Compare commits
No commits in common. "master" and "subtyping" have entirely different histories.
17 changed files with 3146 additions and 5627 deletions
4
Makefile
4
Makefile
|
@ -16,12 +16,12 @@ uninstall: $(COQMAKEFILE)
|
|||
$(MAKE) -f $(COQMAKEFILE) uninstall
|
||||
|
||||
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
|
||||
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
|
||||
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
|
||||
|
||||
.PHONY: clean FORCE
|
||||
|
||||
clean:
|
||||
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
|
||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
|
||||
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
|
||||
|
||||
FORCE:
|
||||
|
|
|
@ -16,7 +16,4 @@ PPair : PTm -> PTm -> PTm
|
|||
PProj : PTag -> PTm -> PTm
|
||||
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
|
||||
PUniv : nat -> PTm
|
||||
PNat : PTm
|
||||
PZero : PTm
|
||||
PSuc : PTm -> PTm
|
||||
PInd : (bind PTm in PTm) -> PTm -> PTm -> (bind PTm,PTm in PTm) -> PTm
|
||||
PBot : PTm
|
419
theories/Autosubst2/fintype.v
Normal file
419
theories/Autosubst2/fintype.v
Normal file
|
@ -0,0 +1,419 @@
|
|||
(** * Autosubst Header for Scoped Syntax
|
||||
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
|
||||
|
||||
Version: December 11, 2019.
|
||||
*)
|
||||
Require Import core.
|
||||
Require Import Setoid Morphisms Relation_Definitions.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Unset Strict Implicit.
|
||||
|
||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||
match p with eq_refl => eq_refl end.
|
||||
|
||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||
|
||||
(** ** Primitives of the Sigma Calculus
|
||||
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
|
||||
*)
|
||||
|
||||
Fixpoint fin (n : nat) : Type :=
|
||||
match n with
|
||||
| 0 => False
|
||||
| S m => option (fin m)
|
||||
end.
|
||||
|
||||
(** Renamings and Injective Renamings
|
||||
_Renamings_ are mappings between finite types.
|
||||
*)
|
||||
Definition ren (m n : nat) : Type := fin m -> fin n.
|
||||
|
||||
Definition id {X} := @Datatypes.id X.
|
||||
|
||||
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
|
||||
|
||||
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
|
||||
Definition var_zero {n : nat} : fin (S n) := None.
|
||||
|
||||
Definition null {T} (i : fin 0) : T := match i with end.
|
||||
|
||||
Definition shift {n : nat} : ren n (S n) :=
|
||||
Some.
|
||||
|
||||
(** Extension of Finite Mappings
|
||||
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
|
||||
*)
|
||||
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
|
||||
match m with
|
||||
| None => x
|
||||
| Some i => f i
|
||||
end.
|
||||
|
||||
#[ export ]
|
||||
Hint Opaque scons : rewrite.
|
||||
|
||||
(** ** Type Class Instances for Notation *)
|
||||
|
||||
(** *** Type classes for renamings. *)
|
||||
|
||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||
ren1 : X1 -> Y -> Z.
|
||||
|
||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||
ren2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module RenNotations.
|
||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||
|
||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||
|
||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||
End RenNotations.
|
||||
|
||||
(** *** Type Classes for Substiution *)
|
||||
|
||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||
subst1 : X1 -> Y -> Z.
|
||||
|
||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||
subst2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module SubstNotations.
|
||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||
|
||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||
End SubstNotations.
|
||||
|
||||
(** ** Type Class for Variables *)
|
||||
Class Var X Y :=
|
||||
ids : X -> Y.
|
||||
|
||||
|
||||
(** ** Proofs for substitution primitives *)
|
||||
|
||||
(** Forward Function Composition
|
||||
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
|
||||
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
|
||||
|
||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||
|
||||
Module CombineNotations.
|
||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||
|
||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||
|
||||
#[ global ]
|
||||
Open Scope fscope.
|
||||
#[ global ]
|
||||
Open Scope subst_scope.
|
||||
End CombineNotations.
|
||||
|
||||
Import CombineNotations.
|
||||
|
||||
|
||||
(** Generic lifting operation for renamings *)
|
||||
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
|
||||
var_zero .: xi >> shift.
|
||||
|
||||
(** Generic proof that lifting of renamings composes. *)
|
||||
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||
Proof.
|
||||
intros [x|].
|
||||
- cbn. unfold funcomp. now rewrite <- E.
|
||||
- reflexivity.
|
||||
Qed.
|
||||
|
||||
Arguments up_ren_ren {k l m} xi zeta rho E.
|
||||
|
||||
Lemma fin_eta {X} (f g : fin 0 -> X) :
|
||||
pointwise_relation _ eq f g.
|
||||
Proof. intros []. Qed.
|
||||
|
||||
(** Eta laws *)
|
||||
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
|
||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_eta_id' {n : nat} :
|
||||
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
|
||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
|
||||
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
|
||||
(* Proof. *)
|
||||
(* reflexivity. *)
|
||||
(* Qed. *)
|
||||
|
||||
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
|
||||
(* (scons s f (shift x)) = f x. *)
|
||||
(* Proof. *)
|
||||
(* reflexivity. *)
|
||||
(* Qed. *)
|
||||
|
||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||
#[export] Instance scons_morphism {X: Type} {n:nat} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
|
||||
Proof.
|
||||
intros t t' -> sigma tau H.
|
||||
intros [x|].
|
||||
cbn. apply H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H ? x ->.
|
||||
destruct x as [x|].
|
||||
cbn. apply H.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** ** Variadic Substitution Primitives *)
|
||||
|
||||
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
|
||||
fun n => match p with
|
||||
| 0 => n
|
||||
| S p => Some (shift_p p n)
|
||||
end.
|
||||
|
||||
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
|
||||
Proof.
|
||||
destruct m.
|
||||
- intros n f g. exact g.
|
||||
- intros n f g. cbn. apply scons.
|
||||
+ exact (f var_zero).
|
||||
+ apply scons_p.
|
||||
* intros z. exact (f (Some z)).
|
||||
* exact g.
|
||||
Defined.
|
||||
|
||||
#[export] Hint Opaque scons_p : rewrite.
|
||||
|
||||
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
|
||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
|
||||
Proof.
|
||||
intros sigma sigma' Hsigma tau tau' Htau.
|
||||
intros x.
|
||||
induction m.
|
||||
- cbn. apply Htau.
|
||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||
destruct x as [x|].
|
||||
+ cbn. apply IHm.
|
||||
intros ?. apply Hsigma.
|
||||
+ cbn. apply Hsigma.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
|
||||
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
|
||||
Proof.
|
||||
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
|
||||
induction m.
|
||||
- cbn. apply Htau.
|
||||
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
|
||||
destruct x as [x|].
|
||||
+ cbn. apply IHm.
|
||||
intros ?. apply Hsigma.
|
||||
+ cbn. apply Hsigma.
|
||||
Qed.
|
||||
|
||||
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
|
||||
Proof.
|
||||
induction m.
|
||||
- intros [].
|
||||
- intros [x|].
|
||||
+ exact (shift_p 1 (IHm x)).
|
||||
+ exact var_zero.
|
||||
Defined.
|
||||
|
||||
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
|
||||
(scons_p f g) (zero_p z) = f z.
|
||||
Proof.
|
||||
induction m.
|
||||
- inversion z.
|
||||
- destruct z.
|
||||
+ simpl. simpl. now rewrite IHm.
|
||||
+ reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
|
||||
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
|
||||
Proof.
|
||||
intros z.
|
||||
unfold funcomp.
|
||||
induction m.
|
||||
- inversion z.
|
||||
- destruct z.
|
||||
+ simpl. now rewrite IHm.
|
||||
+ reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
|
||||
scons_p f g (shift_p m z) = g z.
|
||||
Proof. induction m; cbn; eauto. Qed.
|
||||
|
||||
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
|
||||
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
|
||||
Proof. intros z. induction m; cbn; eauto. Qed.
|
||||
|
||||
Lemma destruct_fin {m n} (x : fin (m + n)):
|
||||
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
|
||||
Proof.
|
||||
induction m; simpl in *.
|
||||
- right. eauto.
|
||||
- destruct x as [x|].
|
||||
+ destruct (IHm x) as [[x' ->] |[x' ->]].
|
||||
* left. now exists (Some x').
|
||||
* right. eauto.
|
||||
+ left. exists None. eauto.
|
||||
Qed.
|
||||
|
||||
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
|
||||
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
|
||||
Proof.
|
||||
intros x.
|
||||
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
|
||||
(* TODO better way to solve this? *)
|
||||
- revert x'.
|
||||
apply pointwise_forall.
|
||||
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
|
||||
now setoid_rewrite scons_p_head_pointwise.
|
||||
- revert x'.
|
||||
apply pointwise_forall.
|
||||
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
|
||||
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
|
||||
now rewrite !scons_p_tail_pointwise.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
|
||||
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
|
||||
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
|
||||
|
||||
(** Generic n-ary lifting operation. *)
|
||||
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
|
||||
scons_p (zero_p ) (xi >> shift_p _).
|
||||
|
||||
Arguments upRen_p p {m n} xi.
|
||||
|
||||
(** Generic proof for composition of n-ary lifting. *)
|
||||
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
|
||||
Proof.
|
||||
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
|
||||
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
|
||||
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
|
||||
now rewrite <- E.
|
||||
Qed.
|
||||
|
||||
|
||||
Arguments zero_p m {n}.
|
||||
Arguments scons_p {X} m {n} f g.
|
||||
|
||||
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
|
||||
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
|
||||
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
|
||||
Proof.
|
||||
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
|
||||
- rewrite scons_p_head'. eauto.
|
||||
- rewrite scons_p_tail'. eauto.
|
||||
Qed.
|
||||
|
||||
Arguments scons_p_eta {X} {m n} {f g} h {z}.
|
||||
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
|
||||
|
||||
(** ** Notations for Scoped Syntax *)
|
||||
|
||||
Module ScopedNotations.
|
||||
Include RenNotations.
|
||||
Include SubstNotations.
|
||||
Include CombineNotations.
|
||||
|
||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||
|
||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||
|
||||
Notation "↑" := (shift) : subst_scope.
|
||||
|
||||
#[global]
|
||||
Open Scope fscope.
|
||||
#[global]
|
||||
Open Scope subst_scope.
|
||||
End ScopedNotations.
|
||||
|
||||
|
||||
(** ** Tactics for Scoped Syntax *)
|
||||
|
||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||
| [|- forall (i : fin 0), _] => intros []; t
|
||||
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
|
||||
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
|
||||
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
|
||||
| [|- forall (i : fin (S _)), _] => intros [?|]; t
|
||||
end).
|
||||
|
||||
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
|
||||
|
||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||
Ltac fsimpl :=
|
||||
repeat match goal with
|
||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||
| [|- context [id ?s]] => change (id s) with s
|
||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
|
||||
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
|
||||
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
|
||||
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
|
||||
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
|
||||
| [|- context[idren >> ?f]] => change (idren >> f) with f
|
||||
| [|- context[?f >> idren]] => change (f >> idren) with f
|
||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
|
||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
|
||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
|
||||
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||
(* | _ => progress autorewrite with FunctorInstances *)
|
||||
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
|
||||
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
|
||||
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
|
||||
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
|
||||
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
|
||||
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
|
||||
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
|
||||
end.
|
File diff suppressed because it is too large
Load diff
|
@ -1,213 +0,0 @@
|
|||
(** * Autosubst Header for Unnamed Syntax
|
||||
|
||||
Version: December 11, 2019.
|
||||
*)
|
||||
|
||||
(* Adrian:
|
||||
I changed this library a bit to work better with my generated code.
|
||||
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
|
||||
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
|
||||
Require Import core.
|
||||
Require Import Setoid Morphisms Relation_Definitions.
|
||||
|
||||
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
|
||||
match p with eq_refl => eq_refl end.
|
||||
|
||||
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
|
||||
match q with eq_refl => match p with eq_refl => eq_refl end end.
|
||||
|
||||
(** ** Primitives of the Sigma Calculus. *)
|
||||
|
||||
Definition shift := S.
|
||||
|
||||
Definition var_zero := 0.
|
||||
|
||||
Definition id {X} := @Datatypes.id X.
|
||||
|
||||
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
|
||||
fun n => match n with
|
||||
| 0 => x
|
||||
| S n => xi n
|
||||
end.
|
||||
|
||||
#[ export ]
|
||||
Hint Opaque scons : rewrite.
|
||||
|
||||
(** ** Type Class Instances for Notation
|
||||
Required to make notation work. *)
|
||||
|
||||
(** *** Type classes for renamings. *)
|
||||
|
||||
Class Ren1 (X1 : Type) (Y Z : Type) :=
|
||||
ren1 : X1 -> Y -> Z.
|
||||
|
||||
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
|
||||
ren2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
|
||||
ren3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
|
||||
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
|
||||
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module RenNotations.
|
||||
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
|
||||
|
||||
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
|
||||
|
||||
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
|
||||
|
||||
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
|
||||
End RenNotations.
|
||||
|
||||
(** *** Type Classes for Substiution *)
|
||||
|
||||
Class Subst1 (X1 : Type) (Y Z: Type) :=
|
||||
subst1 : X1 -> Y -> Z.
|
||||
|
||||
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
|
||||
subst2 : X1 -> X2 -> Y -> Z.
|
||||
|
||||
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
|
||||
subst3 : X1 -> X2 -> X3 -> Y -> Z.
|
||||
|
||||
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
|
||||
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
|
||||
|
||||
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
|
||||
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
|
||||
|
||||
Module SubstNotations.
|
||||
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
|
||||
|
||||
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
|
||||
End SubstNotations.
|
||||
|
||||
(** *** Type Class for Variables *)
|
||||
|
||||
Class Var X Y :=
|
||||
ids : X -> Y.
|
||||
|
||||
#[export] Instance idsRen : Var nat nat := id.
|
||||
|
||||
(** ** Proofs for the substitution primitives. *)
|
||||
|
||||
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
|
||||
|
||||
Module CombineNotations.
|
||||
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
|
||||
|
||||
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
|
||||
|
||||
#[ global ]
|
||||
Open Scope fscope.
|
||||
#[ global ]
|
||||
Open Scope subst_scope.
|
||||
End CombineNotations.
|
||||
|
||||
Import CombineNotations.
|
||||
|
||||
|
||||
(** A generic lifting of a renaming. *)
|
||||
Definition up_ren (xi : nat -> nat) :=
|
||||
0 .: (xi >> S).
|
||||
|
||||
(** A generic proof that lifting of renamings composes. *)
|
||||
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
|
||||
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
|
||||
Proof.
|
||||
intros [|x].
|
||||
- reflexivity.
|
||||
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
|
||||
Qed.
|
||||
|
||||
(** Eta laws. *)
|
||||
Lemma scons_eta' {T} (f : nat -> T) :
|
||||
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_eta_id' :
|
||||
pointwise_relation _ eq (var_zero .: shift) id.
