1 B0 B1 h0 h1) =
check_sub_r A0 A1 h0 && check_sub_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_sub_univ_univ i j :
check_sub (PUniv i) (PUniv j) (S_UnivCong i j) = PeanoNat.Nat.leb i j.
Proof. reflexivity. Qed.
Lemma check_sub_nfnf a b dom : check_sub_r a b (S_NfNf a b dom) = check_sub a b dom.
Proof.
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
simpl.
destruct (fancy_hred b)=>//=.
destruct (fancy_hred a) =>//=.
destruct s as [a' ha']. simpl.
hauto l:on use:hred_complete.
destruct s as [b' hb']. simpl.
hauto l:on use:hred_complete.
Qed.
Lemma check_sub_hredl a b a' ha doma :
check_sub_r a b (S_HRedL a a' b ha doma) = check_sub_r a' b doma.
Proof.
simpl.
destruct (fancy_hred a).
- hauto q:on unfold:HRed.nf.
- destruct s as [x ?].
have ? : x = a' by eauto using hred_deter. subst.
simpl.
f_equal.
apply PropExtensionality.proof_irrelevance.
Qed.
Lemma check_sub_hredr a b b' hu r a0 :
check_sub_r a b (S_HRedR a b b' hu r a0) =
check_sub_r a b' a0.
Proof.
simpl.
destruct (fancy_hred a).
- simpl.
destruct (fancy_hred b) as [|[b'' hb']].
+ hauto lq:on unfold:HRed.nf.
+ simpl.
have ? : (b'' = b') by eauto using hred_deter. subst.
f_equal.
apply PropExtensionality.proof_irrelevance.
- exfalso.
sfirstorder use:hne_no_hred, hf_no_hred.
Qed.
Lemma check_sub_neuneu a b i a0 : check_sub a b (S_NeuNeu a b i a0) = check_equal a b a0.
Proof. destruct a,b => //=. Qed.
Lemma check_sub_conf a b n n0 i : check_sub a b (S_Conf a b n n0 i) = false.
Proof. destruct a,b=>//=; ecrush inv:BTag. Qed.
#[export]Hint Rewrite check_sub_neuneu check_sub_conf check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.

View file

@ -0,0 +1,259 @@
From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
Require Import ssreflect ssrbool.
From stdpp Require Import relations (rtc(..)).
From Hammer Require Import Tactics.
Lemma coqeqr_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
Lemma coqeq_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1;
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
Qed.
Lemma coqleq_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof.
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
Qed.
Lemma coqeq_neuneu u0 u1 :
ishne u0 -> ishne u1 -> u0 u1 -> u0 u1.
Proof.
inversion 3; subst => //=.
Qed.
Lemma coqeq_neuneu' u0 u1 :
neuneu_nonconf u0 u1 ->
u0 u1 ->
u0 u1.
Proof.
induction 2 => //=; destruct u => //=.
Qed.
Lemma check_equal_sound :
(forall a b (h : algo_dom a b), check_equal a b h -> a b) /\
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a b).
Proof.
apply algo_dom_mutual.
- move => a b h.
move => h0.
rewrite check_equal_abs_abs.
constructor. tauto.
- move => a u i h0 ih h.
apply CE_AbsNeu => //.
apply : ih. simp check_equal tm_to_eq_view in h.
by rewrite check_equal_abs_neu in h.
- move => a u i h ih h0.
apply CE_NeuAbs=>//.
apply ih.
by rewrite check_equal_neu_abs in h0.
- move => a0 a1 b0 b1 a ha h.
move => h0.
rewrite check_equal_pair_pair. move /andP => [h1 h2].
sauto lq:on.
- move => a0 a1 u neu h ih h' ih' he.
rewrite check_equal_pair_neu in he.
apply CE_PairNeu => //; hauto lqb:on.
- move => a0 a1 u i a ha a2 hb.
rewrite check_equal_neu_pair => *.
apply CE_NeuPair => //; hauto lqb:on.
- sfirstorder.
- hauto l:on use:CE_SucSuc.