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
|
||||
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
|
||||
Proof. intros x. destruct x; reflexivity. Qed.
|
||||
|
||||
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
|
||||
#[export] Instance scons_morphism {X: Type} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H.
|
||||
intros [|x].
|
||||
cbn. reflexivity.
|
||||
apply H.
|
||||
Qed.
|
||||
|
||||
#[export] Instance scons_morphism2 {X: Type} :
|
||||
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
|
||||
Proof.
|
||||
intros ? t -> sigma tau H ? x ->.
|
||||
destruct x as [|x].
|
||||
cbn. reflexivity.
|
||||
apply H.
|
||||
Qed.
|
||||
|
||||
(** ** Generic lifting of an allfv predicate *)
|
||||
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
|
||||
|
||||
(** ** Notations for unscoped syntax *)
|
||||
Module UnscopedNotations.
|
||||
Include RenNotations.
|
||||
Include SubstNotations.
|
||||
Include CombineNotations.
|
||||
|
||||
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
|
||||
|
||||
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
|
||||
|
||||
Notation "↑" := (shift) : subst_scope.
|
||||
|
||||
#[global]
|
||||
Open Scope fscope.
|
||||
#[global]
|
||||
Open Scope subst_scope.
|
||||
End UnscopedNotations.
|
||||
|
||||
(** ** Tactics for unscoped syntax *)
|
||||
|
||||
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
|
||||
Tactic Notation "auto_case" tactic(t) := (match goal with
|
||||
| [|- forall (i : nat), _] => intros []; t
|
||||
end).
|
||||
|
||||
|
||||
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
|
||||
Ltac fsimpl :=
|
||||
repeat match goal with
|
||||
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
|
||||
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
|
||||
| [|- context [id ?s]] => change (id s) with s
|
||||
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
|
||||
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
|
||||
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
|
||||
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
|
||||
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
|
||||
| [|- context[var_zero]] => change var_zero with 0
|
||||
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
|
||||
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
|
||||
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
|
||||
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
|
||||
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
|
||||
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
|
||||
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
|
||||
end.
|
|
@ -1,88 +1,45 @@
|
|||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural.
|
||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing structural.
|
||||
From Hammer Require Import Tactics.
|
||||
Require Import ssreflect.
|
||||
Require Import Psatz.
|
||||
Require Import Coq.Logic.FunctionalExtensionality.
|
||||
|
||||
Derive Inversion wff_inv with (forall Γ, ⊢ Γ) Sort Prop.
|
||||
Derive Dependent Inversion wff_inv with (forall n (Γ : fin n -> PTm n), ⊢ Γ) Sort Prop.
|
||||
|
||||
Lemma T_Abs Γ (a : PTm ) A B :
|
||||
(cons A Γ) ⊢ a ∈ B ->
|
||||
Lemma Wff_Cons_Inv n Γ (A : PTm n) :
|
||||
⊢ funcomp (ren_PTm shift) (scons A Γ) ->
|
||||
⊢ Γ /\ exists i, Γ ⊢ A ∈ PUniv i.
|
||||
Proof.
|
||||
elim /wff_inv => //= _.
|
||||
move => n0 Γ0 A0 i0 hΓ0 hA0 [? _]. subst.
|
||||
Equality.simplify_dep_elim.
|
||||
have h : forall i, (funcomp (ren_PTm shift) (scons A0 Γ0)) i = (funcomp (ren_PTm shift) (scons A Γ)) i by scongruence.
|
||||
move /(_ var_zero) : (h).
|
||||
rewrite /funcomp. asimpl.
|
||||
move /ren_injective. move /(_ ltac:(hauto lq:on rew:off inv:option)).
|
||||
move => ?. subst.
|
||||
have : Γ0 = Γ. extensionality i.
|
||||
move /(_ (Some i)) : h.
|
||||
rewrite /funcomp. asimpl.
|
||||
move /ren_injective. move /(_ ltac:(hauto lq:on rew:off inv:option)).
|
||||
done.
|
||||
move => ?. subst. sfirstorder.
|
||||
Qed.
|
||||
|
||||
Lemma T_Abs n Γ (a : PTm (S n)) A B :
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B ->
|
||||
Γ ⊢ PAbs a ∈ PBind PPi A B.
|
||||
Proof.
|
||||
move => ha.
|
||||
have [i hB] : exists i, (cons A Γ) ⊢ B ∈ PUniv i by sfirstorder use:regularity.
|
||||
have hΓ : ⊢ (cons A Γ) by sfirstorder use:wff_mutual.
|
||||
hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
|
||||
have [i hB] : exists i, funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i by sfirstorder use:regularity.
|
||||
have hΓ : ⊢ funcomp (ren_PTm shift) (scons A Γ) by sfirstorder use:wff_mutual.
|
||||
move /Wff_Cons_Inv : hΓ => [hΓ][j]hA.
|
||||
hauto lq:on rew:off use:T_Bind', typing.T_Abs.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma App_Inv Γ (b a : PTm) U :
|
||||
Γ ⊢ PApp b a ∈ U ->
|
||||
exists A B, Γ ⊢ b ∈ PBind PPi A B /\ Γ ⊢ a ∈ A /\ Γ ⊢ subst_PTm (scons a VarPTm) B ≲ U.
|
||||
Proof.
|
||||
move E : (PApp b a) => u hu.
|
||||
move : b a E. elim : Γ u U / hu => //=.
|
||||
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
|
||||
exists A,B.
|
||||
repeat split => //=.
|
||||
have [i] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by sfirstorder use:regularity.
|
||||
hauto lq:on use:bind_inst, E_Refl.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma Abs_Inv Γ (a : PTm) U :
|
||||
Γ ⊢ PAbs a ∈ U ->
|
||||
exists A B, (cons A Γ) ⊢ a ∈ B /\ Γ ⊢ PBind PPi A B ≲ U.
|
||||
Proof.
|
||||
move E : (PAbs a) => u hu.
|
||||
move : a E. elim : Γ u U / hu => //=.
|
||||
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
|
||||
exists A, B. repeat split => //=.
|
||||
hauto lq:on use:E_Refl, Su_Eq.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
|
||||
|
||||
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
|
||||
Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A.
|
||||
Proof.
|
||||
move => a b Γ A ha.
|
||||
move /App_Inv : ha.
|
||||
move => [A0][B0][ha][hb]hS.
|
||||
move /Abs_Inv : ha => [A1][B1][ha]hS0.
|
||||
have hb' := hb.
|
||||
move /E_Refl in hb.
|
||||
have hS1 : Γ ⊢ A0 ≲ A1 by sfirstorder use:Su_Pi_Proj1.
|
||||
have [i hPi] : exists i, Γ ⊢ PBind PPi A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
|
||||
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
|
||||
move => h.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_AppAbs; eauto.
|
||||
eauto using T_Conv.
|
||||
Qed.
|
||||
|
||||
Lemma T_Eta Γ A a B :
|
||||
A :: Γ ⊢ a ∈ B ->
|
||||
A :: Γ ⊢ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) ∈ B.
|
||||
Proof.
|
||||
move => ha.
|
||||
have hΓ' : ⊢ A :: Γ by sfirstorder use:wff_mutual.
|
||||
have [i hA] : exists i, Γ ⊢ A ∈ PUniv i by hauto lq:on inv:Wff.
|
||||
have hΓ : ⊢ Γ by hauto lq:on inv:Wff.
|
||||
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
|
||||
econstructor; eauto. sauto l:on use:renaming.
|
||||
apply T_Var => //.
|
||||
by constructor.
|
||||
Qed.
|
||||
|
||||
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
||||
Lemma E_Bind n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||
(cons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i.
|
||||
Proof.
|
||||
move => h0 h1.
|
||||
|
@ -92,7 +49,7 @@ Proof.
|
|||
firstorder.
|
||||
Qed.
|
||||
|
||||
Lemma E_App Γ (b0 b1 a0 a1 : PTm ) A B :
|
||||
Lemma E_App n Γ (b0 b1 a0 a1 : PTm n) A B :
|
||||
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||||
|
@ -102,7 +59,7 @@ Proof.
|
|||
move : E_App h. by repeat move/[apply].
|
||||
Qed.
|
||||
|
||||
Lemma E_Proj2 Γ (a b : PTm) A B :
|
||||
Lemma E_Proj2 n Γ (a b : PTm n) A B :
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B.
|
||||
Proof.
|
||||
|
@ -110,155 +67,3 @@ Proof.
|
|||
have [i] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by hauto l:on use:regularity.
|
||||
move : E_Proj2 h; by repeat move/[apply].
|
||||
Qed.
|
||||
|
||||
Lemma E_FunExt Γ (a b : PTm) A B :
|
||||
Γ ⊢ a ∈ PBind PPi A B ->
|
||||
Γ ⊢ b ∈ PBind PPi A B ->
|
||||
A :: Γ ⊢ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PPi A B.
|
||||
Proof.
|
||||
hauto l:on use:regularity, E_FunExt.
|
||||
Qed.
|
||||
|
||||
Lemma E_PairExt Γ (a b : PTm) A B :
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A ->
|
||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B. hauto l:on use:regularity, E_PairExt. Qed.
|
||||
|
||||
Lemma renaming_comp Γ Δ Ξ ξ0 ξ1 :
|
||||
renaming_ok Γ Δ ξ0 -> renaming_ok Δ Ξ ξ1 ->
|
||||
renaming_ok Γ Ξ (funcomp ξ0 ξ1).
|
||||
rewrite /renaming_ok => h0 h1 i A.
|
||||
move => {}/h1 {}/h0.
|
||||
by asimpl.
|
||||
Qed.
|
||||
|
||||
Lemma E_AppEta Γ (b : PTm) A B :
|
||||
Γ ⊢ b ∈ PBind PPi A B ->
|
||||
Γ ⊢ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B.
|
||||
Proof.
|
||||
move => h.
|
||||
have [i hPi] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by sfirstorder use:regularity.
|
||||
have [j [hA hB]] : exists i, Γ ⊢ A ∈ PUniv i /\ A :: Γ ⊢ B ∈ PUniv i by hauto lq:on use:Bind_Inv.
|
||||
have {i} {}hPi : Γ ⊢ PBind PPi A B ∈ PUniv j by sfirstorder use:T_Bind, wff_mutual.
|
||||
have hΓ : ⊢ A :: Γ by hauto lq:on use:Bind_Inv, Wff_Cons'.
|
||||
have hΓ' : ⊢ ren_PTm shift A :: A :: Γ by sauto lq:on use:renaming, renaming_shift inv:Wff.
|
||||
apply E_FunExt; eauto.
|
||||
apply T_Abs.
|
||||
eapply T_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||
change (PBind _ _ _) with (ren_PTm shift (PBind PPi A B)).
|
||||
|
||||
eapply renaming; eauto.
|
||||
apply renaming_shift.
|
||||
constructor => //.
|
||||
by constructor.
|
||||
|
||||
apply : E_Transitive. simpl.
|
||||
apply E_AppAbs' with (i := j)(A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B); eauto.
|
||||
by asimpl; rewrite subst_scons_id.
|
||||
hauto q:on use:renaming, renaming_shift.
|
||||
constructor => //.
|
||||
by constructor.
|
||||
asimpl.
|
||||
eapply T_App' with (A := ren_PTm shift (ren_PTm shift A)) (B := ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B)); cycle 2.
|
||||
constructor. econstructor; eauto. sauto lq:on use:renaming, renaming_shift.
|
||||
by constructor. asimpl. substify. by asimpl.
|
||||
have -> : PBind PPi (ren_PTm shift (ren_PTm shift A)) (ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B))= (ren_PTm (funcomp shift shift) (PBind PPi A B)) by asimpl.
|
||||
eapply renaming; eauto. by eauto using renaming_shift, renaming_comp.
|
||||
asimpl. renamify.
|
||||
eapply E_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
|
||||
hauto q:on use:renaming, renaming_shift.
|
||||
sauto lq:on use:renaming, renaming_shift, E_Refl.
|
||||
constructor. constructor=>//. constructor.
|
||||
Qed.