- move => i j /sumboolP.
hauto lq:on use:CE_UnivCong.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
rewrite check_equal_bind_bind in h2.
move : h2.
move /andP => [/andP [h20 h21] h3].
move /sumboolP : h20 => ?. subst.
hauto l:on use:CE_BindCong.
- sfirstorder.
- move => i j /sumboolP ?. subst.
apply : CE_NeuNeu. apply CE_VarCong.
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
rewrite check_equal_app_app in hE.
move /andP : hE => [h0 h1].
sauto lq:on use:coqeq_neuneu.
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
apply CE_NeuNeu.
rewrite check_equal_proj_proj in he.
move /andP : he => [/sumboolP ? h1]. subst.
sauto lq:on use:coqeq_neuneu.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
sauto lq:on use:coqeq_neuneu.
- move => a b n n0 i. by rewrite check_equal_conf.
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
rewrite check_equal_nfnf in ih.
tauto.
- move => a a' b ha doma ih hE.
rewrite check_equal_hredl in hE. sauto lq:on.
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
sauto lq:on rew:off.
Qed.
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
Lemma check_equal_complete :
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a b) /\
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a b).
Proof.
apply algo_dom_mutual.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- move => i j.
rewrite check_equal_univ.
case : nat_eqdec => //=.
ce_solv.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
rewrite check_equal_bind_bind.
move /negP.
move /nandP.
case. move /nandP.
case. move => h. have : p0 <> p1 by sauto lqb:on.
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
- simp check_equal. done.
- move => i j. move => h. have {h} : ~ nat_eqdec i j by done.
case : nat_eqdec => //=. ce_solv.
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
rewrite check_equal_app_app.
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
- move => p0 p1 u0 u1 neu0 neu1 h ih.
rewrite check_equal_proj_proj.
move /negP /nandP. case.
case : PTag_eqdec => //=. sauto lq:on.
sauto lqb:on.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move => + h.
inversion h; subst.
inversion H; subst.
move /negP /nandP.
case. move/nandP.
case. move/nandP.
case. qauto b:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
- rewrite /tm_conf.
move => a b n n0 i. simp ce_prop.
move => _. inversion 1; subst => //=.
+ destruct b => //=.
+ destruct a => //=.
+ destruct b => //=.
+ destruct a => //=.
+ hauto l:on inv:CoqEq_Neu.
- move => a b h ih.
rewrite check_equal_nfnf.
move : ih => /[apply].
move => + h0.
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
inversion h0; subst.
hauto l:on use:hreds_nf_refl.
- move => a a' b h dom.
simp ce_prop => /[apply].
move => + h1. inversion h1; subst.
inversion H; subst.
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
+ have ? : y = a' by eauto using hred_deter. subst.
sauto lq:on.
- move => a b b' u hr dom ihdom.
rewrite check_equal_hredr.
move => + h. inversion h; subst.
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
move => {}/ihdom.
inversion H0; subst.
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
sfirstorder unfold:HRed.nf.
+ sauto lq:on use:hred_deter.
Qed.
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
Lemma check_sub_sound :
(forall a b (h : salgo_dom a b), check_sub a b h -> a b) /\
(forall a b (h : salgo_dom_r a b), check_sub_r a b h -> a b).
Proof.
apply salgo_dom_mutual; try done.
- simpl. move => i j [];
sauto lq:on use:Reflect.Nat_leb_le.
- move => A0 A1 B0 B1 s ihs s0 ihs0.
simp ce_prop.
hauto lqb:on ctrs:CoqLEq.
- move => A0 A1 B0 B1 s ihs s0 ihs0.
simp ce_prop.
hauto lqb:on ctrs:CoqLEq.
- qauto ctrs:CoqLEq.
- move => a b i a0.
simp ce_prop.
move => h. apply CLE_NeuNeu.
hauto lq:on use:check_equal_sound, coqeq_neuneu', coqeq_symmetric_mutual.
- move => a b n n0 i.
by simp ce_prop.
- move => a b h ih. simp ce_prop. hauto l:on.