|
||||
|
||||
Lemma Proj1_Inv Γ (a : PTm ) U :
|
||||
Γ ⊢ PProj PL a ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ A ≲ U.
|
||||
Proof.
|
||||
move E : (PProj PL a) => u hu.
|
||||
move :a E. elim : Γ u U / hu => //=.
|
||||
- move => Γ a A B ha _ a0 [*]. subst.
|
||||
exists A, B. split => //=.
|
||||
eapply regularity in ha.
|
||||
move : ha => [i].
|
||||
move /Bind_Inv => [j][h _].
|
||||
by move /E_Refl /Su_Eq in h.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma Proj2_Inv Γ (a : PTm) U :
|
||||
Γ ⊢ PProj PR a ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ subst_PTm (scons (PProj PL a) VarPTm) B ≲ U.
|
||||
Proof.
|
||||
move E : (PProj PR a) => u hu.
|
||||
move :a E. elim : Γ u U / hu => //=.
|
||||
- move => Γ a A B ha _ a0 [*]. subst.
|
||||
exists A, B. split => //=.
|
||||
have ha' := ha.
|
||||
eapply regularity in ha.
|
||||
move : ha => [i ha].
|
||||
move /T_Proj1 in ha'.
|
||||
apply : bind_inst; eauto.
|
||||
apply : E_Refl ha'.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma Pair_Inv Γ (a b : PTm ) U :
|
||||
Γ ⊢ PPair a b ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ A /\
|
||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B /\
|
||||
Γ ⊢ PBind PSig A B ≲ U.
|
||||
Proof.
|
||||
move E : (PPair a b) => u hu.
|
||||
move : a b E. elim : Γ u U / hu => //=.
|
||||
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
|
||||
exists A,B. repeat split => //=.
|
||||
move /E_Refl /Su_Eq : hS. apply.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma E_ProjPair1 : forall (a b : PTm) Γ (A : PTm),
|
||||
Γ ⊢ PProj PL (PPair a b) ∈ A -> Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A.
|
||||
Proof.
|
||||
move => a b Γ A.
|
||||
move /Proj1_Inv. move => [A0][B0][hab]hA0.
|
||||
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
|
||||
have [i ?] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||
move /Su_Sig_Proj1 in hS.
|
||||
have {hA0} {}hS : Γ ⊢ A1 ≲ A by eauto using Su_Transitive.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_ProjPair1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma E_ProjPair2 : forall (a b : PTm) Γ (A : PTm),
|
||||
Γ ⊢ PProj PR (PPair a b) ∈ A -> Γ ⊢ PProj PR (PPair a b) ≡ b ∈ A.
|
||||
Proof.
|
||||
move => a b Γ A. move /Proj2_Inv.
|
||||
move => [A0][B0][ha]h.
|
||||
have hr := ha.
|
||||
move /Pair_Inv : ha => [A1][B1][ha][hb]hU.
|
||||
have [i hSig] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity.
|
||||
have /E_Symmetric : Γ ⊢ (PProj PL (PPair a b)) ≡ a ∈ A1 by eauto using E_ProjPair1 with wt.
|
||||
move /Su_Sig_Proj2 : hU. repeat move/[apply]. move => hB.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_ProjPair2; eauto.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma E_PairEta Γ a A B :
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ PPair (PProj PL a) (PProj PR a) ≡ a ∈ PBind PSig A B.
|
||||
Proof.
|
||||
move => h.
|
||||
have [i hSig] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by hauto use:regularity.
|
||||
apply E_PairExt => //.
|
||||
eapply T_Pair; eauto with wt.
|
||||
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
|
||||
by eauto with wt.
|
||||
apply E_ProjPair2.
|
||||
apply : T_Proj2; eauto with wt.
|
||||
Qed.
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,601 +1,97 @@
|
|||
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
|
||||
From Equations Require Import Equations.
|
||||
Derive NoConfusion for nat PTag BTag PTm.
|
||||
Derive EqDec for BTag PTag PTm.
|
||||
Require Import Autosubst2.fintype Autosubst2.syntax ssreflect.
|
||||
From Ltac2 Require Ltac2.
|
||||
Import Ltac2.Notations.
|
||||
Import Ltac2.Control.
|
||||
From Hammer Require Import Tactics.
|
||||
From stdpp Require Import relations (rtc(..)).
|
||||
|
||||
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
|
||||
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
|
||||
| there i Γ A B :
|
||||
lookup i Γ A ->
|
||||
lookup (S i) (cons B Γ) (ren_PTm shift A).
|
||||
|
||||
Lemma lookup_deter i Γ A B :
|
||||
lookup i Γ A ->
|
||||
lookup i Γ B ->
|
||||
A = B.
|
||||
Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed.
|
||||
|
||||
Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U.
|
||||
Proof. move => ->. apply here. Qed.
|
||||
|
||||
Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A ->
|
||||
lookup (S i) (cons B Γ) U.
|
||||
Proof. move => ->. apply there. Qed.
|
||||
|
||||
Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A).
|
||||
|
||||
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
|
||||
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
|
||||
|
||||
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
|
||||
|
||||
Lemma up_injective (ξ : nat -> nat) :
|
||||
ren_inj ξ ->
|
||||
ren_inj (upRen_PTm_PTm ξ).
|
||||
Proof.
|
||||
move => h i j.
|
||||
case : i => //=; case : j => //=.
|
||||
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
|
||||
Qed.
|
||||
Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) :=
|
||||
forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i).
|
||||
|
||||
Local Ltac2 rec solve_anti_ren () :=
|
||||
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
|
||||
intro $x;
|
||||
lazy_match! Constr.type (Control.hyp x) with
|
||||
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
|
||||
| fin _ -> _ _ => (ltac1:(case;hauto q:on depth:2))
|
||||
| _ => solve_anti_ren ()
|
||||
end.
|
||||
|
||||
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
|
||||
|
||||
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
|
||||
ren_inj ξ ->
|
||||
Lemma up_injective n m (ξ : fin n -> fin m) :
|
||||
(forall i j, ξ i = ξ j -> i = j) ->
|
||||
forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j.
|
||||
Proof.
|
||||
sblast inv:option.
|
||||
Qed.
|
||||
|
||||
Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) :
|
||||
(forall i j, ξ i = ξ j -> i = j) ->
|
||||
ren_PTm ξ a = ren_PTm ξ b ->
|
||||
a = b.
|
||||
Proof.
|
||||
move : ξ b. elim : a => //; try solve_anti_ren.
|
||||
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
|
||||
move : m ξ b.
|
||||
elim : n / a => //; try solve_anti_ren.
|
||||
|
||||
move => n a iha m ξ []//=.
|
||||
move => u hξ [h].
|
||||
apply iha in h. by subst.
|
||||
destruct i, j=>//=.
|
||||
hauto l:on.
|
||||
|
||||
move => n p A ihA B ihB m ξ []//=.
|
||||
move => b A0 B0 hξ [?]. subst.
|
||||
move => ?. have ? : A0 = A by firstorder. subst.
|
||||
move => ?. have : B = B0. apply : ihB; eauto.
|
||||
sauto.
|
||||
congruence.
|
||||
Qed.
|
||||
|
||||
Inductive HF : Set :=
|
||||
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
|
||||
|
||||
Definition ishf (a : PTm) :=
|
||||
Definition ishf {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| PAbs _ => true
|
||||
| PUniv _ => true
|
||||
| PBind _ _ _ => true
|
||||
| PNat => true
|
||||
| PSuc _ => true
|
||||
| PZero => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition toHF (a : PTm) :=
|
||||
match a with
|
||||
| PPair _ _ => H_Pair
|
||||
| PAbs _ => H_Abs
|
||||
| PUniv _ => H_Univ
|
||||
| PBind p _ _ => H_Bind p
|
||||
| PNat => H_Nat
|
||||
| PSuc _ => H_Suc
|
||||
| PZero => H_Zero
|
||||
| _ => H_Bot
|
||||
end.
|
||||
|
||||
Fixpoint ishne (a : PTm) :=
|
||||
Fixpoint ishne {n} (a : PTm n) :=
|
||||
match a with
|
||||
| VarPTm _ => true
|
||||
| PApp a _ => ishne a
|
||||
| PProj _ a => ishne a
|
||||
| PInd _ n _ _ => ishne n
|
||||
| PBot => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
|
||||
Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false.
|
||||
|
||||
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
|
||||
Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false.
|
||||
|
||||
Definition ispair (a : PTm) :=
|
||||
Definition ispair {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PPair _ _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition isnat (a : PTm) := if a is PNat then true else false.
|
||||
|
||||
Definition iszero (a : PTm) := if a is PZero then true else false.
|
||||
|
||||
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
|
||||
|
||||
Definition isabs (a : PTm) :=
|
||||
Definition isabs {n} (a : PTm n) :=
|
||||
match a with
|
||||
| PAbs _ => true
|
||||
| _ => false
|
||||
end.
|
||||
|
||||
Definition tm_nonconf (a b : PTm) : bool :=
|
||||
match a, b with
|
||||
| PAbs _, _ => (~~ ishf b) || isabs b
|
||||
| _, PAbs _ => ~~ ishf a
|
||||
| VarPTm _, VarPTm _ => true
|
||||
| PPair _ _, _ => (~~ ishf b) || ispair b
|
||||
| _, PPair _ _ => ~~ ishf a
|
||||
| PZero, PZero => true
|
||||
| PSuc _, PSuc _ => true
|
||||
| PApp _ _, PApp _ _ => true
|
||||
| PProj _ _, PProj _ _ => true
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||
| PNat, PNat => true
|
||||
| PUniv _, PUniv _ => true
|
||||
| PBind _ _ _, PBind _ _ _ => true
|
||||
| _,_=> false
|
||||
end.
|
||||
|
||||
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
|
||||
|
||||
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
|
||||
Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
ishf (ren_PTm ξ a) = ishf a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
|
||||
Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
isabs (ren_PTm ξ a) = isabs a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
|
||||
Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
ispair (ren_PTm ξ a) = ispair a.
|
||||
Proof. case : a => //=. Qed.
|
||||
|
||||
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
|
||||
Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) :
|
||||
ishne (ren_PTm ξ a) = ishne a.
|
||||
Proof. move : ξ. elim : a => //=. Qed.
|
||||
|
||||
Lemma renaming_shift Γ A :
|
||||
renaming_ok (cons A Γ) Γ shift.
|
||||
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
|
||||
|
||||
Lemma subst_scons_id (a : PTm) :
|
||||
subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a.
|
||||
Proof.
|
||||
have E : subst_PTm VarPTm a = a by asimpl.
|
||||
rewrite -{2}E.
|
||||
apply ext_PTm. case => //=.
|
||||
Qed.
|
||||
|
||||
Module HRed.
|
||||
Inductive R : PTm -> PTm -> Prop :=
|
||||
(****************** Beta ***********************)
|
||||
| AppAbs a b :
|
||||
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
|
||||
|
||||
| ProjPair p a b :
|
||||
R (PProj p (PPair a b)) (if p is PL then a else b)
|
||||
|
||||
| IndZero P b c :
|
||||
R (PInd P PZero b c) b
|
||||
|
||||
| IndSuc P a b c :
|
||||
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||
|
||||
(*************** Congruence ********************)
|
||||
| AppCong a0 a1 b :
|
||||
R a0 a1 ->
|
||||
R (PApp a0 b) (PApp a1 b)
|
||||
| ProjCong p a0 a1 :
|
||||
R a0 a1 ->
|
||||
R (PProj p a0) (PProj p a1)
|
||||
| IndCong P a0 a1 b c :
|
||||
R a0 a1 ->
|
||||
R (PInd P a0 b c) (PInd P a1 b c).
|
||||
|
||||
Definition nf a := forall b, ~ R a b.
|
||||
End HRed.
|
||||
|
||||
Inductive algo_dom : PTm -> PTm -> Prop :=
|
||||
| A_AbsAbs a b :
|
||||
algo_dom_r a b ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) (PAbs b)
|
||||
|
||||
| A_AbsNeu a u :
|
||||
ishne u ->
|
||||
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) u
|
||||
|
||||
| A_NeuAbs a u :
|
||||
ishne u ->
|
||||
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
|
||||
(* --------------------- *)
|
||||
algo_dom u (PAbs a)
|
||||
|
||||
| A_PairPair a0 a1 b0 b1 :
|
||||
algo_dom_r a0 a1 ->
|
||||
algo_dom_r b0 b1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PPair a0 b0) (PPair a1 b1)
|
||||
|
||||
| A_PairNeu a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom_r a0 (PProj PL u) ->
|
||||
algo_dom_r a1 (PProj PR u) ->
|
||||
(* ----------------------- *)
|
||||
algo_dom (PPair a0 a1) u
|
||||
|
||||
| A_NeuPair a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom_r (PProj PL u) a0 ->
|
||||
algo_dom_r (PProj PR u) a1 ->
|
||||
(* ----------------------- *)
|
||||
algo_dom u (PPair a0 a1)
|
||||
|
||||
| A_ZeroZero :
|
||||
algo_dom PZero PZero
|
||||
|
||||
| A_SucSuc a0 a1 :
|
||||
algo_dom_r a0 a1 ->
|
||||
algo_dom (PSuc a0) (PSuc a1)
|
||||
|
||||
| A_UnivCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom (PUniv i) (PUniv j)
|
||||
|
||||
| A_BindCong p0 p1 A0 A1 B0 B1 :
|
||||
algo_dom_r A0 A1 ->
|
||||
algo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
|
||||
|
||||
| A_NatCong :
|
||||
algo_dom PNat PNat
|
||||
|
||||
| A_VarCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom (VarPTm i) (VarPTm j)
|
||||
|
||||
| A_AppCong u0 u1 a0 a1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom u0 u1 ->
|
||||
algo_dom_r a0 a1 ->
|
||||
(* ------------------------- *)
|
||||
algo_dom (PApp u0 a0) (PApp u1 a1)
|
||||
|
||||
| A_ProjCong p0 p1 u0 u1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom u0 u1 ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PProj p0 u0) (PProj p1 u1)
|
||||
|
||||
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom_r P0 P1 ->
|
||||
algo_dom u0 u1 ->
|
||||
algo_dom_r b0 b1 ->
|
||||
algo_dom_r c0 c1 ->
|
||||
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
||||
|
||||
| A_Conf a b :
|
||||
ishf a \/ ishne a ->
|
||||
ishf b \/ ishne b ->
|
||||
tm_conf a b ->
|
||||
algo_dom a b
|
||||
|
||||
with algo_dom_r : PTm -> PTm -> Prop :=
|
||||
| A_NfNf a b :
|
||||
algo_dom a b ->
|
||||
algo_dom_r a b
|
||||
|
||||
| A_HRedL a a' b :
|
||||
HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
(* ----------------------- *)
|
||||
algo_dom_r a b
|
||||
|
||||
| A_HRedR a b b' :
|
||||
HRed.nf a ->
|
||||
HRed.R b b' ->
|
||||
algo_dom_r a b' ->
|
||||
(* ----------------------- *)
|
||||
algo_dom_r a b.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||
#[export]Hint Constructors algo_dom algo_dom_r : adom.