- move => a a' b hr h ih.
simp ce_prop.
sauto lq:on rew:off.
- move => a b b' n r dom ihdom.
simp ce_prop.
move : ihdom => /[apply].
move {dom}.
sauto lq:on rew:off.
Qed.
Lemma check_sub_complete :
(forall a b (h : salgo_dom a b), check_sub a b h = false -> ~ a b) /\
(forall a b (h : salgo_dom_r a b), check_sub_r a b h = false -> ~ a b).
Proof.
apply salgo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
- move => i j /=.
move => + h. inversion h; subst => //=.
sfirstorder use:PeanoNat.Nat.leb_le.
hauto lq:on inv:CoqEq_Neu.
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
move /nandP.
case.
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
move /nandP.
case.
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
- move => a b i hs. simp ce_prop.
move => + h. inversion h; subst => //=.
move => /negP h0.
eapply check_equal_complete in h0.
apply h0. by constructor.
- move => a b s ihs. simp ce_prop.
move => h0 h1. apply ihs =>//.
have [? ?] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
inversion h1; subst.
hauto l:on use:hreds_nf_refl.
- move => a a' b h dom.
simp ce_prop => /[apply].
move => + h1. inversion h1; subst.
inversion H; subst.
+ sfirstorder use:coqleq_no_hred unfold:HRed.nf.
+ have ? : y = a' by eauto using hred_deter. subst.
sauto lq:on.
- move => a b b' u hr dom ihdom.
rewrite check_sub_hredr.
move => + h. inversion h; subst.
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
move => {}/ihdom.
inversion H0; subst.
+ have ? : HRed.nf b'0 by hauto l:on use:coqleq_no_hred.
sfirstorder unfold:HRed.nf.
+ sauto lq:on use:hred_deter.
Qed.

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,91 +1,20 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing structural fp_red. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural fp_red admissible.
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
Require Import ssreflect. Require Import ssreflect.
Require Import Psatz. Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality. Require Import Coq.Logic.FunctionalExtensionality.
Lemma App_Inv n Γ (b a : PTm n) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : n Γ u U / hu => n //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv n Γ (a : PTm (S n)) U : Lemma Ind_Inv Γ P (a : PTm) b c U :
Γ PAbs a U ->
exists A B, funcomp (ren_PTm shift) (scons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : n Γ u U / hu => n //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj1_Inv n Γ (a : PTm n) U :
Γ PProj PL a U ->
exists A B, Γ a PBind PSig A B /\ Γ A U.
Proof.
move E : (PProj PL a) => u hu.
move :a E. elim : n Γ u U / hu => n //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
eapply regularity in ha.
move : ha => [i].
move /Bind_Inv => [j][h _].
by move /E_Refl /Su_Eq in h.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj2_Inv n Γ (a : PTm n) U :
Γ PProj PR a U ->
exists A B, Γ a PBind PSig A B /\ Γ subst_PTm (scons (PProj PL a) VarPTm) B U.
Proof.
move E : (PProj PR a) => u hu.
move :a E. elim : n Γ u U / hu => n //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
have ha' := ha.
eapply regularity in ha.
move : ha => [i ha].
move /T_Proj1 in ha'.
apply : bind_inst; eauto.
apply : E_Refl ha'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Pair_Inv n Γ (a b : PTm n) U :
Γ PPair a b U ->
exists A B, Γ a A /\
Γ b subst_PTm (scons a VarPTm) B /\
Γ PBind PSig A B U.
Proof.
move E : (PPair a b) => u hu.
move : a b E. elim : n Γ u U / hu => n //=.
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
exists A,B. repeat split => //=.
move /E_Refl /Su_Eq : hS. apply.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Ind_Inv n Γ P (a : PTm n) b c U :
Γ PInd P a b c U -> Γ PInd P a b c U ->
exists i, funcomp (ren_PTm shift) (scons PNat Γ) P PUniv i /\ exists i, (cons PNat Γ) P PUniv i /\
Γ a PNat /\ Γ a PNat /\
Γ b subst_PTm (scons PZero VarPTm) P /\ Γ b subst_PTm (scons PZero VarPTm) P /\
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\ (cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\
Γ subst_PTm (scons a VarPTm) P U. Γ subst_PTm (scons a VarPTm) P U.
Proof. Proof.
move E : (PInd P a b c)=> u hu. move E : (PInd P a b c)=> u hu.
move : P a b c E. elim : n Γ u U / hu => n //=. move : P a b c E. elim : Γ u U / hu => //=.
- move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst. - move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst.
exists i. repeat split => //=. exists i. repeat split => //=.
have : Γ subst_PTm (scons a VarPTm) P subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt. have : Γ subst_PTm (scons a VarPTm) P subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt.
@ -93,57 +22,79 @@ Proof.
- hauto lq:on rew:off ctrs:LEq. - hauto lq:on rew:off ctrs:LEq.
Qed. Qed.
Lemma E_AppAbs : forall n (a : PTm (S n)) (b : PTm n) (Γ : fin n -> PTm n) (A : PTm n), Lemma E_Abs Γ a b A B :
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A. A :: Γ a b B ->
Γ PAbs a PAbs b PBind PPi A B.
Proof. Proof.
move => n a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h. move => h.
apply : E_Conv; eauto. have [i hA] : exists i, Γ A PUniv i by hauto l:on use:wff_mutual inv:Wff.
apply : E_AppAbs; eauto. have [j hB] : exists j, A :: Γ B PUniv j by hauto l:on use:regularity.
eauto using T_Conv. have : Γ by sfirstorder use:wff_mutual.
have hΓ' : A::Γ by eauto with wt.
set k := max i j.
have [? ?] : i <= k /\ j <= k by lia.
have {}hA : Γ A PUniv k by hauto l:on use:T_Conv, Su_Univ.
have {}hB : A :: Γ B PUniv k by hauto lq:on use:T_Conv, Su_Univ.
have hPi : Γ PBind PPi A B PUniv k by eauto with wt.
apply : E_FunExt; eauto with wt.
hauto lq:on rew:off use:regularity, T_Abs.
hauto lq:on rew:off use:regularity, T_Abs.
apply : E_Transitive => /=. apply E_AppAbs.
hauto lq:on use:T_Eta, regularity.
apply /E_Symmetric /E_Transitive. apply E_AppAbs.
hauto lq:on use:T_Eta, regularity.
asimpl. rewrite !subst_scons_id. by apply E_Symmetric.
Qed. Qed.
Lemma E_ProjPair1 : forall n (a b : PTm n) (Γ : fin n -> PTm n) (A : PTm n), Lemma E_Pair Γ a0 b0 a1 b1 A B i :
Γ PProj PL (PPair a b) A -> Γ PProj PL (PPair a b) a A. Γ PBind PSig A B PUniv i ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B.
Proof. Proof.
move => n a b Γ A. move => hSig ha hb.
move /Proj1_Inv. move => [A0][B0][hab]hA0. have [ha0 ha1] : Γ a0 A /\ Γ a1 A by hauto l:on use:regularity.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS. have [hb0 hb1] : Γ b0 subst_PTm (scons a0 VarPTm) B /\
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0. Γ b1 subst_PTm (scons a0 VarPTm) B by hauto l:on use:regularity.
move /Su_Sig_Proj1 in hS. have hp : Γ PPair a0 b0 PBind PSig A B by eauto with wt.
have {hA0} {}hS : Γ A1 A by eauto using Su_Transitive. have hp' : Γ PPair a1 b1 PBind PSig A B. econstructor; eauto with wt; [idtac].
apply : E_Conv; eauto. apply : T_Conv; eauto. apply : Su_Sig_Proj2; by eauto using Su_Eq, E_Refl.
apply : E_ProjPair1; eauto. have ea : Γ PProj PL (PPair a0 b0) a0 A by eauto with wt.
have : Γ PProj PR (PPair a0 b0) b0 subst_PTm (scons a0 VarPTm) B by eauto with wt.
have : Γ PProj PL (PPair a1 b1) a1 A by eauto using E_ProjPair1 with wt.
have : Γ PProj PR (PPair a1 b1) b1 subst_PTm (scons a0 VarPTm) B.
apply : E_Conv; eauto using E_ProjPair2 with wt.