|
||||
|
||||
Definition stm_nonconf a b :=
|
||||
match a, b with
|
||||
| PUniv _, PUniv _ => true
|
||||
| PBind PPi _ _, PBind PPi _ _ => true
|
||||
| PBind PSig _ _, PBind PSig _ _ => true
|
||||
| PNat, PNat => true
|
||||
| VarPTm _, VarPTm _ => true
|
||||
| PApp _ _, PApp _ _ => true
|
||||
| PProj _ _, PProj _ _ => true
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||
| _, _ => false
|
||||
end.
|
||||
|
||||
Definition neuneu_nonconf a b :=
|
||||
match a, b with
|
||||
| VarPTm _, VarPTm _ => true
|
||||
| PApp _ _, PApp _ _ => true
|
||||
| PProj _ _, PProj _ _ => true
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => true
|
||||
| _, _ => false
|
||||
end.
|
||||
|
||||
Lemma stm_tm_nonconf a b :
|
||||
stm_nonconf a b -> tm_nonconf a b.
|
||||
Proof. apply /implyP.
|
||||
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
|
||||
Qed.
|
||||
|
||||
Definition stm_conf a b := ~~ stm_nonconf a b.
|
||||
|
||||
Lemma tm_stm_conf a b :
|
||||
tm_conf a b -> stm_conf a b.
|
||||
Proof.
|
||||
rewrite /tm_conf /stm_conf.
|
||||
apply /contra /stm_tm_nonconf.
|
||||
Qed.
|
||||
|
||||
Inductive salgo_dom : PTm -> PTm -> Prop :=
|
||||
| S_UnivCong i j :
|
||||
(* -------------------------- *)
|
||||
salgo_dom (PUniv i) (PUniv j)
|
||||
|
||||
| S_PiCong A0 A1 B0 B1 :
|
||||
salgo_dom_r A1 A0 ->
|
||||
salgo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
|
||||
|
||||
| S_SigCong A0 A1 B0 B1 :
|
||||
salgo_dom_r A0 A1 ->
|
||||
salgo_dom_r B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
|
||||
|
||||
| S_NatCong :
|
||||
salgo_dom PNat PNat
|
||||
|
||||
| S_NeuNeu a b :
|
||||
neuneu_nonconf a b ->
|
||||
algo_dom a b ->
|
||||
salgo_dom a b
|
||||
|
||||
| S_Conf a b :
|
||||
ishf a \/ ishne a ->
|
||||
ishf b \/ ishne b ->
|
||||
stm_conf a b ->
|
||||
salgo_dom a b
|
||||
|
||||
with salgo_dom_r : PTm -> PTm -> Prop :=
|
||||
| S_NfNf a b :
|
||||
salgo_dom a b ->
|
||||
salgo_dom_r a b
|
||||
|
||||
| S_HRedL a a' b :
|
||||
HRed.R a a' ->
|
||||
salgo_dom_r a' b ->
|
||||
(* ----------------------- *)
|
||||
salgo_dom_r a b
|
||||
|
||||
| S_HRedR a b b' :
|
||||
HRed.nf a ->
|
||||
HRed.R b b' ->
|
||||
salgo_dom_r a b' ->
|
||||
(* ----------------------- *)
|
||||
salgo_dom_r a b.
|
||||
|
||||
#[export]Hint Constructors salgo_dom salgo_dom_r : sdom.
|
||||
Scheme salgo_ind := Induction for salgo_dom Sort Prop
|
||||
with salgor_ind := Induction for salgo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme salgo_dom_mutual from salgo_ind, salgor_ind.
|
||||
|
||||
Lemma hf_no_hred (a b : PTm) :
|
||||
ishf a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Lemma hne_no_hred (a b : PTm) :
|
||||
ishne a ->
|
||||
HRed.R a b ->
|
||||
False.
|
||||
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
|
||||
|
||||
Ltac2 destruct_salgo () :=
|
||||
lazy_match! goal with
|
||||
| [_ : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
|
||||
if Constr.is_var a then destruct $a; ltac1:(done) else ()
|
||||
| [|- is_true (stm_conf _ _)] =>
|
||||
unfold stm_conf; ltac1:(done)
|
||||
end.
|
||||
|
||||
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
|
||||
|
||||
Lemma algo_dom_r_inv a b :
|
||||
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
algo_dom_r a b.
|
||||
induction 1; sfirstorder use:A_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
algo_dom a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
||||
Proof. case : a; case : b => //=. Qed.
|
||||
|
||||
Lemma algo_dom_no_hred (a b : PTm) :
|
||||
algo_dom a b ->
|
||||
HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred lq:on unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma A_HRedR' a b b' :
|
||||
HRed.R b b' ->
|
||||
algo_dom_r a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof.
|
||||
move => hb /algo_dom_r_inv.
|
||||
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
||||
hauto lq:on use:A_HRedsL, A_HRedsR.
|
||||
Qed.
|
||||
|
||||
Lemma algo_dom_sym :
|
||||
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
||||
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
|
||||
Qed.
|
||||
|
||||
Lemma salgo_dom_r_inv a b :
|
||||
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
salgo_dom_r a' b ->
|
||||
salgo_dom_r a b.
|
||||
induction 1; sfirstorder use:S_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
salgo_dom a b' ->
|
||||
salgo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
|
||||
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
|
||||
|
||||
Lemma salgo_dom_no_hred (a b : PTm) :
|
||||
salgo_dom a b ->
|
||||
HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_no_hred lq:on unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma S_HRedR' a b b' :
|
||||
HRed.R b b' ->
|
||||
salgo_dom_r a b' ->
|
||||
salgo_dom_r a b.
|
||||
Proof.
|
||||
move => hb /salgo_dom_r_inv.
|
||||
move => [a0 [b0 [h0 [h1 h2]]]].
|
||||
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
|
||||
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
|
||||
hauto lq:on use:S_HRedsL, S_HRedsR.
|
||||
Qed.
|
||||
|
||||
Ltac solve_conf := intros; split;
|
||||
apply S_Conf; solve [destruct_salgo | sfirstorder ctrs:salgo_dom use:hne_no_hred, hf_no_hred].
|
||||
|
||||
Ltac solve_basic := hauto q:on ctrs:salgo_dom, salgo_dom_r, algo_dom use:algo_dom_sym.
|
||||
|
||||
Lemma algo_dom_salgo_dom :
|
||||
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
|
||||
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual => //=; try first [solve_conf | solve_basic].
|
||||
- case; case; hauto lq:on ctrs:salgo_dom use:algo_dom_sym inv:HRed.R unfold:HRed.nf.
|
||||
- move => a b ha hb hc. split;
|
||||
apply S_Conf; hauto l:on use:tm_conf_sym, tm_stm_conf.
|
||||
- hauto lq:on ctrs:salgo_dom_r use:S_HRedR'.
|
||||
Qed.
|
||||
|
||||
Fixpoint hred (a : PTm) : option (PTm) :=
|
||||
match a with
|
||||
| VarPTm i => None
|
||||
| PAbs a => None
|
||||
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
|
||||
| PApp a b =>
|
||||
match hred a with
|
||||
| Some a => Some (PApp a b)
|
||||
| None => None
|
||||
end
|
||||
| PPair a b => None
|
||||
| PProj p (PPair a b) => if p is PL then Some a else Some b
|
||||
| PProj p a =>
|
||||
match hred a with
|
||||
| Some a => Some (PProj p a)
|
||||
| None => None
|
||||
end
|
||||
| PUniv i => None
|
||||
| PBind p A B => None
|
||||
| PNat => None
|
||||
| PZero => None
|
||||
| PSuc a => None
|
||||
| PInd P PZero b c => Some b
|
||||
| PInd P (PSuc a) b c =>
|
||||
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
|
||||
| PInd P a b c =>
|
||||
match hred a with
|
||||
| Some a => Some (PInd P a b c)
|
||||
| None => None
|
||||
end
|
||||
end.
|
||||
|
||||
Lemma hred_complete (a b : PTm) :
|
||||
HRed.R a b -> hred a = Some b.
|
||||
Proof.
|
||||
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
|
||||
Qed.
|
||||
|
||||
Lemma hred_sound (a b : PTm):
|
||||
hred a = Some b -> HRed.R a b.
|
||||
Proof.
|
||||
elim : a b; hauto q:on dep:on ctrs:HRed.R.
|
||||
Qed.
|
||||
|
||||
Lemma hred_deter (a b0 b1 : PTm) :
|
||||
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
|
||||
Proof.
|
||||
move /hred_complete => + /hred_complete. congruence.
|
||||
Qed.
|
||||
|
||||
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
|
||||
destruct (hred a) eqn:eq.
|
||||
right. exists p. by apply hred_sound in eq.
|
||||
left. move => b /hred_complete. congruence.
|
||||
Defined.
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
||||
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
||||
Proof. move : m ξ. elim : n / a => //=. Qed.
|
||||
|
|
|
@ -1,350 +1,145 @@
|
|||
From Equations Require Import Equations.
|
||||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
|
||||
Require Import Logic.PropExtensionality (propositional_extensionality).
|
||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax
|
||||
common typing preservation admissible fp_red structural soundness.
|
||||
Require Import algorithmic.
|
||||
From stdpp Require Import relations (rtc(..), nsteps(..)).
|
||||
Require Import ssreflect ssrbool.
|
||||
Import Logic (inspect).
|
||||
From Ltac2 Require Import Ltac2.
|
||||
Import Ltac2.Constr.
|
||||
Set Default Proof Mode "Classic".
|
||||
|
||||
Inductive algo_dom {n} : PTm n -> PTm n -> Prop :=
|
||||
| A_AbsAbs a b :
|
||||
algo_dom a b ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) (PAbs b)
|
||||
|
||||
| A_AbsNeu a u :
|
||||
ishne u ->
|
||||
algo_dom a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PAbs a) u
|
||||
|
||||
| A_NeuAbs a u :
|
||||
ishne u ->
|
||||
algo_dom (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
|
||||
(* --------------------- *)
|
||||
algo_dom u (PAbs a)
|
||||
|
||||
| A_PairPair a0 a1 b0 b1 :
|
||||
algo_dom a0 a1 ->
|
||||
algo_dom b0 b1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PPair a0 b0) (PPair a1 b1)
|
||||
|
||||
| A_PairNeu a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom a0 (PProj PL u) ->
|
||||
algo_dom a1 (PProj PR u) ->
|
||||
(* ----------------------- *)
|
||||
algo_dom (PPair a0 a1) u
|
||||
|
||||
| A_NeuPair a0 a1 u :
|
||||
ishne u ->
|
||||
algo_dom (PProj PL u) a0 ->
|
||||
algo_dom (PProj PR u) a1 ->
|
||||
(* ----------------------- *)
|
||||
algo_dom u (PPair a0 a1)
|
||||
|
||||
| A_UnivCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom (PUniv i) (PUniv j)
|
||||
|
||||
| A_BindCong p0 p1 A0 A1 B0 B1 :
|
||||
algo_dom A0 A1 ->
|
||||
algo_dom B0 B1 ->
|
||||
(* ---------------------------- *)
|
||||
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
|
||||
|
||||
| A_VarCong i j :
|
||||
(* -------------------------- *)
|
||||
algo_dom (VarPTm i) (VarPTm j)
|
||||
|
||||
| A_ProjCong p0 p1 u0 u1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom u0 u1 ->
|
||||
(* --------------------- *)
|
||||
algo_dom (PProj p0 u0) (PProj p1 u1)
|
||||
|
||||
| A_AppCong u0 u1 a0 a1 :
|
||||
ishne u0 ->
|
||||
ishne u1 ->
|
||||
algo_dom u0 u1 ->
|
||||
algo_dom a0 a1 ->
|
||||
(* ------------------------- *)
|
||||
algo_dom (PApp u0 a0) (PApp u1 a1)
|
||||
|
||||
| A_HRedL a a' b :
|
||||
HRed.R a a' ->
|
||||
algo_dom a' b ->
|
||||
(* ----------------------- *)
|
||||
algo_dom a b
|
||||
|
||||
| A_HRedR a b b' :
|
||||
ishne a \/ ishf a ->
|
||||
HRed.R b b' ->
|
||||
algo_dom a b' ->
|
||||
(* ----------------------- *)
|
||||
algo_dom a b.
|
||||
|
||||
|
||||
Require Import ssreflect ssrbool.