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
by eauto using E_Symmetric.
move => *.
apply : E_PairExt; eauto using E_Symmetric, E_Transitive.
apply : E_Conv. by eauto using E_Symmetric, E_Transitive.
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
apply : E_Transitive. by eauto. apply /E_Symmetric /E_Transitive.
by eauto using E_ProjPair1.
eauto.
Qed. Qed.
Lemma Suc_Inv n Γ (a : PTm n) A : Lemma Suc_Inv Γ (a : PTm) A :
Γ PSuc a A -> Γ a PNat /\ Γ PNat A. Γ PSuc a A -> Γ a PNat /\ Γ PNat A.
Proof. Proof.
move E : (PSuc a) => u hu. move E : (PSuc a) => u hu.
move : a E. move : a E.
elim : n Γ u A /hu => //=. elim : Γ u A /hu => //=.
- move => n Γ a ha iha a0 [*]. subst. - move => Γ a ha iha a0 [*]. subst.
split => //=. eapply wff_mutual in ha. split => //=. eapply wff_mutual in ha.
apply : Su_Eq. apply : Su_Eq.
apply E_Refl. by apply T_Nat'. apply E_Refl. by apply T_Nat'.
- hauto lq:on rew:off ctrs:LEq. - hauto lq:on rew:off ctrs:LEq.
Qed. Qed.
Lemma RRed_Eq n Γ (a b : PTm n) A : Lemma RRed_Eq Γ (a b : PTm) A :
Γ a A -> Γ a A ->
RRed.R a b -> RRed.R a b ->
Γ a b A. Γ a b A.
Proof. Proof.
move => + h. move : Γ A. elim : n a b /h => n. move => + h. move : Γ A. elim : a b /h.
- apply E_AppAbs. - apply E_AppAbs.
- move => p a b Γ A. - move => p a b Γ A.
case : p => //=. case : p => //=.
@ -159,7 +110,7 @@ Proof.
apply : Su_Sig_Proj2; eauto. apply : Su_Sig_Proj2; eauto.
move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply]. move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply].
move {hS}. move {hS}.
move => ?. apply : E_Conv; eauto. apply : E_ProjPair2; eauto. move => ?. apply : E_Conv; eauto. apply : typing.E_ProjPair2; eauto.
- hauto lq:on use:Ind_Inv, E_Conv, E_IndZero. - hauto lq:on use:Ind_Inv, E_Conv, E_IndZero.
- move => P a b c Γ A. - move => P a b c Γ A.
move /Ind_Inv. move /Ind_Inv.
@ -214,7 +165,7 @@ Proof.
- hauto lq:on use:Suc_Inv, E_Conv, E_SucCong. - hauto lq:on use:Suc_Inv, E_Conv, E_SucCong.
Qed. Qed.
Theorem subject_reduction n Γ (a b A : PTm n) : Theorem subject_reduction Γ (a b A : PTm) :
Γ a A -> Γ a A ->
RRed.R a b -> RRed.R a b ->
Γ b A. Γ b A.

View file

@ -1,15 +1,15 @@
Require Import Autosubst2.fintype Autosubst2.syntax. Require Import Autosubst2.unscoped Autosubst2.syntax.
Require Import fp_red logrel typing. Require Import fp_red logrel typing.
From Hammer Require Import Tactics. From Hammer Require Import Tactics.
Theorem fundamental_theorem : Theorem fundamental_theorem :
(forall n (Γ : fin n -> PTm n), Γ -> Γ) /\ (forall Γ, Γ -> Γ) /\
(forall n Γ (a A : PTm n), Γ a A -> Γ a A) /\ (forall Γ a A, Γ a A -> Γ a A) /\
(forall n Γ (a b A : PTm n), Γ a b A -> Γ a b A) /\ (forall Γ a b A, Γ a b A -> Γ a b A) /\
(forall n Γ (a b : PTm n), Γ a b -> Γ a b). (forall Γ a b, Γ a b -> Γ a b).
apply wt_mutual; eauto with sem; [hauto l:on use:SE_Pair]. apply wt_mutual; eauto with sem.