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Ltac2 destruct_algo () :=
|
||||
lazy_match! goal with
|
||||
| [h : algo_dom ?a ?b |- _ ] =>
|
||||
if is_var a then destruct $a; ltac1:(done) else
|
||||
(if is_var b then destruct $b; ltac1:(done) else ())
|
||||
end.
|
||||
|
||||
|
||||
Ltac check_equal_triv :=
|
||||
intros;subst;
|
||||
lazymatch goal with
|
||||
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
|
||||
| [h : algo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
|
||||
| _ => idtac
|
||||
end.
|
||||
|
||||
Ltac solve_check_equal :=
|
||||
try solve [intros *;
|
||||
match goal with
|
||||
| [|- _ = _] => sauto
|
||||
| _ => idtac
|
||||
end].
|
||||
|
||||
Global Set Transparent Obligations.
|
||||
|
||||
Local Obligation Tactic := try solve [check_equal_triv | sfirstorder].
|
||||
|
||||
Program Fixpoint check_equal (a b : PTm) (h : algo_dom a b) {struct h} : bool :=
|
||||
match a, b with
|
||||
| VarPTm i, VarPTm j => nat_eqdec i j
|
||||
| PAbs a, PAbs b => check_equal_r a b _
|
||||
| PAbs a, VarPTm _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||
| PAbs a, PApp _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||
| PAbs a, PInd _ _ _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||
| PAbs a, PProj _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
|
||||
| VarPTm _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||
| PApp _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||
| PProj _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||
| PInd _ _ _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
|
||||
| PPair a0 b0, PPair a1 b1 =>
|
||||
check_equal_r a0 a1 _ && check_equal_r b0 b1 _
|
||||
| PPair a0 b0, VarPTm _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||
| PPair a0 b0, PProj _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||
| PPair a0 b0, PApp _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||
| PPair a0 b0, PInd _ _ _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
|
||||
| VarPTm _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||
| PApp _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||
| PProj _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||
| PInd _ _ _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
|
||||
| PNat, PNat => true
|
||||
| PZero, PZero => true
|
||||
| PSuc a, PSuc b => check_equal_r a b _
|
||||
| PProj p0 a, PProj p1 b => PTag_eqdec p0 p1 && check_equal a b _
|
||||
| PApp a0 b0, PApp a1 b1 => check_equal a0 a1 _ && check_equal_r b0 b1 _
|
||||
| PInd P0 u0 b0 c0, PInd P1 u1 b1 c1 =>
|
||||
check_equal_r P0 P1 _ && check_equal u0 u1 _ && check_equal_r b0 b1 _ && check_equal_r c0 c1 _
|
||||
| PUniv i, PUniv j => nat_eqdec i j
|
||||
| PBind p0 A0 B0, PBind p1 A1 B1 => BTag_eqdec p0 p1 && check_equal_r A0 A1 _ && check_equal_r B0 B1 _
|
||||
Definition fin_eq {n} (i j : fin n) : bool.
|
||||
Proof.
|
||||
induction n.
|
||||
- by exfalso.
|
||||
- refine (match i , j with
|
||||
| None, None => true
|
||||
| Some i, Some j => IHn i j
|
||||
| _, _ => false
|
||||
end
|
||||
with check_equal_r (a b : PTm) (h : algo_dom_r a b) {struct h} : bool :=
|
||||
match fancy_hred a with
|
||||
| inr a' => check_equal_r (proj1_sig a') b _
|
||||
| inl ha' => match fancy_hred b with
|
||||
| inr b' => check_equal_r a (proj1_sig b') _
|
||||
| inl hb' => check_equal a b _
|
||||
end
|
||||
end.
|
||||
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||
inversion h; subst => //=.
|
||||
exfalso. sfirstorder use:algo_dom_no_hred.
|
||||
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||
exfalso. sfirstorder.
|
||||
end).
|
||||
Defined.
|
||||
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||
destruct b' as [b' hb']. simpl.
|
||||
inversion h; subst.
|
||||
- exfalso.
|
||||
sfirstorder use:algo_dom_no_hred.
|
||||
- exfalso.
|
||||
sfirstorder.
|
||||
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||
Defined.
|
||||
|
||||
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||
Next Obligation.
|
||||
move => /= a b hdom ha _ hb _.
|
||||
inversion hdom; subst.
|
||||
- assumption.
|
||||
- exfalso; sfirstorder.
|
||||
- exfalso; sfirstorder.
|
||||
Defined.
|
||||
|
||||
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_abs_neu a u neu h : check_equal (PAbs a) u (A_AbsNeu a u neu h) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h.
|
||||
Proof. case : u neu h => //=. Qed.
|
||||
|
||||
Lemma check_equal_neu_abs a u neu h : check_equal u (PAbs a) (A_NeuAbs a u neu h) = check_equal_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a h.
|
||||
Proof. case : u neu h => //=. Qed.
|
||||
|
||||
Lemma check_equal_pair_pair a0 b0 a1 b1 a h :
|
||||
check_equal (PPair a0 b0) (PPair a1 b1) (A_PairPair a0 a1 b0 b1 a h) =
|
||||
check_equal_r a0 a1 a && check_equal_r b0 b1 h.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_pair_neu a0 a1 u neu h h'
|
||||
: check_equal (PPair a0 a1) u (A_PairNeu a0 a1 u neu h h') = check_equal_r a0 (PProj PL u) h && check_equal_r a1 (PProj PR u) h'.
|
||||
Lemma fin_eq_dec {n} (i j : fin n) :
|
||||
Bool.reflect (i = j) (fin_eq i j).
|
||||
Proof.
|
||||
case : u neu h h' => //=.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_neu_pair a0 a1 u neu h h'
|
||||
: check_equal u (PPair a0 a1) (A_NeuPair a0 a1 u neu h h') = check_equal_r (PProj PL u) a0 h && check_equal_r (PProj PR u) a1 h'.
|
||||
Proof.
|
||||
case : u neu h h' => //=.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_bind_bind p0 A0 B0 p1 A1 B1 h0 h1 :
|
||||
check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) (A_BindCong p0 p1 A0 A1 B0 B1 h0 h1) =
|
||||
BTag_eqdec p0 p1 && check_equal_r A0 A1 h0 && check_equal_r B0 B1 h1.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_proj_proj p0 u0 p1 u1 neu0 neu1 h :
|
||||
check_equal (PProj p0 u0) (PProj p1 u1) (A_ProjCong p0 p1 u0 u1 neu0 neu1 h) =
|
||||
PTag_eqdec p0 p1 && check_equal u0 u1 h.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_app_app u0 a0 u1 a1 hu0 hu1 hdom hdom' :
|
||||
check_equal (PApp u0 a0) (PApp u1 a1) (A_AppCong u0 u1 a0 a1 hu0 hu1 hdom hdom') =
|
||||
check_equal u0 u1 hdom && check_equal_r a0 a1 hdom'.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_ind_ind P0 u0 b0 c0 P1 u1 b1 c1 neu0 neu1 domP domu domb domc :
|
||||
check_equal (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
|
||||
(A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP domu domb domc) =
|
||||
check_equal_r P0 P1 domP && check_equal u0 u1 domu && check_equal_r b0 b1 domb && check_equal_r c0 c1 domc.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma hred_none a : HRed.nf a -> hred a = None.
|
||||
Proof.
|
||||
destruct (hred a) eqn:eq;
|
||||
sfirstorder use:hred_complete, hred_sound.
|
||||
Qed.
|
||||
|
||||
Ltac simp_check_r := with_strategy opaque [check_equal] simpl in *.
|
||||
|
||||
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
|
||||
Proof.
|
||||
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
||||
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||
simp_check_r.
|
||||
destruct (fancy_hred a).
|
||||
destruct (fancy_hred b).
|
||||
revert i j. induction n.
|
||||
- destruct i.
|
||||
- destruct i; destruct j.
|
||||
+ specialize (IHn f f0).
|
||||
inversion IHn; subst.
|
||||
simpl. rewrite -H.
|
||||
apply ReflectT.
|
||||
reflexivity.
|
||||
exfalso. hauto l:on use:hred_complete.
|
||||
exfalso. hauto l:on use:hred_complete.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_hredl a b a' ha doma :
|
||||
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- hauto q:on unfold:HRed.nf.
|
||||
- destruct s as [x ?].
|
||||
have ? : x = a' by eauto using hred_deter. subst.
|
||||
simpl.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_hredr a b b' hu r a0 :
|
||||
check_equal_r a b (A_HRedR a b b' hu r a0) =
|
||||
check_equal_r a b' a0.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- simpl.
|
||||
destruct (fancy_hred b) as [|[b'' hb']].
|
||||
+ hauto lq:on unfold:HRed.nf.
|
||||
+ simpl.
|
||||
have ? : (b'' = b') by eauto using hred_deter. subst.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
- exfalso.
|
||||
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_univ i j :
|
||||
check_equal (PUniv i) (PUniv j) (A_UnivCong i j) = nat_eqdec i j.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_equal_conf a b nfa nfb nfab :
|
||||
check_equal a b (A_Conf a b nfa nfb nfab) = false.
|
||||
Proof. destruct a; destruct b => //=. Qed.
|
||||
|
||||
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
||||
|
||||
Ltac2 destruct_salgo () :=
|
||||
lazy_match! goal with
|
||||
| [h : salgo_dom ?a ?b |- _ ] =>
|
||||
if is_var a then destruct $a; ltac1:(done) else
|
||||
(if is_var b then destruct $b; ltac1:(done) else ())
|
||||
end.
|
||||
|
||||
Ltac check_sub_triv :=
|
||||
intros;subst;
|
||||
lazymatch goal with
|
||||
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
|
||||
| [_ : salgo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
|
||||
| _ => idtac
|
||||
end.
|
||||
|
||||
Local Obligation Tactic := try solve [check_sub_triv | sfirstorder].
|
||||
|
||||
Program Fixpoint check_sub (a b : PTm) (h : salgo_dom a b) {struct h} :=
|
||||
match a, b with
|
||||
| PBind PPi A0 B0, PBind PPi A1 B1 =>
|
||||
check_sub_r A1 A0 _ && check_sub_r B0 B1 _
|
||||
| PBind PSig A0 B0, PBind PSig A1 B1 =>
|
||||
check_sub_r A0 A1 _ && check_sub_r B0 B1 _
|
||||
| PUniv i, PUniv j =>
|
||||
PeanoNat.Nat.leb i j
|
||||
| PNat, PNat => true
|
||||
| PApp _ _ , PApp _ _ => check_equal a b _
|
||||
| VarPTm _, VarPTm _ => check_equal a b _
|
||||
| PInd _ _ _ _, PInd _ _ _ _ => check_equal a b _
|
||||
| PProj _ _, PProj _ _ => check_equal a b _
|
||||
| _, _ => false
|
||||
end
|
||||
with check_sub_r (a b : PTm) (h : salgo_dom_r a b) {struct h} :=
|
||||
match fancy_hred a with
|
||||
| inr a' => check_sub_r (proj1_sig a') b _
|
||||
| inl ha' => match fancy_hred b with
|
||||
| inr b' => check_sub_r a (proj1_sig b') _
|
||||
| inl hb' => check_sub a b _
|
||||
end
|
||||
end.
|
||||
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||
inversion h; subst => //=.
|
||||
exfalso. sfirstorder use:salgo_dom_no_hred.
|
||||
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||
exfalso. sfirstorder.
|
||||
simpl. rewrite -H.
|
||||
apply ReflectF.
|
||||
injection. tauto.
|
||||
+ by apply ReflectF.
|
||||
+ by apply ReflectF.
|
||||
+ by apply ReflectT.
|
||||
Defined.
|
||||
|
||||
|
||||
Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) :
|
||||
bool by struct h :=
|
||||
check_equal a b h with (@idP (ishne a || ishf a)) := {
|
||||
| Bool.ReflectT _ _ => _
|
||||
| Bool.ReflectF _ _ => _
|
||||
}.
|
||||
|
||||
|
||||
(* check_equal (VarPTm i) (VarPTm j) h := fin_eq i j; *)
|
||||
(* check_equal (PAbs a) (PAbs b) h := check_equal a b _; *)
|
||||
(* check_equal (PPair a0 b0) (PPair a1 b1) h := *)
|
||||
(* check_equal a0 b0 _ && check_equal a1 b1 _; *)
|
||||
(* check_equal (PUniv i) (PUniv j) _ := _; *)
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||
destruct b' as [b' hb']. simpl.
|
||||
inversion h; subst.
|
||||
- exfalso.
|
||||
sfirstorder use:salgo_dom_no_hred.
|
||||
- exfalso.
|
||||
sfirstorder.
|
||||
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||
Defined.
|
||||
|
||||
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||
Next Obligation.
|
||||
move => /= a b hdom ha _ hb _.
|
||||
inversion hdom; subst.
|
||||
- assumption.
|
||||
- exfalso; sfirstorder.
|
||||
- exfalso; sfirstorder.
|
||||
Defined.
|
||||
|
||||
Lemma check_sub_pi_pi A0 B0 A1 B1 h0 h1 :
|
||||
check_sub (PBind PPi A0 B0) (PBind PPi A1 B1) (S_PiCong A0 A1 B0 B1 h0 h1) =
|
||||
check_sub_r A1 A0 h0 && check_sub_r B0 B1 h1.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_sig_sig A0 B0 A1 B1 h0 h1 :
|
||||
check_sub (PBind PSig A0 B0) (PBind PSig A1 B1) (S_SigCong A0 A1 B0 B1 h0 h1) =
|
||||
check_sub_r A0 A1 h0 && check_sub_r B0 B1 h1.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_univ_univ i j :
|
||||
check_sub (PUniv i) (PUniv j) (S_UnivCong i j) = PeanoNat.Nat.leb i j.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_nfnf a b dom : check_sub_r a b (S_NfNf a b dom) = check_sub a b dom.
|
||||
Proof.
|
||||
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
|
||||
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||
simpl.
|
||||
destruct (fancy_hred b)=>//=.
|
||||
destruct (fancy_hred a) =>//=.
|
||||
destruct s as [a' ha']. simpl.
|
||||
hauto l:on use:hred_complete.
|
||||
destruct s as [b' hb']. simpl.
|
||||
hauto l:on use:hred_complete.
|
||||
Qed.
|
||||
intros ih.
|
||||
Admitted.
|
||||
|
||||
Lemma check_sub_hredl a b a' ha doma :
|
||||
check_sub_r a b (S_HRedL a a' b ha doma) = check_sub_r a' b doma.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- hauto q:on unfold:HRed.nf.
|
||||
- destruct s as [x ?].
|
||||
have ? : x = a' by eauto using hred_deter. subst.
|
||||
simpl.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
Qed.
|
||||
Search (Bool.reflect (is_true _) _).
|
||||
Check idP.
|
||||
|
||||
Lemma check_sub_hredr a b b' hu r a0 :
|
||||
check_sub_r a b (S_HRedR a b b' hu r a0) =
|
||||
check_sub_r a b' a0.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- simpl.
|
||||
destruct (fancy_hred b) as [|[b'' hb']].
|
||||
+ hauto lq:on unfold:HRed.nf.
|
||||
+ simpl.
|
||||
have ? : (b'' = b') by eauto using hred_deter. subst.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
- exfalso.
|
||||
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
Qed.
|
||||
Definition metric {n} k (a b : PTm n) :=
|
||||
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\
|
||||
nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.
|
||||
|
||||
Lemma check_sub_neuneu a b i a0 : check_sub a b (S_NeuNeu a b i a0) = check_equal a b a0.
|
||||
Proof. destruct a,b => //=. Qed.
|
||||
|
||||
Lemma check_sub_conf a b n n0 i : check_sub a b (S_Conf a b n n0 i) = false.
|
||||
Proof. destruct a,b=>//=; ecrush inv:BTag. Qed.
|
||||
|
||||
#[export]Hint Rewrite check_sub_neuneu check_sub_conf check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.
|
||||
Search (nat -> nat -> bool).
|
||||
|
|
|
@ -1,259 +0,0 @@
|
|||
From Equations Require Import Equations.
|
||||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
|
||||
Require Import ssreflect ssrbool.
|
||||
From stdpp Require Import relations (rtc(..)).
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||||
|
||||
Lemma coqeq_no_hred a b : a ↔ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1;
|
||||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqeq_neuneu u0 u1 :
|
||||
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||||
Proof.
|
||||
inversion 3; subst => //=.
|
||||
Qed.
|
||||
|
||||
Lemma coqeq_neuneu' u0 u1 :
|
||||
neuneu_nonconf u0 u1 ->
|
||||
u0 ↔ u1 ->
|
||||
u0 ∼ u1.
|
||||
Proof.
|
||||
induction 2 => //=; destruct u => //=.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_sound :
|
||||
(forall a b (h : algo_dom a b), check_equal a b h -> a ↔ b) /\
|
||||
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a ⇔ b).
|
||||
Proof.
|
||||
apply algo_dom_mutual.
|
||||
- move => a b h.
|
||||
move => h0.
|
||||
rewrite check_equal_abs_abs.
|
||||
constructor. tauto.
|
||||
- move => a u i h0 ih h.
|
||||
apply CE_AbsNeu => //.
|
||||
apply : ih. simp check_equal tm_to_eq_view in h.
|
||||
by rewrite check_equal_abs_neu in h.
|
||||
- move => a u i h ih h0.
|
||||
apply CE_NeuAbs=>//.
|
||||
apply ih.
|
||||
by rewrite check_equal_neu_abs in h0.
|
||||
- move => a0 a1 b0 b1 a ha h.
|
||||
move => h0.
|
||||
rewrite check_equal_pair_pair. move /andP => [h1 h2].
|
||||
sauto lq:on.
|
||||
- move => a0 a1 u neu h ih h' ih' he.
|
||||
rewrite check_equal_pair_neu in he.
|
||||
apply CE_PairNeu => //; hauto lqb:on.
|
||||
- move => a0 a1 u i a ha a2 hb.
|
||||
rewrite check_equal_neu_pair => *.
|
||||
apply CE_NeuPair => //; hauto lqb:on.
|
||||
- sfirstorder.
|
||||
- hauto l:on use:CE_SucSuc.
|
||||
- move => i j /sumboolP.
|
||||
hauto lq:on use:CE_UnivCong.
|
||||
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
|
||||
rewrite check_equal_bind_bind in h2.
|
||||
move : h2.
|
||||
move /andP => [/andP [h20 h21] h3].
|
||||
move /sumboolP : h20 => ?. subst.
|
||||
hauto l:on use:CE_BindCong.
|
||||
- sfirstorder.
|
||||
- move => i j /sumboolP ?. subst.
|
||||
apply : CE_NeuNeu. apply CE_VarCong.
|
||||
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
|
||||
rewrite check_equal_app_app in hE.
|
||||
move /andP : hE => [h0 h1].
|
||||
sauto lq:on use:coqeq_neuneu.
|
||||
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
|
||||
apply CE_NeuNeu.
|
||||
rewrite check_equal_proj_proj in he.
|
||||
move /andP : he => [/sumboolP ? h1]. subst.
|
||||
sauto lq:on use:coqeq_neuneu.
|
||||
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||||
rewrite check_equal_ind_ind.
|
||||
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
|
||||
sauto lq:on use:coqeq_neuneu.
|
||||
- move => a b n n0 i. by rewrite check_equal_conf.
|
||||
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
|
||||
rewrite check_equal_nfnf in ih.
|
||||
tauto.
|
||||
- move => a a' b ha doma ih hE.
|
||||
rewrite check_equal_hredl in hE. sauto lq:on.
|
||||
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
|
||||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||
|
||||
Lemma check_equal_complete :
|
||||
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a ↔ b) /\
|
||||
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a ⇔ b).
|
||||
Proof.
|
||||
apply algo_dom_mutual.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- ce_solv.
|
||||
- move => i j.
|
||||
rewrite check_equal_univ.
|
||||
case : nat_eqdec => //=.
|
||||
ce_solv.
|
||||
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
|
||||
rewrite check_equal_bind_bind.
|
||||
move /negP.
|
||||
move /nandP.
|
||||
case. move /nandP.
|
||||
case. move => h. have : p0 <> p1 by sauto lqb:on.
|
||||
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||
- simp check_equal. done.
|
||||
- move => i j. move => h. have {h} : ~ nat_eqdec i j by done.
|
||||
case : nat_eqdec => //=. ce_solv.
|
||||
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
|
||||
rewrite check_equal_app_app.
|
||||
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
|
||||
- move => p0 p1 u0 u1 neu0 neu1 h ih.
|
||||
rewrite check_equal_proj_proj.
|
||||
move /negP /nandP. case.
|
||||
case : PTag_eqdec => //=. sauto lq:on.
|
||||
sauto lqb:on.
|
||||
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||||
rewrite check_equal_ind_ind.
|
||||
move => + h.
|
||||
inversion h; subst.
|
||||
inversion H; subst.
|
||||
move /negP /nandP.
|
||||
case. move/nandP.
|
||||
case. move/nandP.
|
||||
case. qauto b:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
- rewrite /tm_conf.
|
||||
move => a b n n0 i. simp ce_prop.
|
||||
move => _. inversion 1; subst => //=.
|
||||
+ destruct b => //=.
|
||||
+ destruct a => //=.
|
||||
+ destruct b => //=.
|
||||
+ destruct a => //=.
|
||||
+ hauto l:on inv:CoqEq_Neu.
|
||||
- move => a b h ih.
|
||||
rewrite check_equal_nfnf.
|
||||
move : ih => /[apply].
|
||||
move => + h0.
|
||||
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
|
||||
inversion h0; subst.
|
||||
hauto l:on use:hreds_nf_refl.
|
||||
- move => a a' b h dom.
|
||||
simp ce_prop => /[apply].
|
||||
move => + h1. inversion h1; subst.
|
||||
inversion H; subst.
|
||||
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
|
||||
+ have ? : y = a' by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
- move => a b b' u hr dom ihdom.
|
||||
rewrite check_equal_hredr.
|
||||
move => + h. inversion h; subst.
|
||||
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
move => {}/ihdom.
|
||||
inversion H0; subst.
|
||||
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
|
||||
sfirstorder unfold:HRed.nf.
|
||||
+ sauto lq:on use:hred_deter.
|
||||
Qed.
|
||||
|
||||
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
|
||||
|
||||
Lemma check_sub_sound :
|
||||
(forall a b (h : salgo_dom a b), check_sub a b h -> a ⋖ b) /\
|
||||
(forall a b (h : salgo_dom_r a b), check_sub_r a b h -> a ≪ b).
|
||||
Proof.
|
||||
apply salgo_dom_mutual; try done.
|
||||
- simpl. move => i j [];
|
||||
sauto lq:on use:Reflect.Nat_leb_le.
|
||||
- move => A0 A1 B0 B1 s ihs s0 ihs0.
|
||||
simp ce_prop.
|
||||
hauto lqb:on ctrs:CoqLEq.
|
||||
- move => A0 A1 B0 B1 s ihs s0 ihs0.
|
||||
simp ce_prop.
|
||||
hauto lqb:on ctrs:CoqLEq.
|
||||
- qauto ctrs:CoqLEq.
|
||||
- move => a b i a0.
|
||||
simp ce_prop.
|
||||
move => h. apply CLE_NeuNeu.
|
||||
hauto lq:on use:check_equal_sound, coqeq_neuneu', coqeq_symmetric_mutual.
|
||||
- move => a b n n0 i.
|
||||
by simp ce_prop.
|
||||
- move => a b h ih. simp ce_prop. hauto l:on.
|
||||
- move => a a' b hr h ih.
|
||||
simp ce_prop.
|
||||
sauto lq:on rew:off.
|
||||
- move => a b b' n r dom ihdom.
|
||||
simp ce_prop.
|
||||
move : ihdom => /[apply].
|
||||
move {dom}.
|
||||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma check_sub_complete :
|
||||
(forall a b (h : salgo_dom a b), check_sub a b h = false -> ~ a ⋖ b) /\
|
||||
(forall a b (h : salgo_dom_r a b), check_sub_r a b h = false -> ~ a ≪ b).
|
||||
Proof.
|
||||
apply salgo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
|
||||
- move => i j /=.
|
||||
move => + h. inversion h; subst => //=.
|
||||
sfirstorder use:PeanoNat.Nat.leb_le.
|
||||
hauto lq:on inv:CoqEq_Neu.
|
||||
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
|
||||
move /nandP.
|
||||
case.
|
||||
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
|
||||
move /nandP.
|
||||
case.
|
||||
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
|
||||
- move => a b i hs. simp ce_prop.
|
||||
move => + h. inversion h; subst => //=.
|
||||
move => /negP h0.
|
||||
eapply check_equal_complete in h0.
|
||||
apply h0. by constructor.
|
||||
- move => a b s ihs. simp ce_prop.
|
||||
move => h0 h1. apply ihs =>//.
|
||||
have [? ?] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
|
||||
inversion h1; subst.
|
||||
hauto l:on use:hreds_nf_refl.
|
||||
- move => a a' b h dom.
|
||||
simp ce_prop => /[apply].
|
||||
move => + h1. inversion h1; subst.
|
||||
inversion H; subst.
|
||||
+ sfirstorder use:coqleq_no_hred unfold:HRed.nf.
|
||||
+ have ? : y = a' by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
- move => a b b' u hr dom ihdom.
|
||||
rewrite check_sub_hredr.
|
||||
move => + h. inversion h; subst.
|
||||
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
move => {}/ihdom.
|
||||
inversion H0; subst.
|
||||
+ have ? : HRed.nf b'0 by hauto l:on use:coqleq_no_hred.
|
||||
sfirstorder unfold:HRed.nf.
|
||||
+ sauto lq:on use:hred_deter.
|
||||
Qed.
|
1851
theories/fp_red.v
1851
theories/fp_red.v
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -1,100 +1,119 @@
|
|||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural fp_red admissible.
|
||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax common typing structural fp_red.
|
||||
From Hammer Require Import Tactics.
|
||||
Require Import ssreflect.
|
||||
Require Import Psatz.
|
||||
Require Import Coq.Logic.FunctionalExtensionality.
|
||||
|
||||
|
||||
Lemma Ind_Inv Γ P (a : PTm) b c U :
|
||||
Γ ⊢ PInd P a b c ∈ U ->
|
||||
exists i, (cons PNat Γ) ⊢ P ∈ PUniv i /\
|
||||
Γ ⊢ a ∈ PNat /\
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P /\
|
||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\
|
||||
Γ ⊢ subst_PTm (scons a VarPTm) P ≲ U.