Unshelve. all : exact 0. Unshelve. all : exact 0.
Qed. Qed.
Lemma synsub_to_usub : forall n Γ (a b : PTm n), Γ a b -> SN a /\ SN b /\ Sub.R a b. Lemma synsub_to_usub : forall Γ (a b : PTm), Γ a b -> SN a /\ SN b /\ Sub.R a b.
Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed. Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed.

File diff suppressed because it is too large Load diff

5
theories/termination.v Normal file
View file

@ -0,0 +1,5 @@
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
From Hammer Require Import Tactics.
Require Import ssreflect ssrbool.
From stdpp Require Import relations (nsteps (..), rtc(..)).
Import Psatz.

View file

@ -1,240 +1,230 @@
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70). Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70). Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70). Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70). Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop := Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
| T_Var n Γ (i : fin n) : | T_Var i Γ A :
Γ -> Γ ->
Γ VarPTm i Γ i lookup i Γ A ->
Γ VarPTm i A
| T_Bind n Γ i p (A : PTm n) (B : PTm (S n)) : | T_Bind Γ i p (A : PTm) (B : PTm) :
Γ A PUniv i -> Γ A PUniv i ->
funcomp (ren_PTm shift) (scons A Γ) B PUniv i -> cons A Γ B PUniv i ->
Γ PBind p A B PUniv i Γ PBind p A B PUniv i
| T_Abs n Γ (a : PTm (S n)) A B i : | T_Abs Γ (a : PTm) A B i :
Γ PBind PPi A B (PUniv i) -> Γ PBind PPi A B (PUniv i) ->
funcomp (ren_PTm shift) (scons A Γ) a B -> (cons A Γ) a B ->
Γ PAbs a PBind PPi A B Γ PAbs a PBind PPi A B
| T_App n Γ (b a : PTm n) A B : | T_App Γ (b a : PTm) A B :
Γ b PBind PPi A B -> Γ b PBind PPi A B ->
Γ a A -> Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair n Γ (a b : PTm n) A B i : | T_Pair Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) -> Γ PBind PSig A B (PUniv i) ->
Γ a A -> Γ a A ->
Γ b subst_PTm (scons a VarPTm) B -> Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B Γ PPair a b PBind PSig A B
| T_Proj1 n Γ (a : PTm n) A B : | T_Proj1 Γ (a : PTm) A B :
Γ a PBind PSig A B -> Γ a PBind PSig A B ->
Γ PProj PL a A Γ PProj PL a A
| T_Proj2 n Γ (a : PTm n) A B : | T_Proj2 Γ (a : PTm) A B :
Γ a PBind PSig A B -> Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ n Γ i : | T_Univ Γ i :
Γ -> Γ ->
Γ PUniv i : PTm n PUniv (S i) Γ PUniv i PUniv (S i)
| T_Nat n Γ i : | T_Nat Γ i :
Γ -> Γ ->
Γ PNat : PTm n PUniv i Γ PNat PUniv i
| T_Zero n Γ : | T_Zero Γ :
Γ -> Γ ->
Γ PZero : PTm n PNat Γ PZero PNat
| T_Suc n Γ (a : PTm n) : | T_Suc Γ (a : PTm) :
Γ a PNat -> Γ a PNat ->
Γ PSuc a PNat Γ PSuc a PNat
| T_Ind s Γ P (a : PTm s) b c i : | T_Ind Γ P (a : PTm) b c i :
funcomp (ren_PTm shift) (scons PNat Γ) P PUniv i -> cons PNat Γ P PUniv i ->
Γ a PNat -> Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P -> Γ b subst_PTm (scons PZero VarPTm) P ->
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> (cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c subst_PTm (scons a VarPTm) P Γ PInd P a b c subst_PTm (scons a VarPTm) P
| T_Conv n Γ (a : PTm n) A B : | T_Conv Γ (a : PTm) A B :
Γ a A -> Γ a A ->
Γ A B -> Γ A B ->
Γ a B Γ a B
with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop := with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
(* Structural *) (* Structural *)
| E_Refl n Γ (a : PTm n) A : | E_Refl Γ (a : PTm ) A :
Γ a A -> Γ a A ->
Γ a a A Γ a a A
| E_Symmetric n Γ (a b : PTm n) A : | E_Symmetric Γ (a b : PTm) A :
Γ a b A -> Γ a b A ->
Γ b a A Γ b a A
| E_Transitive n Γ (a b c : PTm n) A : | E_Transitive Γ (a b c : PTm) A :
Γ a b A -> Γ a b A ->
Γ b c A -> Γ b c A ->
Γ a c A Γ a c A
(* Congruence *) (* Congruence *)
| E_Bind n Γ i p (A0 A1 : PTm n) B0 B1 : | E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ ->
Γ A0 PUniv i -> Γ A0 PUniv i ->
Γ A0 A1 PUniv i -> Γ A0 A1 PUniv i ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 PUniv i -> (cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_Abs n Γ (a b : PTm (S n)) A B i : | E_App Γ i (b0 b1 a0 a1 : PTm) A B :
Γ PBind PPi A B (PUniv i) ->
funcomp (ren_PTm shift) (scons A Γ) a b B ->
Γ PAbs a PAbs b PBind PPi A B
| E_App n Γ i (b0 b1 a0 a1 : PTm n) A B :
Γ PBind PPi A B (PUniv i) -> Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B -> Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A -> Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Pair n Γ (a0 a1 b0 b1 : PTm n) A B i : | E_Proj1 Γ (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B
| E_Proj1 n Γ (a b : PTm n) A B :
Γ a b PBind PSig A B -> Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A Γ PProj PL a PProj PL b A
| E_Proj2 n Γ i (a b : PTm n) A B : | E_Proj2 Γ i (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) -> Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B -> Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_IndCong n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i : | E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
funcomp (ren_PTm shift) (scons PNat Γ) P0 PUniv i -> (cons PNat Γ) P0 PUniv i ->
funcomp (ren_PTm shift) (scons PNat Γ) P0 P1 PUniv i -> (cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat -> Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 -> Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) -> (cons P0 ((cons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0 Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0
| E_SucCong n Γ (a b : PTm n) : | E_SucCong Γ (a b : PTm) :
Γ a b PNat -> Γ a b PNat ->
Γ PSuc a PSuc b PNat Γ PSuc a PSuc b PNat
| E_Conv n Γ (a b : PTm n) A B : | E_Conv Γ (a b : PTm) A B :
Γ a b A -> Γ a b A ->
Γ A B -> Γ A B ->
Γ a b B Γ a b B
(* Beta *) (* Beta *)
| E_AppAbs n Γ (a : PTm (S n)) b A B i: | E_AppAbs Γ (a : PTm) b A B i:
Γ PBind PPi A B PUniv i -> Γ PBind PPi A B PUniv i ->
Γ b A -> Γ b A ->
funcomp (ren_PTm shift) (scons A Γ) a B -> (cons A Γ) a B ->
Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B
| E_ProjPair1 n Γ (a b : PTm n) A B i : | E_ProjPair1 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) -> Γ PBind PSig A B (PUniv i) ->
Γ a A -> Γ a A ->
Γ b subst_PTm (scons a VarPTm) B -> Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PL (PPair a b) a A Γ PProj PL (PPair a b) a A
| E_ProjPair2 n Γ (a b : PTm n) A B i : | E_ProjPair2 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) -> Γ PBind PSig A B (PUniv i) ->
Γ a A -> Γ a A ->
Γ b subst_PTm (scons a VarPTm) B -> Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B
| E_IndZero n Γ P i (b : PTm n) c : | E_IndZero Γ P i (b : PTm) c :
funcomp (ren_PTm shift) (scons PNat Γ) P PUniv i -> (cons PNat Γ) P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P -> Γ b subst_PTm (scons PZero VarPTm) P ->
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> (cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P
| E_IndSuc s Γ P (a : PTm s) b c i : | E_IndSuc Γ P (a : PTm) b c i :
funcomp (ren_PTm shift) (scons PNat Γ) P PUniv i -> (cons PNat Γ) P PUniv i ->
Γ a PNat -> Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P -> Γ b subst_PTm (scons PZero VarPTm) P ->
funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> (cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P