|
||||
Lemma App_Inv n Γ (b a : PTm n) U :
|
||||
Γ ⊢ PApp b a ∈ U ->
|
||||
exists A B, Γ ⊢ b ∈ PBind PPi A B /\ Γ ⊢ a ∈ A /\ Γ ⊢ subst_PTm (scons a VarPTm) B ≲ U.
|
||||
Proof.
|
||||
move E : (PInd P a b c)=> u hu.
|
||||
move : P a b c E. elim : Γ u U / hu => //=.
|
||||
- move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst.
|
||||
exists i. repeat split => //=.
|
||||
have : Γ ⊢ subst_PTm (scons a VarPTm) P ∈ subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt.
|
||||
eauto using E_Refl, Su_Eq.
|
||||
move E : (PApp b a) => u hu.
|
||||
move : b a E. elim : n Γ u U / hu => n //=.
|
||||
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
|
||||
exists A,B.
|
||||
repeat split => //=.
|
||||
have [i] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by sfirstorder use:regularity.
|
||||
hauto lq:on use:bind_inst, E_Refl.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma E_Abs Γ a b A B :
|
||||
A :: Γ ⊢ a ≡ b ∈ B ->
|
||||
Γ ⊢ PAbs a ≡ PAbs b ∈ PBind PPi A B.
|
||||
Lemma Abs_Inv n Γ (a : PTm (S n)) U :
|
||||
Γ ⊢ PAbs a ∈ U ->
|
||||
exists A B, funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B /\ Γ ⊢ PBind PPi A B ≲ U.
|
||||
Proof.
|
||||
move E : (PAbs a) => u hu.
|
||||
move : a E. elim : n Γ u U / hu => n //=.
|
||||
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
|
||||
exists A, B. repeat split => //=.
|
||||
hauto lq:on use:E_Refl, Su_Eq.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma Proj1_Inv n Γ (a : PTm n) U :
|
||||
Γ ⊢ PProj PL a ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ A ≲ U.
|
||||
Proof.
|
||||
move E : (PProj PL a) => u hu.
|
||||
move :a E. elim : n Γ u U / hu => n //=.
|
||||
- move => Γ a A B ha _ a0 [*]. subst.
|
||||
exists A, B. split => //=.
|
||||
eapply regularity in ha.
|
||||
move : ha => [i].
|
||||
move /Bind_Inv => [j][h _].
|
||||
by move /E_Refl /Su_Eq in h.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma Proj2_Inv n Γ (a : PTm n) U :
|
||||
Γ ⊢ PProj PR a ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ PBind PSig A B /\ Γ ⊢ subst_PTm (scons (PProj PL a) VarPTm) B ≲ U.
|
||||
Proof.
|
||||
move E : (PProj PR a) => u hu.
|
||||
move :a E. elim : n Γ u U / hu => n //=.
|
||||
- move => Γ a A B ha _ a0 [*]. subst.
|
||||
exists A, B. split => //=.
|
||||
have ha' := ha.
|
||||
eapply regularity in ha.
|
||||
move : ha => [i ha].
|
||||
move /T_Proj1 in ha'.
|
||||
apply : bind_inst; eauto.
|
||||
apply : E_Refl ha'.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma Pair_Inv n Γ (a b : PTm n) U :
|
||||
Γ ⊢ PPair a b ∈ U ->
|
||||
exists A B, Γ ⊢ a ∈ A /\
|
||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B /\
|
||||
Γ ⊢ PBind PSig A B ≲ U.
|
||||
Proof.
|
||||
move E : (PPair a b) => u hu.
|
||||
move : a b E. elim : n Γ u U / hu => n //=.
|
||||
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
|
||||
exists A,B. repeat split => //=.
|
||||
move /E_Refl /Su_Eq : hS. apply.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma E_AppAbs : forall n (a : PTm (S n)) (b : PTm n) (Γ : fin n -> PTm n) (A : PTm n),
|
||||
Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A.
|
||||
Proof.
|
||||
move => n a b Γ A ha.
|
||||
move /App_Inv : ha.
|
||||
move => [A0][B0][ha][hb]hS.
|
||||
move /Abs_Inv : ha => [A1][B1][ha]hS0.
|
||||
have hb' := hb.
|
||||
move /E_Refl in hb.
|
||||
have hS1 : Γ ⊢ A0 ≲ A1 by sfirstorder use:Su_Pi_Proj1.
|
||||
have [i hPi] : exists i, Γ ⊢ PBind PPi A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
|
||||
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
|
||||
move => h.
|
||||
have [i hA] : exists i, Γ ⊢ A ∈ PUniv i by hauto l:on use:wff_mutual inv:Wff.
|
||||
have [j hB] : exists j, A :: Γ ⊢ B ∈ PUniv j by hauto l:on use:regularity.
|
||||
have hΓ : ⊢ Γ by sfirstorder use:wff_mutual.
|
||||
have hΓ' : ⊢ A::Γ by eauto with wt.
|
||||
set k := max i j.
|
||||
have [? ?] : i <= k /\ j <= k by lia.
|
||||
have {}hA : Γ ⊢ A ∈ PUniv k by hauto l:on use:T_Conv, Su_Univ.
|
||||
have {}hB : A :: Γ ⊢ B ∈ PUniv k by hauto lq:on use:T_Conv, Su_Univ.
|
||||
have hPi : Γ ⊢ PBind PPi A B ∈ PUniv k by eauto with wt.
|
||||
apply : E_FunExt; eauto with wt.
|
||||
hauto lq:on rew:off use:regularity, T_Abs.
|
||||
hauto lq:on rew:off use:regularity, T_Abs.
|
||||
apply : E_Transitive => /=. apply E_AppAbs.
|
||||
hauto lq:on use:T_Eta, regularity.
|
||||
apply /E_Symmetric /E_Transitive. apply E_AppAbs.
|
||||
hauto lq:on use:T_Eta, regularity.
|
||||
asimpl. rewrite !subst_scons_id. by apply E_Symmetric.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_AppAbs; eauto.
|
||||
eauto using T_Conv.
|
||||
Qed.
|
||||
|
||||
Lemma E_Pair Γ a0 b0 a1 b1 A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ PUniv i ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
||||
Γ ⊢ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B.
|
||||
Lemma E_ProjPair1 : forall n (a b : PTm n) (Γ : fin n -> PTm n) (A : PTm n),
|
||||
Γ ⊢ PProj PL (PPair a b) ∈ A -> Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A.
|
||||
Proof.
|
||||
move => hSig ha hb.
|
||||
have [ha0 ha1] : Γ ⊢ a0 ∈ A /\ Γ ⊢ a1 ∈ A by hauto l:on use:regularity.
|
||||
have [hb0 hb1] : Γ ⊢ b0 ∈ subst_PTm (scons a0 VarPTm) B /\
|
||||
Γ ⊢ b1 ∈ subst_PTm (scons a0 VarPTm) B by hauto l:on use:regularity.
|
||||
have hp : Γ ⊢ PPair a0 b0 ∈ PBind PSig A B by eauto with wt.
|
||||
have hp' : Γ ⊢ PPair a1 b1 ∈ PBind PSig A B. econstructor; eauto with wt; [idtac].
|
||||
apply : T_Conv; eauto. apply : Su_Sig_Proj2; by eauto using Su_Eq, E_Refl.
|
||||
have ea : Γ ⊢ PProj PL (PPair a0 b0) ≡ a0 ∈ A by eauto with wt.
|
||||
have : Γ ⊢ PProj PR (PPair a0 b0) ≡ b0 ∈ subst_PTm (scons a0 VarPTm) B by eauto with wt.
|
||||
have : Γ ⊢ PProj PL (PPair a1 b1) ≡ a1 ∈ A by eauto using E_ProjPair1 with wt.
|
||||
have : Γ ⊢ PProj PR (PPair a1 b1) ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B.
|
||||
apply : E_Conv; eauto using E_ProjPair2 with wt.
|
||||
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
|
||||
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
|
||||
by eauto using E_Symmetric.
|
||||
move => *.
|
||||
apply : E_PairExt; eauto using E_Symmetric, E_Transitive.
|
||||
apply : E_Conv. by eauto using E_Symmetric, E_Transitive.
|
||||
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
|
||||
apply : E_Transitive. by eauto. apply /E_Symmetric /E_Transitive.
|
||||
by eauto using E_ProjPair1.
|
||||
eauto.
|
||||
move => n a b Γ A.
|
||||
move /Proj1_Inv. move => [A0][B0][hab]hA0.
|
||||
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
|
||||
have [i ?] : exists i, Γ ⊢ PBind PSig A1 B1 ∈ PUniv i by sfirstorder use:regularity_sub0.
|
||||
move /Su_Sig_Proj1 in hS.
|
||||
have {hA0} {}hS : Γ ⊢ A1 ≲ A by eauto using Su_Transitive.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_ProjPair1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma Suc_Inv Γ (a : PTm) A :
|
||||
Γ ⊢ PSuc a ∈ A -> Γ ⊢ a ∈ PNat /\ Γ ⊢ PNat ≲ A.
|
||||
Proof.
|
||||
move E : (PSuc a) => u hu.
|
||||
move : a E.
|
||||
elim : Γ u A /hu => //=.
|
||||
- move => Γ a ha iha a0 [*]. subst.
|
||||
split => //=. eapply wff_mutual in ha.
|
||||
apply : Su_Eq.
|
||||
apply E_Refl. by apply T_Nat'.
|
||||
- hauto lq:on rew:off ctrs:LEq.
|
||||
Qed.
|
||||
|
||||
Lemma RRed_Eq Γ (a b : PTm) A :
|
||||
Lemma RRed_Eq n Γ (a b : PTm n) A :
|
||||
Γ ⊢ a ∈ A ->
|
||||
RRed.R a b ->
|
||||
Γ ⊢ a ≡ b ∈ A.
|
||||
Proof.
|
||||
move => + h. move : Γ A. elim : a b /h.
|
||||
move => + h. move : Γ A. elim : n a b /h => n.
|
||||
- apply E_AppAbs.
|
||||
- move => p a b Γ A.
|
||||
case : p => //=.
|
||||
|
@ -110,14 +129,7 @@ Proof.
|
|||
apply : Su_Sig_Proj2; eauto.
|
||||
move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply].
|
||||
move {hS}.
|
||||
move => ?. apply : E_Conv; eauto. apply : typing.E_ProjPair2; eauto.
|
||||
- hauto lq:on use:Ind_Inv, E_Conv, E_IndZero.
|
||||
- move => P a b c Γ A.
|
||||
move /Ind_Inv.
|
||||
move => [i][hP][ha][hb][hc]hSu.
|
||||
apply : E_Conv; eauto.
|
||||
apply : E_IndSuc'; eauto.
|
||||
hauto l:on use:Suc_Inv.
|
||||
move => ?. apply : E_Conv; eauto. apply : E_ProjPair2; eauto.
|
||||
- qauto l:on use:Abs_Inv, E_Conv, regularity_sub0, E_Abs.
|
||||
- move => a0 a1 b ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
|
||||
have {}/iha iha := ih0.
|
||||
|
@ -158,14 +170,9 @@ Proof.
|
|||
have {}/ihA ihA := h1.
|
||||
apply : E_Conv; eauto.
|
||||
apply E_Bind'; eauto using E_Refl.
|
||||
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
|
||||
- hauto lq:on use:Suc_Inv, E_Conv, E_SucCong.
|
||||
Qed.
|
||||
|
||||
Theorem subject_reduction Γ (a b A : PTm) :
|
||||
Theorem subject_reduction n Γ (a b A : PTm n) :
|
||||
Γ ⊢ a ∈ A ->
|
||||
RRed.R a b ->
|
||||
Γ ⊢ b ∈ A.
|
||||
|
|
|
@ -1,15 +1,15 @@
|
|||
Require Import Autosubst2.unscoped Autosubst2.syntax.
|
||||
Require Import Autosubst2.fintype Autosubst2.syntax.
|
||||
Require Import fp_red logrel typing.
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Theorem fundamental_theorem :
|
||||
(forall Γ, ⊢ Γ -> ⊨ Γ) /\
|
||||
(forall Γ a A, Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||
(forall Γ a b A, Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||
(forall Γ a b, Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||
apply wt_mutual; eauto with sem.
|
||||
(forall n (Γ : fin n -> PTm n), ⊢ Γ -> ⊨ Γ) /\
|
||||
(forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> Γ ⊨ a ∈ A) /\
|
||||
(forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> Γ ⊨ a ≡ b ∈ A) /\
|
||||
(forall n Γ (a b : PTm n), Γ ⊢ a ≲ b -> Γ ⊨ a ≲ b).
|
||||
apply wt_mutual; eauto with sem; [hauto l:on use:SE_Pair].
|
||||
Unshelve. all : exact 0.
|
||||
Qed.
|
||||
|
||||
Lemma synsub_to_usub : forall Γ (a b : PTm), Γ ⊢ a ≲ b -> SN a /\ SN b /\ Sub.R a b.
|
||||
Lemma synsub_to_usub : forall n Γ (a b : PTm n), Γ ⊢ a ≲ b -> SN a /\ SN b /\ Sub.R a b.
|
||||
Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed.