(* Eta *) | E_FunExt Γ (a b : PTm) A B i :
| E_AppEta n Γ (b : PTm n) A B i : Γ PBind PPi A B PUniv i ->
Γ -> Γ a PBind PPi A B ->
Γ PBind PPi A B (PUniv i) ->
Γ b PBind PPi A B -> Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B
| E_PairEta n Γ (a : PTm n) A B i : | E_PairExt Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) -> Γ PBind PSig A B PUniv i ->
Γ a PBind PSig A B -> Γ a PBind PSig A B ->
Γ a PPair (PProj PL a) (PProj PR a) PBind PSig A B Γ b PBind PSig A B ->
Γ PProj PL a PProj PL b A ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a b PBind PSig A B
with LEq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop := with LEq : list PTm -> PTm -> PTm -> Prop :=
(* Structural *) (* Structural *)
| Su_Transitive n Γ (A B C : PTm n) : | Su_Transitive Γ (A B C : PTm) :
Γ A B -> Γ A B ->
Γ B C -> Γ B C ->
Γ A C Γ A C
(* Congruence *) (* Congruence *)
| Su_Univ n Γ i j : | Su_Univ Γ i j :
Γ -> Γ ->
i <= j -> i <= j ->
Γ PUniv i : PTm n PUniv j Γ PUniv i PUniv j
| Su_Pi n Γ (A0 A1 : PTm n) B0 B1 i : | Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
Γ ->
Γ A0 PUniv i -> Γ A0 PUniv i ->
Γ A1 A0 -> Γ A1 A0 ->
funcomp (ren_PTm shift) (scons A0 Γ) B0 B1 -> (cons A0 Γ) B0 B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1 Γ PBind PPi A0 B0 PBind PPi A1 B1
| Su_Sig n Γ (A0 A1 : PTm n) B0 B1 i : | Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
Γ ->
Γ A1 PUniv i -> Γ A1 PUniv i ->
Γ A0 A1 -> Γ A0 A1 ->
funcomp (ren_PTm shift) (scons A1 Γ) B0 B1 -> (cons A1 Γ) B0 B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1 Γ PBind PSig A0 B0 PBind PSig A1 B1
(* Injecting from equalities *) (* Injecting from equalities *)
| Su_Eq n Γ (A : PTm n) B i : | Su_Eq Γ (A : PTm) B i :
Γ A B PUniv i -> Γ A B PUniv i ->
Γ A B Γ A B
(* Projection axioms *) (* Projection axioms *)
| Su_Pi_Proj1 n Γ (A0 A1 : PTm n) B0 B1 : | Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 -> Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ A1 A0 Γ A1 A0
| Su_Sig_Proj1 n Γ (A0 A1 : PTm n) B0 B1 : | Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 -> Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ A0 A1 Γ A0 A1
| Su_Pi_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 : | Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 -> Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 -> Γ a0 a1 A1 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1 Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
| Su_Sig_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 : | Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 -> Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 -> Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1 Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : forall {n}, (fin n -> PTm n) -> Prop := with Wff : list PTm -> Prop :=
| Wff_Nil : | Wff_Nil :
null nil
| Wff_Cons n Γ (A : PTm n) i : | Wff_Cons Γ (A : PTm) i :
Γ -> Γ ->
Γ A PUniv i -> Γ A PUniv i ->
(* -------------------------------- *) (* -------------------------------- *)
funcomp (ren_PTm shift) (scons A Γ) (cons A Γ)
where where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B). "Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
@ -245,10 +235,3 @@ Scheme wf_ind := Induction for Wff Sort Prop
with le_ind := Induction for LEq Sort Prop. with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind. Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
(* Lemma lem : *)
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
(* Proof. apply wt_mutual. ... *)