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -1,5 +0,0 @@
|
|||
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
|
||||
From Hammer Require Import Tactics.
|
||||
Require Import ssreflect ssrbool.
|
||||
From stdpp Require Import relations (nsteps (..), rtc(..)).
|
||||
Import Psatz.
|
|
@ -1,230 +1,196 @@
|
|||
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
|
||||
Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax.
|
||||
|
||||
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
|
||||
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
|
||||
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
|
||||
Reserved Notation "⊢ Γ" (at level 70).
|
||||
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
|
||||
| T_Var i Γ A :
|
||||
Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
|
||||
| T_Var n Γ (i : fin n) :
|
||||
⊢ Γ ->
|
||||
lookup i Γ A ->
|
||||
Γ ⊢ VarPTm i ∈ A
|
||||
Γ ⊢ VarPTm i ∈ Γ i
|
||||
|
||||
| T_Bind Γ i p (A : PTm) (B : PTm) :
|
||||
| T_Bind n Γ i p (A : PTm n) (B : PTm (S n)) :
|
||||
Γ ⊢ A ∈ PUniv i ->
|
||||
cons A Γ ⊢ B ∈ PUniv i ->
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i ->
|
||||
Γ ⊢ PBind p A B ∈ PUniv i
|
||||
|
||||
| T_Abs Γ (a : PTm) A B i :
|
||||
| T_Abs n Γ (a : PTm (S n)) A B i :
|
||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||
(cons A Γ) ⊢ a ∈ B ->
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B ->
|
||||
Γ ⊢ PAbs a ∈ PBind PPi A B
|
||||
|
||||
| T_App Γ (b a : PTm) A B :
|
||||
| T_App n Γ (b a : PTm n) A B :
|
||||
Γ ⊢ b ∈ PBind PPi A B ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ PApp b a ∈ subst_PTm (scons a VarPTm) B
|
||||
|
||||
| T_Pair Γ (a b : PTm) A B i :
|
||||
| T_Pair n Γ (a b : PTm n) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||
Γ ⊢ PPair a b ∈ PBind PSig A B
|
||||
|
||||
| T_Proj1 Γ (a : PTm) A B :
|
||||
| T_Proj1 n Γ (a : PTm n) A B :
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PL a ∈ A
|
||||
|
||||
| T_Proj2 Γ (a : PTm) A B :
|
||||
| T_Proj2 n Γ (a : PTm n) A B :
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
||||
|
||||
| T_Univ Γ i :
|
||||
| T_Univ n Γ i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PUniv i ∈ PUniv (S i)
|
||||
Γ ⊢ PUniv i : PTm n ∈ PUniv (S i)
|
||||
|
||||
| T_Nat Γ i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PNat ∈ PUniv i
|
||||
|
||||
| T_Zero Γ :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PZero ∈ PNat
|
||||
|
||||
| T_Suc Γ (a : PTm) :
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ PSuc a ∈ PNat
|
||||
|
||||
| T_Ind Γ P (a : PTm) b c i :
|
||||
cons PNat Γ ⊢ P ∈ PUniv i ->
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊢ PInd P a b c ∈ subst_PTm (scons a VarPTm) P
|
||||
|
||||
| T_Conv Γ (a : PTm) A B :
|
||||
| T_Conv n Γ (a : PTm n) A B :
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ A ≲ B ->
|
||||
Γ ⊢ a ∈ B
|
||||
|
||||
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
|
||||
with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop :=
|
||||
(* Structural *)
|
||||
| E_Refl Γ (a : PTm ) A :
|
||||
| E_Refl n Γ (a : PTm n) A :
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ a ≡ a ∈ A
|
||||
|
||||
| E_Symmetric Γ (a b : PTm) A :
|
||||
| E_Symmetric n Γ (a b : PTm n) A :
|
||||
Γ ⊢ a ≡ b ∈ A ->
|
||||
Γ ⊢ b ≡ a ∈ A
|
||||
|
||||
| E_Transitive Γ (a b c : PTm) A :
|
||||
| E_Transitive n Γ (a b c : PTm n) A :
|
||||
Γ ⊢ a ≡ b ∈ A ->
|
||||
Γ ⊢ b ≡ c ∈ A ->
|
||||
Γ ⊢ a ≡ c ∈ A
|
||||
|
||||
(* Congruence *)
|
||||
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
|
||||
| E_Bind n Γ i p (A0 A1 : PTm n) B0 B1 :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ A0 ∈ PUniv i ->
|
||||
Γ ⊢ A0 ≡ A1 ∈ PUniv i ->
|
||||
(cons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≡ B1 ∈ PUniv i ->
|
||||
Γ ⊢ PBind p A0 B0 ≡ PBind p A1 B1 ∈ PUniv i
|
||||
|
||||
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
|
||||
| E_Abs n Γ (a b : PTm (S n)) A B i :
|
||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ≡ b ∈ B ->
|
||||
Γ ⊢ PAbs a ≡ PAbs b ∈ PBind PPi A B
|
||||
|
||||
| E_App n Γ i (b0 b1 a0 a1 : PTm n) A B :
|
||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||
Γ ⊢ b0 ≡ b1 ∈ PBind PPi A B ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||
Γ ⊢ PApp b0 a0 ≡ PApp b1 a1 ∈ subst_PTm (scons a0 VarPTm) B
|
||||
|
||||
| E_Proj1 Γ (a b : PTm) A B :
|
||||
| E_Pair n Γ (a0 a1 b0 b1 : PTm n) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A ->
|
||||
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons a0 VarPTm) B ->
|
||||
Γ ⊢ PPair a0 b0 ≡ PPair a1 b1 ∈ PBind PSig A B
|
||||
|
||||
| E_Proj1 n Γ (a b : PTm n) A B :
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A
|
||||
|
||||
| E_Proj2 Γ i (a b : PTm) A B :
|
||||
| E_Proj2 n Γ i (a b : PTm n) A B :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B
|
||||
|
||||
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
|
||||
(cons PNat Γ) ⊢ P0 ∈ PUniv i ->
|
||||
(cons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ PNat ->
|
||||
Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 ->
|
||||
(cons P0 ((cons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
|
||||
Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0
|
||||
|
||||
| E_SucCong Γ (a b : PTm) :
|
||||
Γ ⊢ a ≡ b ∈ PNat ->
|
||||
Γ ⊢ PSuc a ≡ PSuc b ∈ PNat
|
||||
|
||||
| E_Conv Γ (a b : PTm) A B :
|
||||
| E_Conv n Γ (a b : PTm n) A B :
|
||||
Γ ⊢ a ≡ b ∈ A ->
|
||||
Γ ⊢ A ≲ B ->
|
||||
Γ ⊢ a ≡ b ∈ B
|
||||
|
||||
(* Beta *)
|
||||
| E_AppAbs Γ (a : PTm) b A B i:
|
||||
| E_AppAbs n Γ (a : PTm (S n)) b A B i:
|
||||
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||||
Γ ⊢ b ∈ A ->
|
||||
(cons A Γ) ⊢ a ∈ B ->
|
||||
funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B ->
|
||||
Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ subst_PTm (scons b VarPTm ) B
|
||||
|
||||
| E_ProjPair1 Γ (a b : PTm) A B i :
|
||||
| E_ProjPair1 n Γ (a b : PTm n) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||
Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A
|
||||
|
||||
| E_ProjPair2 Γ (a b : PTm) A B i :
|
||||
| E_ProjPair2 n Γ (a b : PTm n) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ∈ A ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B ->
|
||||
Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B
|
||||
|
||||
| E_IndZero Γ P i (b : PTm) c :
|
||||
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊢ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P
|
||||
|
||||
| E_IndSuc Γ P (a : PTm) b c i :
|
||||
(cons PNat Γ) ⊢ P ∈ PUniv i ->
|
||||
Γ ⊢ a ∈ PNat ->
|
||||
Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P ->
|
||||
(cons P (cons PNat Γ)) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
|
||||
Γ ⊢ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P
|
||||
|
||||
| E_FunExt Γ (a b : PTm) A B i :
|
||||
Γ ⊢ PBind PPi A B ∈ PUniv i ->
|
||||
Γ ⊢ a ∈ PBind PPi A B ->
|
||||
(* Eta *)
|
||||
| E_AppEta n Γ (b : PTm n) A B i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ PBind PPi A B ∈ (PUniv i) ->
|
||||
Γ ⊢ b ∈ PBind PPi A B ->
|
||||
A :: Γ ⊢ PApp (ren_PTm shift a) (VarPTm var_zero) ≡ PApp (ren_PTm shift b) (VarPTm var_zero) ∈ B ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PPi A B
|
||||
Γ ⊢ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) ≡ b ∈ PBind PPi A B
|
||||
|
||||
| E_PairExt Γ (a b : PTm) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ PUniv i ->
|
||||
| E_PairEta n Γ (a : PTm n) A B i :
|
||||
Γ ⊢ PBind PSig A B ∈ (PUniv i) ->
|
||||
Γ ⊢ a ∈ PBind PSig A B ->
|
||||
Γ ⊢ b ∈ PBind PSig A B ->
|
||||
Γ ⊢ PProj PL a ≡ PProj PL b ∈ A ->
|
||||
Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B ->
|
||||
Γ ⊢ a ≡ b ∈ PBind PSig A B
|
||||
Γ ⊢ a ≡ PPair (PProj PL a) (PProj PR a) ∈ PBind PSig A B
|
||||
|
||||
with LEq : list PTm -> PTm -> PTm -> Prop :=
|
||||
with LEq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop :=
|
||||
(* Structural *)
|
||||
| Su_Transitive Γ (A B C : PTm) :
|
||||
| Su_Transitive n Γ (A B C : PTm n) :
|
||||
Γ ⊢ A ≲ B ->
|
||||
Γ ⊢ B ≲ C ->
|
||||
Γ ⊢ A ≲ C
|
||||
|
||||
(* Congruence *)
|
||||
| Su_Univ Γ i j :
|
||||
| Su_Univ n Γ i j :
|
||||
⊢ Γ ->
|
||||
i <= j ->
|
||||
Γ ⊢ PUniv i ≲ PUniv j
|
||||
Γ ⊢ PUniv i : PTm n ≲ PUniv j
|
||||
|
||||
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
|
||||
| Su_Pi n Γ (A0 A1 : PTm n) B0 B1 i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ A0 ∈ PUniv i ->
|
||||
Γ ⊢ A1 ≲ A0 ->
|
||||
(cons A0 Γ) ⊢ B0 ≲ B1 ->
|
||||
funcomp (ren_PTm shift) (scons A0 Γ) ⊢ B0 ≲ B1 ->
|
||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1
|
||||
|
||||
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
|
||||
| Su_Sig n Γ (A0 A1 : PTm n) B0 B1 i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ A1 ∈ PUniv i ->
|
||||
Γ ⊢ A0 ≲ A1 ->
|
||||
(cons A1 Γ) ⊢ B0 ≲ B1 ->
|
||||
funcomp (ren_PTm shift) (scons A1 Γ) ⊢ B0 ≲ B1 ->
|
||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1
|
||||
|
||||
(* Injecting from equalities *)
|
||||
| Su_Eq Γ (A : PTm) B i :
|
||||
| Su_Eq n Γ (A : PTm n) B i :
|
||||
Γ ⊢ A ≡ B ∈ PUniv i ->
|
||||
Γ ⊢ A ≲ B
|
||||
|
||||
(* Projection axioms *)
|
||||
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||||
| Su_Pi_Proj1 n Γ (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||
Γ ⊢ A1 ≲ A0
|
||||
|
||||
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
|
||||
| Su_Sig_Proj1 n Γ (A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||
Γ ⊢ A0 ≲ A1
|
||||
|
||||
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
|
||||
| Su_Pi_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ PBind PPi A0 B0 ≲ PBind PPi A1 B1 ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A1 ->
|
||||
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
||||
|
||||
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
|
||||
| Su_Sig_Proj2 n Γ (a0 a1 A0 A1 : PTm n) B0 B1 :
|
||||
Γ ⊢ PBind PSig A0 B0 ≲ PBind PSig A1 B1 ->
|
||||
Γ ⊢ a0 ≡ a1 ∈ A0 ->
|
||||
Γ ⊢ subst_PTm (scons a0 VarPTm) B0 ≲ subst_PTm (scons a1 VarPTm) B1
|
||||
|
||||
with Wff : list PTm -> Prop :=
|
||||
with Wff : forall {n}, (fin n -> PTm n) -> Prop :=
|
||||
| Wff_Nil :
|
||||
⊢ nil
|
||||
| Wff_Cons Γ (A : PTm) i :
|
||||
⊢ null
|
||||
| Wff_Cons n Γ (A : PTm n) i :
|
||||
⊢ Γ ->
|
||||
Γ ⊢ A ∈ PUniv i ->
|
||||
(* -------------------------------- *)
|
||||
⊢ (cons A Γ)
|
||||
⊢ funcomp (ren_PTm shift) (scons A Γ)
|
||||
|
||||
where
|
||||
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
|
||||
|
@ -235,3 +201,10 @@ Scheme wf_ind := Induction for Wff Sort Prop
|
|||
with le_ind := Induction for LEq Sort Prop.
|
||||
|
||||
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.
|
||||
|
||||
(* Lemma lem : *)
|
||||
(* (forall n (Γ : fin n -> PTm n), ⊢ Γ -> ...) /\ *)
|
||||
(* (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> ...) /\ *)
|
||||
(* (forall n Γ (a b A : PTm n), Γ ⊢ a ≡ b ∈ A -> ...) /\ *)
|
||||
(* (forall n Γ (A B : PTm n), Γ ⊢ A ≲ B -> ...). *)
|
||||
(* Proof. apply wt_mutual. ... *)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue