Compare commits

..

No commits in common. "master" and "logrel" have entirely different histories.

17 changed files with 1295 additions and 9013 deletions

View file

@ -16,12 +16,12 @@ uninstall: $(COQMAKEFILE)
$(MAKE) -f $(COQMAKEFILE) uninstall
theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v : syntax.sig
autosubst -f -v ge813 -s ucoq -o theories/Autosubst2/syntax.v syntax.sig
autosubst -f -v ge813 -s coq -o theories/Autosubst2/syntax.v syntax.sig
.PHONY: clean FORCE
clean:
test ! -f $(COQMAKEFILE) || ( $(MAKE) -f $(COQMAKEFILE) clean && rm $(COQMAKEFILE) )
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/unscoped.v
rm -f theories/Autosubst2/syntax.v theories/Autosubst2/core.v theories/Autosubst2/fintype.v
FORCE:

View file

@ -16,7 +16,4 @@ PPair : PTm -> PTm -> PTm
PProj : PTag -> PTm -> PTm
PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm
PUniv : nat -> PTm
PNat : PTm
PZero : PTm
PSuc : PTm -> PTm
PInd : (bind PTm in PTm) -> PTm -> PTm -> (bind PTm,PTm in PTm) -> PTm
PBot : PTm

View file

@ -0,0 +1,419 @@
(** * Autosubst Header for Scoped Syntax
Our development utilises well-scoped de Bruijn syntax. This means that the de Bruijn indices are taken from finite types. As a consequence, any kind of substitution or environment used in conjunction with well-scoped syntax takes the form of a mapping from some finite type _I^n_. In particular, _renamings_ are mappings _I^n -> I^m_. Here we develop the theory of how these parts interact.
Version: December 11, 2019.
*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Set Implicit Arguments.
Unset Strict Implicit.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus
We implement the finite type with _n_ elements, _I^n_, as the _n_-fold iteration of the Option Type. _I^0_ is implemented as the empty type.
*)
Fixpoint fin (n : nat) : Type :=
match n with
| 0 => False
| S m => option (fin m)
end.
(** Renamings and Injective Renamings
_Renamings_ are mappings between finite types.
*)
Definition ren (m n : nat) : Type := fin m -> fin n.
Definition id {X} := @Datatypes.id X.
Definition idren {k: nat} : ren k k := @Datatypes.id (fin k).
(** We give a special name, to the newest element in a non-empty finite type, as it usually corresponds to a freshly bound variable. *)
Definition var_zero {n : nat} : fin (S n) := None.
Definition null {T} (i : fin 0) : T := match i with end.
Definition shift {n : nat} : ren n (S n) :=
Some.
(** Extension of Finite Mappings
Assume we are given a mapping _f_ from _I^n_ to some type _X_, then we can _extend_ this mapping with a new value from _x : X_ to a mapping from _I^n+1_ to _X_. We denote this operation by _x . f_ and define it as follows:
*)
Definition scons {X : Type} {n : nat} (x : X) (f : fin n -> X) (m : fin (S n)) : X :=
match m with
| None => x
| Some i => f i
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** ** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
(** ** Proofs for substitution primitives *)
(** Forward Function Composition
Substitutions represented as functions are ubiquitious in this development and we often have to compose them, without talking about their pointwise behaviour.
That is, we are interested in the forward compostion of functions, _f o g_, for which we introduce a convenient notation, "f >> g". The direction of the arrow serves as a reminder of the _forward_ nature of this composition, that is first apply _f_, then _g_. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** Generic lifting operation for renamings *)
Definition up_ren {m n} (xi : ren m n) : ren (S m) (S n) :=
var_zero .: xi >> shift.
(** Generic proof that lifting of renamings composes. *)
Lemma up_ren_ren k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [x|].
- cbn. unfold funcomp. now rewrite <- E.
- reflexivity.
Qed.
Arguments up_ren_ren {k l m} xi zeta rho E.
Lemma fin_eta {X} (f g : fin 0 -> X) :
pointwise_relation _ eq f g.
Proof. intros []. Qed.
(** Eta laws *)
Lemma scons_eta' {T} {n : nat} (f : fin (S n) -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' {n : nat} :
pointwise_relation (fin (S n)) eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' {T:Type} {U} {m} (s: T) (sigma: fin m -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Lemma scons_tail'_pointwise {X} {n} (s : X) (f : fin n -> X) : *)
(* pointwise_relation _ eq (funcomp (scons s f) shift) f. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Lemma scons_tail' {X} {n} (s : X) (f : fin n -> X) x : *)
(* (scons s f (shift x)) = f x. *)
(* Proof. *)
(* reflexivity. *)
(* Qed. *)
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} {n:nat} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X n).
Proof.
intros t t' -> sigma tau H.
intros [x|].
cbn. apply H.
reflexivity.
Qed.
#[export] Instance scons_morphism2 {X: Type} {n: nat} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X n).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [x|].
cbn. apply H.
reflexivity.
Qed.
(** ** Variadic Substitution Primitives *)
Fixpoint shift_p (p : nat) {n} : ren n (p + n) :=
fun n => match p with
| 0 => n
| S p => Some (shift_p p n)
end.
Fixpoint scons_p {X: Type} {m : nat} : forall {n} (f : fin m -> X) (g : fin n -> X), fin (m + n) -> X.
Proof.
destruct m.
- intros n f g. exact g.
- intros n f g. cbn. apply scons.
+ exact (f var_zero).
+ apply scons_p.
* intros z. exact (f (Some z)).
* exact g.
Defined.
#[export] Hint Opaque scons_p : rewrite.
#[export] Instance scons_p_morphism {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau.
intros x.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
#[export] Instance scons_p_morphism2 {X: Type} {m n:nat} :
Proper (pointwise_relation _ eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons_p X m n).
Proof.
intros sigma sigma' Hsigma tau tau' Htau ? x ->.
induction m.
- cbn. apply Htau.
- cbn. change (fin (S m + n)) with (fin (S (m + n))) in x.
destruct x as [x|].
+ cbn. apply IHm.
intros ?. apply Hsigma.
+ cbn. apply Hsigma.
Qed.
Definition zero_p {m : nat} {n} : fin m -> fin (m + n).
Proof.
induction m.
- intros [].
- intros [x|].
+ exact (shift_p 1 (IHm x)).
+ exact var_zero.
Defined.
Lemma scons_p_head' {X} {m n} (f : fin m -> X) (g : fin n -> X) z:
(scons_p f g) (zero_p z) = f z.
Proof.
induction m.
- inversion z.
- destruct z.
+ simpl. simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_head_pointwise {X} {m n} (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) zero_p) f.
Proof.
intros z.
unfold funcomp.
induction m.
- inversion z.
- destruct z.
+ simpl. now rewrite IHm.
+ reflexivity.
Qed.
Lemma scons_p_tail' X m n (f : fin m -> X) (g : fin n -> X) z :
scons_p f g (shift_p m z) = g z.
Proof. induction m; cbn; eauto. Qed.
Lemma scons_p_tail_pointwise X m n (f : fin m -> X) (g : fin n -> X) :
pointwise_relation _ eq (funcomp (scons_p f g) (shift_p m)) g.
Proof. intros z. induction m; cbn; eauto. Qed.
Lemma destruct_fin {m n} (x : fin (m + n)):
(exists x', x = zero_p x') \/ exists x', x = shift_p m x'.
Proof.
induction m; simpl in *.
- right. eauto.
- destruct x as [x|].
+ destruct (IHm x) as [[x' ->] |[x' ->]].
* left. now exists (Some x').
* right. eauto.
+ left. exists None. eauto.
Qed.
Lemma scons_p_comp' X Y m n (f : fin m -> X) (g : fin n -> X) (h : X -> Y) :
pointwise_relation _ eq (funcomp h (scons_p f g)) (scons_p (f >> h) (g >> h)).
Proof.
intros x.
destruct (destruct_fin x) as [[x' ->]|[x' ->]].
(* TODO better way to solve this? *)
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (zero_p x)) with (zero_p >> scons_p f g >> h).
now setoid_rewrite scons_p_head_pointwise.
- revert x'.
apply pointwise_forall.
change (fun x => (scons_p f g >> h) (shift_p m x)) with (shift_p m >> scons_p f g >> h).
change (fun x => scons_p (f >> h) (g >> h) (shift_p m x)) with (shift_p m >> scons_p (f >> h) (g >> h)).
now rewrite !scons_p_tail_pointwise.
Qed.
Lemma scons_p_congr {X} {m n} (f f' : fin m -> X) (g g': fin n -> X) z:
(forall x, f x = f' x) -> (forall x, g x = g' x) -> scons_p f g z = scons_p f' g' z.
Proof. intros H1 H2. induction m; eauto. cbn. destruct z; eauto. Qed.
(** Generic n-ary lifting operation. *)
Definition upRen_p p { m : nat } { n : nat } (xi : (fin) (m) -> (fin) (n)) : fin (p + m) -> fin (p + n) :=
scons_p (zero_p ) (xi >> shift_p _).
Arguments upRen_p p {m n} xi.
(** Generic proof for composition of n-ary lifting. *)
Lemma up_ren_ren_p p k l m (xi: ren k l) (zeta : ren l m) (rho: ren k m) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (upRen_p p xi >> upRen_p p zeta) x = upRen_p p rho x.
Proof.
intros x. destruct (destruct_fin x) as [[? ->]|[? ->]].
- unfold upRen_p. unfold funcomp. now repeat rewrite scons_p_head'.
- unfold upRen_p. unfold funcomp. repeat rewrite scons_p_tail'.
now rewrite <- E.
Qed.
Arguments zero_p m {n}.
Arguments scons_p {X} m {n} f g.
Lemma scons_p_eta {X} {m n} {f : fin m -> X}
{g : fin n -> X} (h: fin (m + n) -> X) {z: fin (m + n)}:
(forall x, g x = h (shift_p m x)) -> (forall x, f x = h (zero_p m x)) -> scons_p m f g z = h z.
Proof.
intros H1 H2. destruct (destruct_fin z) as [[? ->] |[? ->]].
- rewrite scons_p_head'. eauto.
- rewrite scons_p_tail'. eauto.
Qed.
Arguments scons_p_eta {X} {m n} {f g} h {z}.
Arguments scons_p_congr {X} {m n} {f f'} {g g'} {z}.
(** ** Notations for Scoped Syntax *)
Module ScopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End ScopedNotations.
(** ** Tactics for Scoped Syntax *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : fin 0), _] => intros []; t
| [|- forall (i : fin (S (S (S (S _))))), _] => intros [[[[|]|]|]|]; t
| [|- forall (i : fin (S (S (S _)))), _] => intros [[[|]|]|]; t
| [|- forall (i : fin (S (S _))), _] => intros [[?|]|]; t
| [|- forall (i : fin (S _)), _] => intros [?|]; t
end).
#[export] Hint Rewrite @scons_p_head' @scons_p_tail' : FunctorInstances.
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h)) (* AsimplComp *)
(* | [|- zero_p >> scons_p ?f ?g] => rewrite scons_p_head *)
| [|- context[(?s .: ?sigma) var_zero]] => change ((s.:sigma) var_zero) with s
| [|- context[(?s .: ?sigma) (shift ?m)]] => change ((s.:sigma) (shift m)) with (sigma m)
(* first [progress setoid_rewrite scons_tail' | progress setoid_rewrite scons_tail'_pointwise ] *)
| [|- context[idren >> ?f]] => change (idren >> f) with f
| [|- context[?f >> idren]] => change (f >> idren) with f
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f); eta_reduce
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite scons_eta'; eta_reduce
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[funcomp _ (scons_p _ _ _)]] => setoid_rewrite scons_p_comp'; eta_reduce
| [|- context[scons (@var_zero _) shift]] => setoid_rewrite scons_eta_id'; eta_reduce
(* | _ => progress autorewrite with FunctorInstances *)
| [|- context[funcomp (scons_p _ _ _) (zero_p _)]] =>
first [progress setoid_rewrite scons_p_head_pointwise | progress setoid_rewrite scons_p_head' ]
| [|- context[scons_p _ _ _ (zero_p _ _)]] => setoid_rewrite scons_p_head'
| [|- context[funcomp (scons_p _ _ _) (shift_p _)]] =>
first [progress setoid_rewrite scons_p_tail_pointwise | progress setoid_rewrite scons_p_tail' ]
| [|- context[scons_p _ _ _ (shift_p _ _)]] => setoid_rewrite scons_p_tail'
| _ => first [progress minimize | progress cbn [shift scons scons_p] ]
end.

File diff suppressed because it is too large Load diff

View file

@ -1,213 +0,0 @@
(** * Autosubst Header for Unnamed Syntax
Version: December 11, 2019.
*)
(* Adrian:
I changed this library a bit to work better with my generated code.
1. I use nat directly instead of defining fin to be nat and using Some/None as S/O
2. I removed the "s, sigma" notation for scons because it interacts with dependent function types "forall x, A"*)
Require Import core.
Require Import Setoid Morphisms Relation_Definitions.
Definition ap {X Y} (f : X -> Y) {x y : X} (p : x = y) : f x = f y :=
match p with eq_refl => eq_refl end.
Definition apc {X Y} {f g : X -> Y} {x y : X} (p : f = g) (q : x = y) : f x = g y :=
match q with eq_refl => match p with eq_refl => eq_refl end end.
(** ** Primitives of the Sigma Calculus. *)
Definition shift := S.
Definition var_zero := 0.
Definition id {X} := @Datatypes.id X.
Definition scons {X: Type} (x : X) (xi : nat -> X) :=
fun n => match n with
| 0 => x
| S n => xi n
end.
#[ export ]
Hint Opaque scons : rewrite.
(** ** Type Class Instances for Notation
Required to make notation work. *)
(** *** Type classes for renamings. *)
Class Ren1 (X1 : Type) (Y Z : Type) :=
ren1 : X1 -> Y -> Z.
Class Ren2 (X1 X2 : Type) (Y Z : Type) :=
ren2 : X1 -> X2 -> Y -> Z.
Class Ren3 (X1 X2 X3 : Type) (Y Z : Type) :=
ren3 : X1 -> X2 -> X3 -> Y -> Z.
Class Ren4 (X1 X2 X3 X4 : Type) (Y Z : Type) :=
ren4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Ren5 (X1 X2 X3 X4 X5 : Type) (Y Z : Type) :=
ren5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module RenNotations.
Notation "s ⟨ xi1 ⟩" := (ren1 xi1 s) (at level 7, left associativity, format "s ⟨ xi1 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ⟩" := (ren3 xi1 xi2 xi3 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩" := (ren4 xi1 xi2 xi3 xi4 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ⟩") : subst_scope.
Notation "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩" := (ren5 xi1 xi2 xi3 xi4 xi5 s) (at level 7, left associativity, format "s ⟨ xi1 ; xi2 ; xi3 ; xi4 ; xi5 ⟩") : subst_scope.
Notation "⟨ xi ⟩" := (ren1 xi) (at level 1, left associativity, format "⟨ xi ⟩") : fscope.
Notation "⟨ xi1 ; xi2 ⟩" := (ren2 xi1 xi2) (at level 1, left associativity, format "⟨ xi1 ; xi2 ⟩") : fscope.
End RenNotations.
(** *** Type Classes for Substiution *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 -> Y -> Z.
Class Subst2 (X1 X2 : Type) (Y Z: Type) :=
subst2 : X1 -> X2 -> Y -> Z.
Class Subst3 (X1 X2 X3 : Type) (Y Z: Type) :=
subst3 : X1 -> X2 -> X3 -> Y -> Z.
Class Subst4 (X1 X2 X3 X4: Type) (Y Z: Type) :=
subst4 : X1 -> X2 -> X3 -> X4 -> Y -> Z.
Class Subst5 (X1 X2 X3 X4 X5 : Type) (Y Z: Type) :=
subst5 : X1 -> X2 -> X3 -> X4 -> X5 -> Y -> Z.
Module SubstNotations.
Notation "s [ sigma ]" := (subst1 sigma s) (at level 7, left associativity, format "s '/' [ sigma ]") : subst_scope.
Notation "s [ sigma ; tau ]" := (subst2 sigma tau s) (at level 7, left associativity, format "s '/' [ sigma ; '/' tau ]") : subst_scope.
End SubstNotations.
(** *** Type Class for Variables *)
Class Var X Y :=
ids : X -> Y.
#[export] Instance idsRen : Var nat nat := id.
(** ** Proofs for the substitution primitives. *)
Arguments funcomp {X Y Z} (g)%fscope (f)%fscope.
Module CombineNotations.
Notation "f >> g" := (funcomp g f) (at level 50) : fscope.
Notation "s .: sigma" := (scons s sigma) (at level 55, sigma at next level, right associativity) : subst_scope.
#[ global ]
Open Scope fscope.
#[ global ]
Open Scope subst_scope.
End CombineNotations.
Import CombineNotations.
(** A generic lifting of a renaming. *)
Definition up_ren (xi : nat -> nat) :=
0 .: (xi >> S).
(** A generic proof that lifting of renamings composes. *)
Lemma up_ren_ren (xi: nat -> nat) (zeta : nat -> nat) (rho: nat -> nat) (E: forall x, (xi >> zeta) x = rho x) :
forall x, (up_ren xi >> up_ren zeta) x = up_ren rho x.
Proof.
intros [|x].
- reflexivity.
- unfold up_ren. cbn. unfold funcomp. f_equal. apply E.
Qed.
(** Eta laws. *)
Lemma scons_eta' {T} (f : nat -> T) :
pointwise_relation _ eq (f var_zero .: (funcomp f shift)) f.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_eta_id' :
pointwise_relation _ eq (var_zero .: shift) id.
Proof. intros x. destruct x; reflexivity. Qed.
Lemma scons_comp' (T: Type) {U} (s: T) (sigma: nat -> T) (tau: T -> U) :
pointwise_relation _ eq (funcomp tau (s .: sigma)) ((tau s) .: (funcomp tau sigma)).
Proof. intros x. destruct x; reflexivity. Qed.
(* Morphism for Setoid Rewriting. The only morphism that can be defined statically. *)
#[export] Instance scons_morphism {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> pointwise_relation _ eq) (@scons X).
Proof.
intros ? t -> sigma tau H.
intros [|x].
cbn. reflexivity.
apply H.
Qed.
#[export] Instance scons_morphism2 {X: Type} :
Proper (eq ==> pointwise_relation _ eq ==> eq ==> eq) (@scons X).
Proof.
intros ? t -> sigma tau H ? x ->.
destruct x as [|x].
cbn. reflexivity.
apply H.
Qed.
(** ** Generic lifting of an allfv predicate *)
Definition up_allfv (p: nat -> Prop) : nat -> Prop := scons True p.
(** ** Notations for unscoped syntax *)
Module UnscopedNotations.
Include RenNotations.
Include SubstNotations.
Include CombineNotations.
(* Notation "s , sigma" := (scons s sigma) (at level 60, format "s , sigma", right associativity) : subst_scope. *)
Notation "s '..'" := (scons s ids) (at level 1, format "s ..") : subst_scope.
Notation "" := (shift) : subst_scope.
#[global]
Open Scope fscope.
#[global]
Open Scope subst_scope.
End UnscopedNotations.
(** ** Tactics for unscoped syntax *)
(** Automatically does a case analysis on a natural number, useful for proofs with context renamings/context morphisms. *)
Tactic Notation "auto_case" tactic(t) := (match goal with
| [|- forall (i : nat), _] => intros []; t
end).
(** Generic fsimpl tactic: simplifies the above primitives in a goal. *)
Ltac fsimpl :=
repeat match goal with
| [|- context[id >> ?f]] => change (id >> f) with f (* AsimplCompIdL *)
| [|- context[?f >> id]] => change (f >> id) with f (* AsimplCompIdR *)
| [|- context [id ?s]] => change (id s) with s
| [|- context[(?f >> ?g) >> ?h]] => change ((f >> g) >> h) with (f >> (g >> h))
| [|- context[(?v .: ?g) var_zero]] => change ((v .: g) var_zero) with v
| [|- context[(?v .: ?g) 0]] => change ((v .: g) 0) with v
| [|- context[(?v .: ?g) (S ?n)]] => change ((v .: g) (S n)) with (g n)
| [|- context[?f >> (?x .: ?g)]] => change (f >> (x .: g)) with g (* f should evaluate to shift *)
| [|- context[var_zero]] => change var_zero with 0
| [|- context[?x2 .: (funcomp ?f shift)]] => change (scons x2 (funcomp f shift)) with (scons (f var_zero) (funcomp f shift)); setoid_rewrite (@scons_eta' _ _ f)
| [|- context[?f var_zero .: ?g]] => change (scons (f var_zero) g) with (scons (f var_zero) (funcomp f shift)); rewrite scons_eta'
| [|- _ = ?h (?f ?s)] => change (h (f s)) with ((f >> h) s)
| [|- ?h (?f ?s) = _] => change (h (f s)) with ((f >> h) s)
(* DONE had to put an underscore as the last argument to scons. This might be an argument against unfolding funcomp *)
| [|- context[funcomp _ (scons _ _)]] => setoid_rewrite scons_comp'; eta_reduce
| [|- context[scons var_zero shift]] => setoid_rewrite scons_eta_id'; eta_reduce
end.

View file

@ -1,264 +0,0 @@
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality.
Derive Inversion wff_inv with (forall Γ, Γ) Sort Prop.
Lemma T_Abs Γ (a : PTm ) A B :
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B.
Proof.
move => ha.
have [i hB] : exists i, (cons A Γ) B PUniv i by sfirstorder use:regularity.
have : (cons A Γ) by sfirstorder use:wff_mutual.
hauto lq:on rew:off inv:Wff use:T_Bind', typing.T_Abs.
Qed.
Lemma App_Inv Γ (b a : PTm) U :
Γ PApp b a U ->
exists A B, Γ b PBind PPi A B /\ Γ a A /\ Γ subst_PTm (scons a VarPTm) B U.
Proof.
move E : (PApp b a) => u hu.
move : b a E. elim : Γ u U / hu => //=.
- move => Γ b a A B hb _ ha _ b0 a0 [*]. subst.
exists A,B.
repeat split => //=.
have [i] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
hauto lq:on use:bind_inst, E_Refl.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Abs_Inv Γ (a : PTm) U :
Γ PAbs a U ->
exists A B, (cons A Γ) a B /\ Γ PBind PPi A B U.
Proof.
move E : (PAbs a) => u hu.
move : a E. elim : Γ u U / hu => //=.
- move => Γ a A B i hP _ ha _ a0 [*]. subst.
exists A, B. repeat split => //=.
hauto lq:on use:E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_AppAbs : forall (a : PTm) (b : PTm) Γ (A : PTm),
Γ PApp (PAbs a) b A -> Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a A.
Proof.
move => a b Γ A ha.
move /App_Inv : ha.
move => [A0][B0][ha][hb]hS.
move /Abs_Inv : ha => [A1][B1][ha]hS0.
have hb' := hb.
move /E_Refl in hb.
have hS1 : Γ A0 A1 by sfirstorder use:Su_Pi_Proj1.
have [i hPi] : exists i, Γ PBind PPi A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move : Su_Pi_Proj2 hS0 hb; repeat move/[apply].
move : hS => /[swap]. move : Su_Transitive. repeat move/[apply].
move => h.
apply : E_Conv; eauto.
apply : E_AppAbs; eauto.
eauto using T_Conv.
Qed.
Lemma T_Eta Γ A a B :
A :: Γ a B ->
A :: Γ PApp (PAbs (ren_PTm (upRen_PTm_PTm shift) a)) (VarPTm var_zero) B.
Proof.
move => ha.
have hΓ' : A :: Γ by sfirstorder use:wff_mutual.
have [i hA] : exists i, Γ A PUniv i by hauto lq:on inv:Wff.
have : Γ by hauto lq:on inv:Wff.
eapply T_App' with (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
apply T_Abs. eapply renaming; eauto; cycle 1. apply renaming_up. apply renaming_shift.
econstructor; eauto. sauto l:on use:renaming.
apply T_Var => //.
by constructor.
Qed.
Lemma E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i.
Proof.
move => h0 h1.
have : Γ A0 PUniv i by hauto l:on use:regularity.
have : Γ by sfirstorder use:wff_mutual.
move : E_Bind h0 h1; repeat move/[apply].
firstorder.
Qed.
Lemma E_App Γ (b0 b1 a0 a1 : PTm ) A B :
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PPi A B PUniv i by hauto l:on use:regularity.
move : E_App h. by repeat move/[apply].
Qed.
Lemma E_Proj2 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B.
Proof.
move => h.
have [i] : exists i, Γ PBind PSig A B PUniv i by hauto l:on use:regularity.
move : E_Proj2 h; by repeat move/[apply].
Qed.
Lemma E_FunExt Γ (a b : PTm) A B :
Γ a PBind PPi A B ->
Γ b PBind PPi A B ->
A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B.
Proof.
hauto l:on use:regularity, E_FunExt.
Qed.
Lemma E_PairExt Γ (a b : PTm) A B :
Γ a PBind PSig A B ->
Γ b PBind PSig A B ->
Γ PProj PL a PProj PL b A ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a b PBind PSig A B. hauto l:on use:regularity, E_PairExt. Qed.
Lemma renaming_comp Γ Δ Ξ ξ0 ξ1 :
renaming_ok Γ Δ ξ0 -> renaming_ok Δ Ξ ξ1 ->
renaming_ok Γ Ξ (funcomp ξ0 ξ1).
rewrite /renaming_ok => h0 h1 i A.
move => {}/h1 {}/h0.
by asimpl.
Qed.
Lemma E_AppEta Γ (b : PTm) A B :
Γ b PBind PPi A B ->
Γ PAbs (PApp (ren_PTm shift b) (VarPTm var_zero)) b PBind PPi A B.
Proof.
move => h.
have [i hPi] : exists i, Γ PBind PPi A B PUniv i by sfirstorder use:regularity.
have [j [hA hB]] : exists i, Γ A PUniv i /\ A :: Γ B PUniv i by hauto lq:on use:Bind_Inv.
have {i} {}hPi : Γ PBind PPi A B PUniv j by sfirstorder use:T_Bind, wff_mutual.
have : A :: Γ by hauto lq:on use:Bind_Inv, Wff_Cons'.
have hΓ' : ren_PTm shift A :: A :: Γ by sauto lq:on use:renaming, renaming_shift inv:Wff.
apply E_FunExt; eauto.
apply T_Abs.
eapply T_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
change (PBind _ _ _) with (ren_PTm shift (PBind PPi A B)).
eapply renaming; eauto.
apply renaming_shift.
constructor => //.
by constructor.
apply : E_Transitive. simpl.
apply E_AppAbs' with (i := j)(A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B); eauto.
by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
constructor => //.
by constructor.
asimpl.
eapply T_App' with (A := ren_PTm shift (ren_PTm shift A)) (B := ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B)); cycle 2.
constructor. econstructor; eauto. sauto lq:on use:renaming, renaming_shift.
by constructor. asimpl. substify. by asimpl.
have -> : PBind PPi (ren_PTm shift (ren_PTm shift A)) (ren_PTm (upRen_PTm_PTm shift) (ren_PTm (upRen_PTm_PTm shift) B))= (ren_PTm (funcomp shift shift) (PBind PPi A B)) by asimpl.
eapply renaming; eauto. by eauto using renaming_shift, renaming_comp.
asimpl. renamify.
eapply E_App' with (A := ren_PTm shift A) (B := ren_PTm (upRen_PTm_PTm shift) B). by asimpl; rewrite subst_scons_id.
hauto q:on use:renaming, renaming_shift.
sauto lq:on use:renaming, renaming_shift, E_Refl.
constructor. constructor=>//. constructor.
Qed.
Lemma Proj1_Inv Γ (a : PTm ) U :
Γ PProj PL a U ->
exists A B, Γ a PBind PSig A B /\ Γ A U.
Proof.
move E : (PProj PL a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
eapply regularity in ha.
move : ha => [i].
move /Bind_Inv => [j][h _].
by move /E_Refl /Su_Eq in h.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Proj2_Inv Γ (a : PTm) U :
Γ PProj PR a U ->
exists A B, Γ a PBind PSig A B /\ Γ subst_PTm (scons (PProj PL a) VarPTm) B U.
Proof.
move E : (PProj PR a) => u hu.
move :a E. elim : Γ u U / hu => //=.
- move => Γ a A B ha _ a0 [*]. subst.
exists A, B. split => //=.
have ha' := ha.
eapply regularity in ha.
move : ha => [i ha].
move /T_Proj1 in ha'.
apply : bind_inst; eauto.
apply : E_Refl ha'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma Pair_Inv Γ (a b : PTm ) U :
Γ PPair a b U ->
exists A B, Γ a A /\
Γ b subst_PTm (scons a VarPTm) B /\
Γ PBind PSig A B U.
Proof.
move E : (PPair a b) => u hu.
move : a b E. elim : Γ u U / hu => //=.
- move => Γ a b A B i hS _ ha _ hb _ a0 b0 [*]. subst.
exists A,B. repeat split => //=.
move /E_Refl /Su_Eq : hS. apply.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_ProjPair1 : forall (a b : PTm) Γ (A : PTm),
Γ PProj PL (PPair a b) A -> Γ PProj PL (PPair a b) a A.
Proof.
move => a b Γ A.
move /Proj1_Inv. move => [A0][B0][hab]hA0.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0.
move /Su_Sig_Proj1 in hS.
have {hA0} {}hS : Γ A1 A by eauto using Su_Transitive.
apply : E_Conv; eauto.
apply : E_ProjPair1; eauto.
Qed.
Lemma E_ProjPair2 : forall (a b : PTm) Γ (A : PTm),
Γ PProj PR (PPair a b) A -> Γ PProj PR (PPair a b) b A.
Proof.
move => a b Γ A. move /Proj2_Inv.
move => [A0][B0][ha]h.
have hr := ha.
move /Pair_Inv : ha => [A1][B1][ha][hb]hU.
have [i hSig] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity.
have /E_Symmetric : Γ (PProj PL (PPair a b)) a A1 by eauto using E_ProjPair1 with wt.
move /Su_Sig_Proj2 : hU. repeat move/[apply]. move => hB.
apply : E_Conv; eauto.
apply : E_Conv; eauto.
apply : E_ProjPair2; eauto.
Qed.
Lemma E_PairEta Γ a A B :
Γ a PBind PSig A B ->
Γ PPair (PProj PL a) (PProj PR a) a PBind PSig A B.
Proof.
move => h.
have [i hSig] : exists i, Γ PBind PSig A B PUniv i by hauto use:regularity.
apply E_PairExt => //.
eapply T_Pair; eauto with wt.
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
by eauto with wt.
apply E_ProjPair2.
apply : T_Proj2; eauto with wt.
Qed.

File diff suppressed because it is too large Load diff

View file

@ -1,601 +0,0 @@
Require Import Autosubst2.unscoped Autosubst2.syntax Autosubst2.core ssreflect ssrbool.
From Equations Require Import Equations.
Derive NoConfusion for nat PTag BTag PTm.
Derive EqDec for BTag PTag PTm.
From Ltac2 Require Ltac2.
Import Ltac2.Notations.
Import Ltac2.Control.
From Hammer Require Import Tactics.
From stdpp Require Import relations (rtc(..)).
Inductive lookup : nat -> list PTm -> PTm -> Prop :=
| here A Γ : lookup 0 (cons A Γ) (ren_PTm shift A)
| there i Γ A B :
lookup i Γ A ->
lookup (S i) (cons B Γ) (ren_PTm shift A).
Lemma lookup_deter i Γ A B :
lookup i Γ A ->
lookup i Γ B ->
A = B.
Proof. move => h. move : B. induction h; hauto lq:on inv:lookup. Qed.
Lemma here' A Γ U : U = ren_PTm shift A -> lookup 0 (A :: Γ) U.
Proof. move => ->. apply here. Qed.
Lemma there' i Γ A B U : U = ren_PTm shift A -> lookup i Γ A ->
lookup (S i) (cons B Γ) U.
Proof. move => ->. apply there. Qed.
Derive Inversion lookup_inv with (forall i Γ A, lookup i Γ A).
Definition renaming_ok (Γ : list PTm) (Δ : list PTm) (ξ : nat -> nat) :=
forall i A, lookup i Δ A -> lookup (ξ i) Γ (ren_PTm ξ A).
Definition ren_inj (ξ : nat -> nat) := forall i j, ξ i = ξ j -> i = j.
Lemma up_injective (ξ : nat -> nat) :
ren_inj ξ ->
ren_inj (upRen_PTm_PTm ξ).
Proof.
move => h i j.
case : i => //=; case : j => //=.
move => i j. rewrite /funcomp. hauto lq:on rew:off unfold:ren_inj.
Qed.
Local Ltac2 rec solve_anti_ren () :=
let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in
intro $x;
lazy_match! Constr.type (Control.hyp x) with
| nat -> nat => (ltac1:(case => *//=; qauto l:on use:up_injective unfold:ren_inj))
| _ => solve_anti_ren ()
end.
Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren).
Lemma ren_injective (a b : PTm) (ξ : nat -> nat) :
ren_inj ξ ->
ren_PTm ξ a = ren_PTm ξ b ->
a = b.
Proof.
move : ξ b. elim : a => //; try solve_anti_ren.
move => p ihp ξ []//=. hauto lq:on inv:PTm, nat ctrs:- use:up_injective.
Qed.
Inductive HF : Set :=
| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot.
Definition ishf (a : PTm) :=
match a with
| PPair _ _ => true
| PAbs _ => true
| PUniv _ => true
| PBind _ _ _ => true
| PNat => true
| PSuc _ => true
| PZero => true
| _ => false
end.
Definition toHF (a : PTm) :=
match a with
| PPair _ _ => H_Pair
| PAbs _ => H_Abs
| PUniv _ => H_Univ
| PBind p _ _ => H_Bind p
| PNat => H_Nat
| PSuc _ => H_Suc
| PZero => H_Zero
| _ => H_Bot
end.
Fixpoint ishne (a : PTm) :=
match a with
| VarPTm _ => true
| PApp a _ => ishne a
| PProj _ a => ishne a
| PInd _ n _ _ => ishne n
| _ => false
end.
Definition isbind (a : PTm) := if a is PBind _ _ _ then true else false.
Definition isuniv (a : PTm) := if a is PUniv _ then true else false.
Definition ispair (a : PTm) :=
match a with
| PPair _ _ => true
| _ => false
end.
Definition isnat (a : PTm) := if a is PNat then true else false.
Definition iszero (a : PTm) := if a is PZero then true else false.
Definition issuc (a : PTm) := if a is PSuc _ then true else false.
Definition isabs (a : PTm) :=
match a with
| PAbs _ => true
| _ => false
end.
Definition tm_nonconf (a b : PTm) : bool :=
match a, b with
| PAbs _, _ => (~~ ishf b) || isabs b
| _, PAbs _ => ~~ ishf a
| VarPTm _, VarPTm _ => true
| PPair _ _, _ => (~~ ishf b) || ispair b
| _, PPair _ _ => ~~ ishf a
| PZero, PZero => true
| PSuc _, PSuc _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| PNat, PNat => true
| PUniv _, PUniv _ => true
| PBind _ _ _, PBind _ _ _ => true
| _,_=> false
end.
Definition tm_conf (a b : PTm) := ~~ tm_nonconf a b.
Definition ishf_ren (a : PTm) (ξ : nat -> nat) :
ishf (ren_PTm ξ a) = ishf a.
Proof. case : a => //=. Qed.
Definition isabs_ren (a : PTm) (ξ : nat -> nat) :
isabs (ren_PTm ξ a) = isabs a.
Proof. case : a => //=. Qed.
Definition ispair_ren (a : PTm) (ξ : nat -> nat) :
ispair (ren_PTm ξ a) = ispair a.
Proof. case : a => //=. Qed.
Definition ishne_ren (a : PTm) (ξ : nat -> nat) :
ishne (ren_PTm ξ a) = ishne a.
Proof. move : ξ. elim : a => //=. Qed.
Lemma renaming_shift Γ A :
renaming_ok (cons A Γ) Γ shift.
Proof. rewrite /renaming_ok. hauto lq:on ctrs:lookup. Qed.
Lemma subst_scons_id (a : PTm) :
subst_PTm (scons (VarPTm 0) (funcomp VarPTm shift)) a = a.
Proof.
have E : subst_PTm VarPTm a = a by asimpl.
rewrite -{2}E.
apply ext_PTm. case => //=.
Qed.
Module HRed.
Inductive R : PTm -> PTm -> Prop :=
(****************** Beta ***********************)
| AppAbs a b :
R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a)
| ProjPair p a b :
R (PProj p (PPair a b)) (if p is PL then a else b)
| IndZero P b c :
R (PInd P PZero b c) b
| IndSuc P a b c :
R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
(*************** Congruence ********************)
| AppCong a0 a1 b :
R a0 a1 ->
R (PApp a0 b) (PApp a1 b)
| ProjCong p a0 a1 :
R a0 a1 ->
R (PProj p a0) (PProj p a1)
| IndCong P a0 a1 b c :
R a0 a1 ->
R (PInd P a0 b c) (PInd P a1 b c).
Definition nf a := forall b, ~ R a b.
End HRed.
Inductive algo_dom : PTm -> PTm -> Prop :=
| A_AbsAbs a b :
algo_dom_r a b ->
(* --------------------- *)
algo_dom (PAbs a) (PAbs b)
| A_AbsNeu a u :
ishne u ->
algo_dom_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) ->
(* --------------------- *)
algo_dom (PAbs a) u
| A_NeuAbs a u :
ishne u ->
algo_dom_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a ->
(* --------------------- *)
algo_dom u (PAbs a)
| A_PairPair a0 a1 b0 b1 :
algo_dom_r a0 a1 ->
algo_dom_r b0 b1 ->
(* ---------------------------- *)
algo_dom (PPair a0 b0) (PPair a1 b1)
| A_PairNeu a0 a1 u :
ishne u ->
algo_dom_r a0 (PProj PL u) ->
algo_dom_r a1 (PProj PR u) ->
(* ----------------------- *)
algo_dom (PPair a0 a1) u
| A_NeuPair a0 a1 u :
ishne u ->
algo_dom_r (PProj PL u) a0 ->
algo_dom_r (PProj PR u) a1 ->
(* ----------------------- *)
algo_dom u (PPair a0 a1)
| A_ZeroZero :
algo_dom PZero PZero
| A_SucSuc a0 a1 :
algo_dom_r a0 a1 ->
algo_dom (PSuc a0) (PSuc a1)
| A_UnivCong i j :
(* -------------------------- *)
algo_dom (PUniv i) (PUniv j)
| A_BindCong p0 p1 A0 A1 B0 B1 :
algo_dom_r A0 A1 ->
algo_dom_r B0 B1 ->
(* ---------------------------- *)
algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1)
| A_NatCong :
algo_dom PNat PNat
| A_VarCong i j :
(* -------------------------- *)
algo_dom (VarPTm i) (VarPTm j)
| A_AppCong u0 u1 a0 a1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
algo_dom_r a0 a1 ->
(* ------------------------- *)
algo_dom (PApp u0 a0) (PApp u1 a1)
| A_ProjCong p0 p1 u0 u1 :
ishne u0 ->
ishne u1 ->
algo_dom u0 u1 ->
(* --------------------- *)
algo_dom (PProj p0 u0) (PProj p1 u1)
| A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 :
ishne u0 ->
ishne u1 ->
algo_dom_r P0 P1 ->
algo_dom u0 u1 ->
algo_dom_r b0 b1 ->
algo_dom_r c0 c1 ->
algo_dom (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
| A_Conf a b :
ishf a \/ ishne a ->
ishf b \/ ishne b ->
tm_conf a b ->
algo_dom a b
with algo_dom_r : PTm -> PTm -> Prop :=
| A_NfNf a b :
algo_dom a b ->
algo_dom_r a b
| A_HRedL a a' b :
HRed.R a a' ->
algo_dom_r a' b ->
(* ----------------------- *)
algo_dom_r a b
| A_HRedR a b b' :
HRed.nf a ->
HRed.R b b' ->
algo_dom_r a b' ->
(* ----------------------- *)
algo_dom_r a b.
Scheme algo_ind := Induction for algo_dom Sort Prop
with algor_ind := Induction for algo_dom_r Sort Prop.
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
#[export]Hint Constructors algo_dom algo_dom_r : adom.
Definition stm_nonconf a b :=
match a, b with
| PUniv _, PUniv _ => true
| PBind PPi _ _, PBind PPi _ _ => true
| PBind PSig _ _, PBind PSig _ _ => true
| PNat, PNat => true
| VarPTm _, VarPTm _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| _, _ => false
end.
Definition neuneu_nonconf a b :=
match a, b with
| VarPTm _, VarPTm _ => true
| PApp _ _, PApp _ _ => true
| PProj _ _, PProj _ _ => true
| PInd _ _ _ _, PInd _ _ _ _ => true
| _, _ => false
end.
Lemma stm_tm_nonconf a b :
stm_nonconf a b -> tm_nonconf a b.
Proof. apply /implyP.
destruct a ,b =>//=; hauto lq:on inv:PTag, BTag.
Qed.
Definition stm_conf a b := ~~ stm_nonconf a b.
Lemma tm_stm_conf a b :
tm_conf a b -> stm_conf a b.
Proof.
rewrite /tm_conf /stm_conf.
apply /contra /stm_tm_nonconf.
Qed.
Inductive salgo_dom : PTm -> PTm -> Prop :=
| S_UnivCong i j :
(* -------------------------- *)
salgo_dom (PUniv i) (PUniv j)
| S_PiCong A0 A1 B0 B1 :
salgo_dom_r A1 A0 ->
salgo_dom_r B0 B1 ->
(* ---------------------------- *)
salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1)
| S_SigCong A0 A1 B0 B1 :
salgo_dom_r A0 A1 ->
salgo_dom_r B0 B1 ->
(* ---------------------------- *)
salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1)
| S_NatCong :
salgo_dom PNat PNat
| S_NeuNeu a b :
neuneu_nonconf a b ->
algo_dom a b ->
salgo_dom a b
| S_Conf a b :
ishf a \/ ishne a ->
ishf b \/ ishne b ->
stm_conf a b ->
salgo_dom a b
with salgo_dom_r : PTm -> PTm -> Prop :=
| S_NfNf a b :
salgo_dom a b ->
salgo_dom_r a b
| S_HRedL a a' b :
HRed.R a a' ->
salgo_dom_r a' b ->
(* ----------------------- *)
salgo_dom_r a b
| S_HRedR a b b' :
HRed.nf a ->
HRed.R b b' ->
salgo_dom_r a b' ->
(* ----------------------- *)
salgo_dom_r a b.
#[export]Hint Constructors salgo_dom salgo_dom_r : sdom.
Scheme salgo_ind := Induction for salgo_dom Sort Prop
with salgor_ind := Induction for salgo_dom_r Sort Prop.
Combined Scheme salgo_dom_mutual from salgo_ind, salgor_ind.
Lemma hf_no_hred (a b : PTm) :
ishf a ->
HRed.R a b ->
False.
Proof. hauto l:on inv:HRed.R. Qed.
Lemma hne_no_hred (a b : PTm) :
ishne a ->
HRed.R a b ->
False.
Proof. elim : a b => //=; hauto l:on inv:HRed.R. Qed.
Ltac2 destruct_salgo () :=
lazy_match! goal with
| [_ : is_true (ishne ?a) |- is_true (stm_conf ?a _) ] =>
if Constr.is_var a then destruct $a; ltac1:(done) else ()
| [|- is_true (stm_conf _ _)] =>
unfold stm_conf; ltac1:(done)
end.
Ltac destruct_salgo := ltac2:(destruct_salgo ()).
Lemma algo_dom_r_inv a b :
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
Proof.
induction 1; hauto lq:on ctrs:rtc.
Qed.
Lemma A_HRedsL a a' b :
rtc HRed.R a a' ->
algo_dom_r a' b ->
algo_dom_r a b.
induction 1; sfirstorder use:A_HRedL.
Qed.
Lemma A_HRedsR a b b' :
HRed.nf a ->
rtc HRed.R b b' ->
algo_dom a b' ->
algo_dom_r a b.
Proof. induction 2; sauto. Qed.
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
Proof. case : a; case : b => //=. Qed.
Lemma algo_dom_no_hred (a b : PTm) :
algo_dom a b ->
HRed.nf a /\ HRed.nf b.
Proof.
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred lq:on unfold:HRed.nf.
Qed.
Lemma A_HRedR' a b b' :
HRed.R b b' ->
algo_dom_r a b' ->
algo_dom_r a b.
Proof.
move => hb /algo_dom_r_inv.
move => [a0 [b0 [h0 [h1 h2]]]].
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
have ? : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
hauto lq:on use:A_HRedsL, A_HRedsR.
Qed.
Lemma algo_dom_sym :
(forall a b (h : algo_dom a b), algo_dom b a) /\
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
Proof.
apply algo_dom_mutual; try qauto use:tm_conf_sym,A_HRedR' db:adom.
Qed.
Lemma salgo_dom_r_inv a b :
salgo_dom_r a b -> exists a0 b0, salgo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
Proof.
induction 1; hauto lq:on ctrs:rtc.
Qed.
Lemma S_HRedsL a a' b :
rtc HRed.R a a' ->
salgo_dom_r a' b ->
salgo_dom_r a b.
induction 1; sfirstorder use:S_HRedL.
Qed.
Lemma S_HRedsR a b b' :
HRed.nf a ->
rtc HRed.R b b' ->
salgo_dom a b' ->
salgo_dom_r a b.
Proof. induction 2; sauto. Qed.
Lemma stm_conf_sym a b : stm_conf a b = stm_conf b a.
Proof. case : a; case : b => //=; hauto lq:on inv:PTag, BTag. Qed.
Lemma salgo_dom_no_hred (a b : PTm) :
salgo_dom a b ->
HRed.nf a /\ HRed.nf b.
Proof.
induction 1 =>//=; try hauto inv:HRed.R use:hne_no_hred, hf_no_hred, algo_dom_no_hred lq:on unfold:HRed.nf.
Qed.
Lemma S_HRedR' a b b' :
HRed.R b b' ->
salgo_dom_r a b' ->
salgo_dom_r a b.
Proof.
move => hb /salgo_dom_r_inv.
move => [a0 [b0 [h0 [h1 h2]]]].
have {h2} {}hb : rtc HRed.R b b0 by hauto lq:on ctrs:rtc.
have ? : HRed.nf a0 by sfirstorder use:salgo_dom_no_hred.
hauto lq:on use:S_HRedsL, S_HRedsR.
Qed.
Ltac solve_conf := intros; split;
apply S_Conf; solve [destruct_salgo | sfirstorder ctrs:salgo_dom use:hne_no_hred, hf_no_hred].
Ltac solve_basic := hauto q:on ctrs:salgo_dom, salgo_dom_r, algo_dom use:algo_dom_sym.
Lemma algo_dom_salgo_dom :
(forall a b, algo_dom a b -> salgo_dom a b /\ salgo_dom b a) /\
(forall a b, algo_dom_r a b -> salgo_dom_r a b /\ salgo_dom_r b a).
Proof.
apply algo_dom_mutual => //=; try first [solve_conf | solve_basic].
- case; case; hauto lq:on ctrs:salgo_dom use:algo_dom_sym inv:HRed.R unfold:HRed.nf.
- move => a b ha hb hc. split;
apply S_Conf; hauto l:on use:tm_conf_sym, tm_stm_conf.
- hauto lq:on ctrs:salgo_dom_r use:S_HRedR'.
Qed.
Fixpoint hred (a : PTm) : option (PTm) :=
match a with
| VarPTm i => None
| PAbs a => None
| PApp (PAbs a) b => Some (subst_PTm (scons b VarPTm) a)
| PApp a b =>
match hred a with
| Some a => Some (PApp a b)
| None => None
end
| PPair a b => None
| PProj p (PPair a b) => if p is PL then Some a else Some b
| PProj p a =>
match hred a with
| Some a => Some (PProj p a)
| None => None
end
| PUniv i => None
| PBind p A B => None
| PNat => None
| PZero => None
| PSuc a => None
| PInd P PZero b c => Some b
| PInd P (PSuc a) b c =>
Some (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c)
| PInd P a b c =>
match hred a with
| Some a => Some (PInd P a b c)
| None => None
end
end.
Lemma hred_complete (a b : PTm) :
HRed.R a b -> hred a = Some b.
Proof.
induction 1; hauto lq:on rew:off inv:HRed.R b:on.
Qed.
Lemma hred_sound (a b : PTm):
hred a = Some b -> HRed.R a b.
Proof.
elim : a b; hauto q:on dep:on ctrs:HRed.R.
Qed.
Lemma hred_deter (a b0 b1 : PTm) :
HRed.R a b0 -> HRed.R a b1 -> b0 = b1.
Proof.
move /hred_complete => + /hred_complete. congruence.
Qed.
Definition fancy_hred (a : PTm) : HRed.nf a + {b | HRed.R a b}.
destruct (hred a) eqn:eq.
right. exists p. by apply hred_sound in eq.
left. move => b /hred_complete. congruence.
Defined.
Lemma hreds_nf_refl a b :
HRed.nf a ->
rtc HRed.R a b ->
a = b.
Proof. inversion 2; sfirstorder. Qed.
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.

View file

@ -1,350 +0,0 @@
From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Require Import Logic.PropExtensionality (propositional_extensionality).
Require Import ssreflect ssrbool.
Import Logic (inspect).
From Ltac2 Require Import Ltac2.
Import Ltac2.Constr.
Set Default Proof Mode "Classic".
Require Import ssreflect ssrbool.
From Hammer Require Import Tactics.
Ltac2 destruct_algo () :=
lazy_match! goal with
| [h : algo_dom ?a ?b |- _ ] =>
if is_var a then destruct $a; ltac1:(done) else
(if is_var b then destruct $b; ltac1:(done) else ())
end.
Ltac check_equal_triv :=
intros;subst;
lazymatch goal with
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
| [h : algo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
| _ => idtac
end.
Ltac solve_check_equal :=
try solve [intros *;
match goal with
| [|- _ = _] => sauto
| _ => idtac
end].
Global Set Transparent Obligations.
Local Obligation Tactic := try solve [check_equal_triv | sfirstorder].
Program Fixpoint check_equal (a b : PTm) (h : algo_dom a b) {struct h} : bool :=
match a, b with
| VarPTm i, VarPTm j => nat_eqdec i j
| PAbs a, PAbs b => check_equal_r a b _
| PAbs a, VarPTm _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PApp _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PInd _ _ _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| PAbs a, PProj _ _ => check_equal_r a (PApp (ren_PTm shift b) (VarPTm var_zero)) _
| VarPTm _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PApp _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PProj _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PInd _ _ _ _, PAbs b => check_equal_r (PApp (ren_PTm shift a) (VarPTm var_zero)) b _
| PPair a0 b0, PPair a1 b1 =>
check_equal_r a0 a1 _ && check_equal_r b0 b1 _
| PPair a0 b0, VarPTm _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PProj _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PApp _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| PPair a0 b0, PInd _ _ _ _ => check_equal_r a0 (PProj PL b) _ && check_equal_r b0 (PProj PR b) _
| VarPTm _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PApp _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PProj _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PInd _ _ _ _, PPair a1 b1 => check_equal_r (PProj PL a) a1 _ && check_equal_r (PProj PR a) b1 _
| PNat, PNat => true
| PZero, PZero => true
| PSuc a, PSuc b => check_equal_r a b _
| PProj p0 a, PProj p1 b => PTag_eqdec p0 p1 && check_equal a b _
| PApp a0 b0, PApp a1 b1 => check_equal a0 a1 _ && check_equal_r b0 b1 _
| PInd P0 u0 b0 c0, PInd P1 u1 b1 c1 =>
check_equal_r P0 P1 _ && check_equal u0 u1 _ && check_equal_r b0 b1 _ && check_equal_r c0 c1 _
| PUniv i, PUniv j => nat_eqdec i j
| PBind p0 A0 B0, PBind p1 A1 B1 => BTag_eqdec p0 p1 && check_equal_r A0 A1 _ && check_equal_r B0 B1 _
| _, _ => false
end
with check_equal_r (a b : PTm) (h : algo_dom_r a b) {struct h} : bool :=
match fancy_hred a with
| inr a' => check_equal_r (proj1_sig a') b _
| inl ha' => match fancy_hred b with
| inr b' => check_equal_r a (proj1_sig b') _
| inl hb' => check_equal a b _
end
end.
Next Obligation.
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
inversion h; subst => //=.
exfalso. sfirstorder use:algo_dom_no_hred.
assert (a' = a'0) by eauto using hred_deter. by subst.
exfalso. sfirstorder.
Defined.
Next Obligation.
simpl. intros. clear Heq_anonymous Heq_anonymous0.
destruct b' as [b' hb']. simpl.
inversion h; subst.
- exfalso.
sfirstorder use:algo_dom_no_hred.
- exfalso.
sfirstorder.
- assert (b' = b'0) by eauto using hred_deter. by subst.
Defined.
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
Next Obligation.
move => /= a b hdom ha _ hb _.
inversion hdom; subst.
- assumption.
- exfalso; sfirstorder.
- exfalso; sfirstorder.
Defined.
Lemma check_equal_abs_abs a b h : check_equal (PAbs a) (PAbs b) (A_AbsAbs a b h) = check_equal_r a b h.
Proof. reflexivity. Qed.
Lemma check_equal_abs_neu a u neu h : check_equal (PAbs a) u (A_AbsNeu a u neu h) = check_equal_r a (PApp (ren_PTm shift u) (VarPTm var_zero)) h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_neu_abs a u neu h : check_equal u (PAbs a) (A_NeuAbs a u neu h) = check_equal_r (PApp (ren_PTm shift u) (VarPTm var_zero)) a h.
Proof. case : u neu h => //=. Qed.
Lemma check_equal_pair_pair a0 b0 a1 b1 a h :
check_equal (PPair a0 b0) (PPair a1 b1) (A_PairPair a0 a1 b0 b1 a h) =
check_equal_r a0 a1 a && check_equal_r b0 b1 h.
Proof. reflexivity. Qed.
Lemma check_equal_pair_neu a0 a1 u neu h h'
: check_equal (PPair a0 a1) u (A_PairNeu a0 a1 u neu h h') = check_equal_r a0 (PProj PL u) h && check_equal_r a1 (PProj PR u) h'.
Proof.
case : u neu h h' => //=.
Qed.
Lemma check_equal_neu_pair a0 a1 u neu h h'
: check_equal u (PPair a0 a1) (A_NeuPair a0 a1 u neu h h') = check_equal_r (PProj PL u) a0 h && check_equal_r (PProj PR u) a1 h'.
Proof.
case : u neu h h' => //=.
Qed.
Lemma check_equal_bind_bind p0 A0 B0 p1 A1 B1 h0 h1 :
check_equal (PBind p0 A0 B0) (PBind p1 A1 B1) (A_BindCong p0 p1 A0 A1 B0 B1 h0 h1) =
BTag_eqdec p0 p1 && check_equal_r A0 A1 h0 && check_equal_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_equal_proj_proj p0 u0 p1 u1 neu0 neu1 h :
check_equal (PProj p0 u0) (PProj p1 u1) (A_ProjCong p0 p1 u0 u1 neu0 neu1 h) =
PTag_eqdec p0 p1 && check_equal u0 u1 h.
Proof. reflexivity. Qed.
Lemma check_equal_app_app u0 a0 u1 a1 hu0 hu1 hdom hdom' :
check_equal (PApp u0 a0) (PApp u1 a1) (A_AppCong u0 u1 a0 a1 hu0 hu1 hdom hdom') =
check_equal u0 u1 hdom && check_equal_r a0 a1 hdom'.
Proof. reflexivity. Qed.
Lemma check_equal_ind_ind P0 u0 b0 c0 P1 u1 b1 c1 neu0 neu1 domP domu domb domc :
check_equal (PInd P0 u0 b0 c0) (PInd P1 u1 b1 c1)
(A_IndCong P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP domu domb domc) =
check_equal_r P0 P1 domP && check_equal u0 u1 domu && check_equal_r b0 b1 domb && check_equal_r c0 c1 domc.
Proof. reflexivity. Qed.
Lemma hred_none a : HRed.nf a -> hred a = None.
Proof.
destruct (hred a) eqn:eq;
sfirstorder use:hred_complete, hred_sound.
Qed.
Ltac simp_check_r := with_strategy opaque [check_equal] simpl in *.
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
Proof.
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
simp_check_r.
destruct (fancy_hred a).
destruct (fancy_hred b).
reflexivity.
exfalso. hauto l:on use:hred_complete.
exfalso. hauto l:on use:hred_complete.
Qed.
Lemma check_equal_hredl a b a' ha doma :
check_equal_r a b (A_HRedL a a' b ha doma) = check_equal_r a' b doma.
Proof.
simpl.
destruct (fancy_hred a).
- hauto q:on unfold:HRed.nf.
- destruct s as [x ?].
have ? : x = a' by eauto using hred_deter. subst.
simpl.
f_equal.
apply PropExtensionality.proof_irrelevance.
Qed.
Lemma check_equal_hredr a b b' hu r a0 :
check_equal_r a b (A_HRedR a b b' hu r a0) =
check_equal_r a b' a0.
Proof.
simpl.
destruct (fancy_hred a).
- simpl.
destruct (fancy_hred b) as [|[b'' hb']].
+ hauto lq:on unfold:HRed.nf.
+ simpl.
have ? : (b'' = b') by eauto using hred_deter. subst.
f_equal.
apply PropExtensionality.proof_irrelevance.
- exfalso.
sfirstorder use:hne_no_hred, hf_no_hred.
Qed.
Lemma check_equal_univ i j :
check_equal (PUniv i) (PUniv j) (A_UnivCong i j) = nat_eqdec i j.
Proof. reflexivity. Qed.
Lemma check_equal_conf a b nfa nfb nfab :
check_equal a b (A_Conf a b nfa nfb nfab) = false.
Proof. destruct a; destruct b => //=. Qed.
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
Ltac2 destruct_salgo () :=
lazy_match! goal with
| [h : salgo_dom ?a ?b |- _ ] =>
if is_var a then destruct $a; ltac1:(done) else
(if is_var b then destruct $b; ltac1:(done) else ())
end.
Ltac check_sub_triv :=
intros;subst;
lazymatch goal with
(* | [h : algo_dom (VarPTm _) (PAbs _) |- _] => idtac *)
| [_ : salgo_dom _ _ |- _] => try (inversion h; subst => //=; ltac2:(Control.enter destruct_algo))
| _ => idtac
end.
Local Obligation Tactic := try solve [check_sub_triv | sfirstorder].
Program Fixpoint check_sub (a b : PTm) (h : salgo_dom a b) {struct h} :=
match a, b with
| PBind PPi A0 B0, PBind PPi A1 B1 =>
check_sub_r A1 A0 _ && check_sub_r B0 B1 _
| PBind PSig A0 B0, PBind PSig A1 B1 =>
check_sub_r A0 A1 _ && check_sub_r B0 B1 _
| PUniv i, PUniv j =>
PeanoNat.Nat.leb i j
| PNat, PNat => true
| PApp _ _ , PApp _ _ => check_equal a b _
| VarPTm _, VarPTm _ => check_equal a b _
| PInd _ _ _ _, PInd _ _ _ _ => check_equal a b _
| PProj _ _, PProj _ _ => check_equal a b _
| _, _ => false
end
with check_sub_r (a b : PTm) (h : salgo_dom_r a b) {struct h} :=
match fancy_hred a with
| inr a' => check_sub_r (proj1_sig a') b _
| inl ha' => match fancy_hred b with
| inr b' => check_sub_r a (proj1_sig b') _
| inl hb' => check_sub a b _
end
end.
Next Obligation.
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
inversion h; subst => //=.
exfalso. sfirstorder use:salgo_dom_no_hred.
assert (a' = a'0) by eauto using hred_deter. by subst.
exfalso. sfirstorder.
Defined.
Next Obligation.
simpl. intros. clear Heq_anonymous Heq_anonymous0.
destruct b' as [b' hb']. simpl.
inversion h; subst.
- exfalso.
sfirstorder use:salgo_dom_no_hred.
- exfalso.
sfirstorder.
- assert (b' = b'0) by eauto using hred_deter. by subst.
Defined.
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
Next Obligation.
move => /= a b hdom ha _ hb _.
inversion hdom; subst.
- assumption.
- exfalso; sfirstorder.
- exfalso; sfirstorder.
Defined.
Lemma check_sub_pi_pi A0 B0 A1 B1 h0 h1 :
check_sub (PBind PPi A0 B0) (PBind PPi A1 B1) (S_PiCong A0 A1 B0 B1 h0 h1) =
check_sub_r A1 A0 h0 && check_sub_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_sub_sig_sig A0 B0 A1 B1 h0 h1 :
check_sub (PBind PSig A0 B0) (PBind PSig A1 B1) (S_SigCong A0 A1 B0 B1 h0 h1) =
check_sub_r A0 A1 h0 && check_sub_r B0 B1 h1.
Proof. reflexivity. Qed.
Lemma check_sub_univ_univ i j :
check_sub (PUniv i) (PUniv j) (S_UnivCong i j) = PeanoNat.Nat.leb i j.
Proof. reflexivity. Qed.
Lemma check_sub_nfnf a b dom : check_sub_r a b (S_NfNf a b dom) = check_sub a b dom.
Proof.
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
simpl.
destruct (fancy_hred b)=>//=.
destruct (fancy_hred a) =>//=.
destruct s as [a' ha']. simpl.
hauto l:on use:hred_complete.
destruct s as [b' hb']. simpl.
hauto l:on use:hred_complete.
Qed.
Lemma check_sub_hredl a b a' ha doma :
check_sub_r a b (S_HRedL a a' b ha doma) = check_sub_r a' b doma.
Proof.
simpl.
destruct (fancy_hred a).
- hauto q:on unfold:HRed.nf.
- destruct s as [x ?].
have ? : x = a' by eauto using hred_deter. subst.
simpl.
f_equal.
apply PropExtensionality.proof_irrelevance.
Qed.
Lemma check_sub_hredr a b b' hu r a0 :
check_sub_r a b (S_HRedR a b b' hu r a0) =
check_sub_r a b' a0.
Proof.
simpl.
destruct (fancy_hred a).
- simpl.
destruct (fancy_hred b) as [|[b'' hb']].
+ hauto lq:on unfold:HRed.nf.
+ simpl.
have ? : (b'' = b') by eauto using hred_deter. subst.
f_equal.
apply PropExtensionality.proof_irrelevance.
- exfalso.
sfirstorder use:hne_no_hred, hf_no_hred.
Qed.
Lemma check_sub_neuneu a b i a0 : check_sub a b (S_NeuNeu a b i a0) = check_equal a b a0.
Proof. destruct a,b => //=. Qed.
Lemma check_sub_conf a b n n0 i : check_sub a b (S_Conf a b n n0 i) = false.
Proof. destruct a,b=>//=; ecrush inv:BTag. Qed.
#[export]Hint Rewrite check_sub_neuneu check_sub_conf check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.

View file

@ -1,259 +0,0 @@
From Equations Require Import Equations.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common executable algorithmic.
Require Import ssreflect ssrbool.
From stdpp Require Import relations (rtc(..)).
From Hammer Require Import Tactics.
Lemma coqeqr_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
Lemma coqeq_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof. induction 1;
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
Qed.
Lemma coqleq_no_hred a b : a b -> HRed.nf a /\ HRed.nf b.
Proof.
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
Qed.
Lemma coqeq_neuneu u0 u1 :
ishne u0 -> ishne u1 -> u0 u1 -> u0 u1.
Proof.
inversion 3; subst => //=.
Qed.
Lemma coqeq_neuneu' u0 u1 :
neuneu_nonconf u0 u1 ->
u0 u1 ->
u0 u1.
Proof.
induction 2 => //=; destruct u => //=.
Qed.
Lemma check_equal_sound :
(forall a b (h : algo_dom a b), check_equal a b h -> a b) /\
(forall a b (h : algo_dom_r a b), check_equal_r a b h -> a b).
Proof.
apply algo_dom_mutual.
- move => a b h.
move => h0.
rewrite check_equal_abs_abs.
constructor. tauto.
- move => a u i h0 ih h.
apply CE_AbsNeu => //.
apply : ih. simp check_equal tm_to_eq_view in h.
by rewrite check_equal_abs_neu in h.
- move => a u i h ih h0.
apply CE_NeuAbs=>//.
apply ih.
by rewrite check_equal_neu_abs in h0.
- move => a0 a1 b0 b1 a ha h.
move => h0.
rewrite check_equal_pair_pair. move /andP => [h1 h2].
sauto lq:on.
- move => a0 a1 u neu h ih h' ih' he.
rewrite check_equal_pair_neu in he.
apply CE_PairNeu => //; hauto lqb:on.
- move => a0 a1 u i a ha a2 hb.
rewrite check_equal_neu_pair => *.
apply CE_NeuPair => //; hauto lqb:on.
- sfirstorder.
- hauto l:on use:CE_SucSuc.
- move => i j /sumboolP.
hauto lq:on use:CE_UnivCong.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1 h2.
rewrite check_equal_bind_bind in h2.
move : h2.
move /andP => [/andP [h20 h21] h3].
move /sumboolP : h20 => ?. subst.
hauto l:on use:CE_BindCong.
- sfirstorder.
- move => i j /sumboolP ?. subst.
apply : CE_NeuNeu. apply CE_VarCong.
- move => u0 u1 a0 a1 hu0 hu1 hdom ih hdom' ih' hE.
rewrite check_equal_app_app in hE.
move /andP : hE => [h0 h1].
sauto lq:on use:coqeq_neuneu.
- move => p0 p1 u0 u1 neu0 neu1 h ih he.
apply CE_NeuNeu.
rewrite check_equal_proj_proj in he.
move /andP : he => [/sumboolP ? h1]. subst.
sauto lq:on use:coqeq_neuneu.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move /andP => [/andP [/andP [h0 h1] h2 ] h3].
sauto lq:on use:coqeq_neuneu.
- move => a b n n0 i. by rewrite check_equal_conf.
- move => a b dom h ih. apply : CE_HRed; eauto using rtc_refl.
rewrite check_equal_nfnf in ih.
tauto.
- move => a a' b ha doma ih hE.
rewrite check_equal_hredl in hE. sauto lq:on.
- move => a b b' hu r a0 ha hb. rewrite check_equal_hredr in hb.
sauto lq:on rew:off.
Qed.
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
Lemma check_equal_complete :
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a b) /\
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a b).
Proof.
apply algo_dom_mutual.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- ce_solv.
- move => i j.
rewrite check_equal_univ.
case : nat_eqdec => //=.
ce_solv.
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
rewrite check_equal_bind_bind.
move /negP.
move /nandP.
case. move /nandP.
case. move => h. have : p0 <> p1 by sauto lqb:on.
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
hauto qb:on inv:CoqEq,CoqEq_Neu.
- simp check_equal. done.
- move => i j. move => h. have {h} : ~ nat_eqdec i j by done.
case : nat_eqdec => //=. ce_solv.
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
rewrite check_equal_app_app.
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
- move => p0 p1 u0 u1 neu0 neu1 h ih.
rewrite check_equal_proj_proj.
move /negP /nandP. case.
case : PTag_eqdec => //=. sauto lq:on.
sauto lqb:on.
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
rewrite check_equal_ind_ind.
move => + h.
inversion h; subst.
inversion H; subst.
move /negP /nandP.
case. move/nandP.
case. move/nandP.
case. qauto b:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
sauto lqb:on inv:CoqEq, CoqEq_Neu.
- rewrite /tm_conf.
move => a b n n0 i. simp ce_prop.
move => _. inversion 1; subst => //=.
+ destruct b => //=.
+ destruct a => //=.
+ destruct b => //=.
+ destruct a => //=.
+ hauto l:on inv:CoqEq_Neu.
- move => a b h ih.
rewrite check_equal_nfnf.
move : ih => /[apply].
move => + h0.
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:algo_dom_no_hred.
inversion h0; subst.
hauto l:on use:hreds_nf_refl.
- move => a a' b h dom.
simp ce_prop => /[apply].
move => + h1. inversion h1; subst.
inversion H; subst.
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
+ have ? : y = a' by eauto using hred_deter. subst.
sauto lq:on.
- move => a b b' u hr dom ihdom.
rewrite check_equal_hredr.
move => + h. inversion h; subst.
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
move => {}/ihdom.
inversion H0; subst.
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
sfirstorder unfold:HRed.nf.
+ sauto lq:on use:hred_deter.
Qed.
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
Lemma check_sub_sound :
(forall a b (h : salgo_dom a b), check_sub a b h -> a b) /\
(forall a b (h : salgo_dom_r a b), check_sub_r a b h -> a b).
Proof.
apply salgo_dom_mutual; try done.
- simpl. move => i j [];
sauto lq:on use:Reflect.Nat_leb_le.
- move => A0 A1 B0 B1 s ihs s0 ihs0.
simp ce_prop.
hauto lqb:on ctrs:CoqLEq.
- move => A0 A1 B0 B1 s ihs s0 ihs0.
simp ce_prop.
hauto lqb:on ctrs:CoqLEq.
- qauto ctrs:CoqLEq.
- move => a b i a0.
simp ce_prop.
move => h. apply CLE_NeuNeu.
hauto lq:on use:check_equal_sound, coqeq_neuneu', coqeq_symmetric_mutual.
- move => a b n n0 i.
by simp ce_prop.
- move => a b h ih. simp ce_prop. hauto l:on.
- move => a a' b hr h ih.
simp ce_prop.
sauto lq:on rew:off.
- move => a b b' n r dom ihdom.
simp ce_prop.
move : ihdom => /[apply].
move {dom}.
sauto lq:on rew:off.
Qed.
Lemma check_sub_complete :
(forall a b (h : salgo_dom a b), check_sub a b h = false -> ~ a b) /\
(forall a b (h : salgo_dom_r a b), check_sub_r a b h = false -> ~ a b).
Proof.
apply salgo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
- move => i j /=.
move => + h. inversion h; subst => //=.
sfirstorder use:PeanoNat.Nat.leb_le.
hauto lq:on inv:CoqEq_Neu.
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
move /nandP.
case.
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
- move => A0 A1 B0 B1 s ihs s' ihs'. simp ce_prop.
move /nandP.
case.
move => /negbTE {}/ihs. hauto q:on inv:CoqLEq, CoqEq_Neu.
move => /negbTE {}/ihs'. hauto q:on inv:CoqLEq, CoqEq_Neu.
- move => a b i hs. simp ce_prop.
move => + h. inversion h; subst => //=.
move => /negP h0.
eapply check_equal_complete in h0.
apply h0. by constructor.
- move => a b s ihs. simp ce_prop.
move => h0 h1. apply ihs =>//.
have [? ?] : HRed.nf a /\ HRed.nf b by hauto l:on use:salgo_dom_no_hred.
inversion h1; subst.
hauto l:on use:hreds_nf_refl.
- move => a a' b h dom.
simp ce_prop => /[apply].
move => + h1. inversion h1; subst.
inversion H; subst.
+ sfirstorder use:coqleq_no_hred unfold:HRed.nf.
+ have ? : y = a' by eauto using hred_deter. subst.
sauto lq:on.
- move => a b b' u hr dom ihdom.
rewrite check_sub_hredr.
move => + h. inversion h; subst.
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
move => {}/ihdom.
inversion H0; subst.
+ have ? : HRed.nf b'0 by hauto l:on use:coqleq_no_hred.
sfirstorder unfold:HRed.nf.
+ sauto lq:on use:hred_deter.
Qed.

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,172 +0,0 @@
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing structural fp_red admissible.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Require Import Coq.Logic.FunctionalExtensionality.
Lemma Ind_Inv Γ P (a : PTm) b c U :
Γ PInd P a b c U ->
exists i, (cons PNat Γ) P PUniv i /\
Γ a PNat /\
Γ b subst_PTm (scons PZero VarPTm) P /\
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\
Γ subst_PTm (scons a VarPTm) P U.
Proof.
move E : (PInd P a b c)=> u hu.
move : P a b c E. elim : Γ u U / hu => //=.
- move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst.
exists i. repeat split => //=.
have : Γ subst_PTm (scons a VarPTm) P subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt.
eauto using E_Refl, Su_Eq.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma E_Abs Γ a b A B :
A :: Γ a b B ->
Γ PAbs a PAbs b PBind PPi A B.
Proof.
move => h.
have [i hA] : exists i, Γ A PUniv i by hauto l:on use:wff_mutual inv:Wff.
have [j hB] : exists j, A :: Γ B PUniv j by hauto l:on use:regularity.
have : Γ by sfirstorder use:wff_mutual.
have hΓ' : A::Γ by eauto with wt.
set k := max i j.
have [? ?] : i <= k /\ j <= k by lia.
have {}hA : Γ A PUniv k by hauto l:on use:T_Conv, Su_Univ.
have {}hB : A :: Γ B PUniv k by hauto lq:on use:T_Conv, Su_Univ.
have hPi : Γ PBind PPi A B PUniv k by eauto with wt.
apply : E_FunExt; eauto with wt.
hauto lq:on rew:off use:regularity, T_Abs.
hauto lq:on rew:off use:regularity, T_Abs.
apply : E_Transitive => /=. apply E_AppAbs.
hauto lq:on use:T_Eta, regularity.
apply /E_Symmetric /E_Transitive. apply E_AppAbs.
hauto lq:on use:T_Eta, regularity.
asimpl. rewrite !subst_scons_id. by apply E_Symmetric.
Qed.
Lemma E_Pair Γ a0 b0 a1 b1 A B i :
Γ PBind PSig A B PUniv i ->
Γ a0 a1 A ->
Γ b0 b1 subst_PTm (scons a0 VarPTm) B ->
Γ PPair a0 b0 PPair a1 b1 PBind PSig A B.
Proof.
move => hSig ha hb.
have [ha0 ha1] : Γ a0 A /\ Γ a1 A by hauto l:on use:regularity.
have [hb0 hb1] : Γ b0 subst_PTm (scons a0 VarPTm) B /\
Γ b1 subst_PTm (scons a0 VarPTm) B by hauto l:on use:regularity.
have hp : Γ PPair a0 b0 PBind PSig A B by eauto with wt.
have hp' : Γ PPair a1 b1 PBind PSig A B. econstructor; eauto with wt; [idtac].
apply : T_Conv; eauto. apply : Su_Sig_Proj2; by eauto using Su_Eq, E_Refl.
have ea : Γ PProj PL (PPair a0 b0) a0 A by eauto with wt.
have : Γ PProj PR (PPair a0 b0) b0 subst_PTm (scons a0 VarPTm) B by eauto with wt.
have : Γ PProj PL (PPair a1 b1) a1 A by eauto using E_ProjPair1 with wt.
have : Γ PProj PR (PPair a1 b1) b1 subst_PTm (scons a0 VarPTm) B.
apply : E_Conv; eauto using E_ProjPair2 with wt.
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
apply : E_Transitive. apply E_ProjPair1. by eauto with wt.
by eauto using E_Symmetric.
move => *.
apply : E_PairExt; eauto using E_Symmetric, E_Transitive.
apply : E_Conv. by eauto using E_Symmetric, E_Transitive.
apply : Su_Sig_Proj2. apply /Su_Eq /E_Refl. eassumption.
apply : E_Transitive. by eauto. apply /E_Symmetric /E_Transitive.
by eauto using E_ProjPair1.
eauto.
Qed.
Lemma Suc_Inv Γ (a : PTm) A :
Γ PSuc a A -> Γ a PNat /\ Γ PNat A.
Proof.
move E : (PSuc a) => u hu.
move : a E.
elim : Γ u A /hu => //=.
- move => Γ a ha iha a0 [*]. subst.
split => //=. eapply wff_mutual in ha.
apply : Su_Eq.
apply E_Refl. by apply T_Nat'.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma RRed_Eq Γ (a b : PTm) A :
Γ a A ->
RRed.R a b ->
Γ a b A.
Proof.
move => + h. move : Γ A. elim : a b /h.
- apply E_AppAbs.
- move => p a b Γ A.
case : p => //=.
+ apply E_ProjPair1.
+ move /Proj2_Inv. move => [A0][B0][hab]hA0.
move /Pair_Inv : hab => [A1][B1][ha][hb]hS.
have [i ?] : exists i, Γ PBind PSig A1 B1 PUniv i by sfirstorder use:regularity_sub0.
have : Γ PPair a b PBind PSig A1 B1 by hauto lq:on ctrs:Wt.
move /T_Proj1.
move /E_ProjPair1 /E_Symmetric => h.
have /Su_Sig_Proj1 hSA := hS.
have : Γ subst_PTm (scons a VarPTm) B1 subst_PTm (scons (PProj PL (PPair a b)) VarPTm) B0 by
apply : Su_Sig_Proj2; eauto.
move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply].
move {hS}.
move => ?. apply : E_Conv; eauto. apply : typing.E_ProjPair2; eauto.
- hauto lq:on use:Ind_Inv, E_Conv, E_IndZero.
- move => P a b c Γ A.
move /Ind_Inv.
move => [i][hP][ha][hb][hc]hSu.
apply : E_Conv; eauto.
apply : E_IndSuc'; eauto.
hauto l:on use:Suc_Inv.
- qauto l:on use:Abs_Inv, E_Conv, regularity_sub0, E_Abs.
- move => a0 a1 b ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
have {}/iha iha := ih0.
have [i hP] : exists i, Γ PBind PPi A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_App; eauto using E_Refl.
- move => a0 b0 b1 ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU.
have {}/iha iha := ih1.
have [i hP] : exists i, Γ PBind PPi A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_App; eauto.
sfirstorder use:E_Refl.
- move => a0 a1 b ha iha Γ A /Pair_Inv.
move => [A0][B0][h0][h1]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by eauto using regularity_sub0.
have {}/iha iha := h0.
apply : E_Conv; eauto.
apply : E_Pair; eauto using E_Refl.
- move => a b0 b1 ha iha Γ A /Pair_Inv.
move => [A0][B0][h0][h1]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by eauto using regularity_sub0.
have {}/iha iha := h1.
apply : E_Conv; eauto.
apply : E_Pair; eauto using E_Refl.
- case.
+ move => a0 a1 ha iha Γ A /Proj1_Inv [A0][B0][h0]hU.
apply : E_Conv; eauto.
qauto l:on ctrs:Eq,Wt.
+ move => a0 a1 ha iha Γ A /Proj2_Inv [A0][B0][h0]hU.
have [i hP] : exists i, Γ PBind PSig A0 B0 PUniv i by sfirstorder use:regularity.
apply : E_Conv; eauto.
apply : E_Proj2; eauto.
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
have {}/ihA ihA := h0.
apply : E_Conv; eauto.
apply E_Bind'; eauto using E_Refl.
- move => p A0 A1 B hA ihA Γ U /Bind_Inv [i][h0][h1]hU.
have {}/ihA ihA := h1.
apply : E_Conv; eauto.
apply E_Bind'; eauto using E_Refl.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt.
- hauto lq:on use:Suc_Inv, E_Conv, E_SucCong.
Qed.
Theorem subject_reduction Γ (a b A : PTm) :
Γ a A ->
RRed.R a b ->
Γ b A.
Proof. hauto lq:on use:RRed_Eq, regularity. Qed.

View file

@ -1,15 +0,0 @@
Require Import Autosubst2.unscoped Autosubst2.syntax.
Require Import fp_red logrel typing.
From Hammer Require Import Tactics.
Theorem fundamental_theorem :
(forall Γ, Γ -> Γ) /\
(forall Γ a A, Γ a A -> Γ a A) /\
(forall Γ a b A, Γ a b A -> Γ a b A) /\
(forall Γ a b, Γ a b -> Γ a b).
apply wt_mutual; eauto with sem.
Unshelve. all : exact 0.
Qed.
Lemma synsub_to_usub : forall Γ (a b : PTm), Γ a b -> SN a /\ SN b /\ Sub.R a b.
Proof. hauto lq:on rew:off use:fundamental_theorem, SemLEq_SN_Sub. Qed.

View file

@ -1,845 +0,0 @@
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common typing.
From Hammer Require Import Tactics.
Require Import ssreflect.
Require Import Psatz.
Lemma wff_mutual :
(forall Γ, Γ -> True) /\
(forall Γ (a A : PTm), Γ a A -> Γ) /\
(forall Γ (a b A : PTm), Γ a b A -> Γ) /\
(forall Γ (A B : PTm), Γ A B -> Γ).
Proof. apply wt_mutual; eauto. Qed.
#[export]Hint Constructors Wt Wff Eq : wt.
Lemma T_Nat' Γ :
Γ ->
Γ PNat PUniv 0.
Proof. apply T_Nat. Qed.
Lemma renaming_up (ξ : nat -> nat) Δ Γ A :
renaming_ok Δ Γ ξ ->
renaming_ok (cons (ren_PTm ξ A) Δ) (cons A Γ) (upRen_PTm_PTm ξ) .
Proof.
move => h i A0.
elim /lookup_inv => //=_.
- move => A1 Γ0 ? [*]. subst. apply here'. by asimpl.
- move => i0 Γ0 A1 B h' ? [*]. subst.
apply : there'; eauto. by asimpl.
Qed.
Lemma Su_Wt Γ a i :
Γ a PUniv i ->
Γ a a.
Proof. hauto lq:on ctrs:LEq, Eq. Qed.
Lemma Wt_Univ Γ a A i
(h : Γ a A) :
Γ @PUniv i PUniv (S i).
Proof.
hauto lq:on ctrs:Wt use:wff_mutual.
Qed.
Lemma Bind_Inv Γ p (A : PTm) B U :
Γ PBind p A B U ->
exists i, Γ A PUniv i /\
(cons A Γ) B PUniv i /\
Γ PUniv i U.
Proof.
move E :(PBind p A B) => T h.
move : p A B E.
elim : Γ T U / h => //=.
- move => Γ i p A B hA _ hB _ p0 A0 B0 [*]. subst.
exists i. repeat split => //=.
eapply wff_mutual in hA.
apply Su_Univ; eauto.
- hauto lq:on rew:off ctrs:LEq.
Qed.
Lemma T_App' Γ (b a : PTm) A B U :
U = subst_PTm (scons a VarPTm) B ->
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a U.
Proof. move => ->. apply T_App. Qed.
Lemma T_Pair' Γ (a b : PTm ) A B i U :
U = subst_PTm (scons a VarPTm) B ->
Γ a A ->
Γ b U ->
Γ PBind PSig A B (PUniv i) ->
Γ PPair a b PBind PSig A B.
Proof.
move => ->. eauto using T_Pair.
Qed.
Lemma E_IndCong' Γ P0 P1 (a0 a1 : PTm ) b0 b1 c0 c1 i U :
U = subst_PTm (scons a0 VarPTm) P0 ->
(cons PNat Γ) P0 PUniv i ->
(cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
(cons P0 (cons PNat Γ)) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 U.
Proof. move => ->. apply E_IndCong. Qed.
Lemma T_Ind' Γ P (a : PTm) b c i U :
U = subst_PTm (scons a VarPTm) P ->
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
cons P (cons PNat Γ) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c U.
Proof. move =>->. apply T_Ind. Qed.
Lemma T_Proj2' Γ (a : PTm) A B U :
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a PBind PSig A B ->
Γ PProj PR a U.
Proof. move => ->. apply T_Proj2. Qed.
Lemma E_Proj2' Γ i (a b : PTm) A B U :
U = subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b U.
Proof. move => ->. apply E_Proj2. Qed.
Lemma E_Bind' Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
cons A0 Γ B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i.
Proof. hauto lq:on use:E_Bind, wff_mutual. Qed.
Lemma E_App' Γ i (b0 b1 a0 a1 : PTm) A B U :
U = subst_PTm (scons a0 VarPTm) B ->
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 U.
Proof. move => ->. apply E_App. Qed.
Lemma E_AppAbs' Γ (a : PTm) b A B i u U :
u = subst_PTm (scons b VarPTm) a ->
U = subst_PTm (scons b VarPTm ) B ->
Γ PBind PPi A B PUniv i ->
Γ b A ->
cons A Γ a B ->
Γ PApp (PAbs a) b u U.
move => -> ->. apply E_AppAbs. Qed.
Lemma E_ProjPair2' Γ (a b : PTm) A B i U :
U = subst_PTm (scons a VarPTm) B ->
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b U.
Proof. move => ->. apply E_ProjPair2. Qed.
(* Lemma E_AppEta' Γ (b : PTm ) A B i u : *)
(* u = (PApp (ren_PTm shift b) (VarPTm var_zero)) -> *)
(* Γ ⊢ PBind PPi A B ∈ (PUniv i) -> *)
(* Γ ⊢ b ∈ PBind PPi A B -> *)
(* Γ ⊢ PAbs u ≡ b ∈ PBind PPi A B. *)
(* Proof. qauto l:on use:wff_mutual, E_AppEta. Qed. *)
Lemma Su_Pi_Proj2' Γ (a0 a1 A0 A1 : PTm ) B0 B1 U T :
U = subst_PTm (scons a0 VarPTm) B0 ->
T = subst_PTm (scons a1 VarPTm) B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ U T.
Proof. move => -> ->. apply Su_Pi_Proj2. Qed.
Lemma Su_Sig_Proj2' Γ (a0 a1 A0 A1 : PTm) B0 B1 U T :
U = subst_PTm (scons a0 VarPTm) B0 ->
T = subst_PTm (scons a1 VarPTm) B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ U T.
Proof. move => -> ->. apply Su_Sig_Proj2. Qed.
Lemma E_IndZero' Γ P i (b : PTm) c U :
U = subst_PTm (scons PZero VarPTm) P ->
cons PNat Γ P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P ->
cons P (cons PNat Γ) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b U.
Proof. move => ->. apply E_IndZero. Qed.
Lemma Wff_Cons' Γ (A : PTm) i :
Γ A PUniv i ->
(* -------------------------------- *)
cons A Γ.
Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed.
Lemma E_IndSuc' Γ P (a : PTm) b c i u U :
u = subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c ->
U = subst_PTm (scons (PSuc a) VarPTm) P ->
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c u U.
Proof. move => ->->. apply E_IndSuc. Qed.
Lemma renaming :
(forall Γ, Γ -> True) /\
(forall Γ (a A : PTm), Γ a A -> forall Δ (ξ : nat -> nat), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ a ren_PTm ξ A) /\
(forall Γ (a b A : PTm), Γ a b A -> forall Δ (ξ : nat -> nat), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ a ren_PTm ξ b ren_PTm ξ A) /\
(forall Γ (A B : PTm), Γ A B -> forall Δ (ξ : nat -> nat), Δ -> renaming_ok Δ Γ ξ ->
Δ ren_PTm ξ A ren_PTm ξ B).
Proof.
apply wt_mutual => //=; eauto 3 with wt.
- hauto lq:on rew:off ctrs:Wt, Wff use:renaming_up.
- move => Γ a A B i hP ihP ha iha Δ ξ .
apply : T_Abs; eauto.
move : ihP() (); repeat move/[apply]. move/Bind_Inv.
hauto lq:on rew:off ctrs:Wff,Wt use:renaming_up.
- move => *. apply : T_App'; eauto. by asimpl.
- move => Γ a A b B i hA ihA hB ihB hS ihS Δ ξ .
eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
- move => Γ a A B ha iha Δ ξ . apply : T_Proj2'; eauto. by asimpl.
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ .
move => [:hP].
apply : T_Ind'; eauto. by asimpl.
abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'.
hauto l:on use:renaming_up.
set x := subst_PTm _ _. have -> : x = ren_PTm ξ (subst_PTm (scons PZero VarPTm) P) by subst x; asimpl.
by subst x; eauto.
set Ξ := cons _ _.
have : Ξ. subst Ξ.
apply : Wff_Cons'; eauto. apply hP.
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) ) : ihc.
set Ξ' := (cons _ _) .
have : renaming_ok Ξ Ξ' (upRen_PTm_PTm (upRen_PTm_PTm ξ)).
by do 2 apply renaming_up.
move /[swap] /[apply].
by asimpl.
- hauto lq:on ctrs:Wt,LEq.
- hauto lq:on ctrs:Eq.
- hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up.
- move => *. apply : E_App'; eauto. by asimpl.
- move => *. apply : E_Proj2'; eauto. by asimpl.
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc.
move => Δ ξ [:hP' hren].
apply E_IndCong' with (i := i); eauto with wt.
by asimpl.
apply ihP0.
abstract : hP'.
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
abstract : hren.
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
apply ihP; eauto with wt.
move : ihb () (); do! move/[apply]. by asimpl.
set Ξ := cons _ _.
have : Ξ.
subst Ξ. apply :Wff_Cons'; eauto.
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) ) : ihc.
move /(_ ltac:(qauto l:on use:renaming_up)).
suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ))
(ren_PTm shift
(subst_PTm
(scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P0)) = ren_PTm shift
(subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift))
(ren_PTm (upRen_PTm_PTm ξ) P0)) by scongruence.
by asimpl.
- qauto l:on ctrs:Eq, LEq.
- move => Γ a b A B i hP ihP hb ihb ha iha Δ ξ .
move : ihP () (). repeat move/[apply].
move /Bind_Inv.
move => [j][h0][h1]h2.
have ? : Δ PBind PPi (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) PUniv j by qauto l:on ctrs:Wt.
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
hauto lq:on ctrs:Wff use:renaming_up.
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ξ .
move : {hP} ihP () (). repeat move/[apply].
move /Bind_Inv => [i0][h0][h1]h2.
have ? : Δ PBind PSig (ren_PTm ξ A) (ren_PTm (upRen_PTm_PTm ξ) B) PUniv i0 by qauto l:on ctrs:Wt.
apply : E_ProjPair1; eauto.
move : ihb . repeat move/[apply]. by asimpl.
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ξ .
apply : E_ProjPair2'; eauto. by asimpl.
move : ihb ; repeat move/[apply]. by asimpl.
- move => Γ P i b c hP ihP hb ihb hc ihc Δ ξ .
apply E_IndZero' with (i := i); eauto. by asimpl.
sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Δ ξ ) : ihb.
asimpl. by apply.
set Ξ := cons _ _.
have : Ξ by sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) ) : ihc.
set p := renaming_ok _ _ _.
have : p. by do 2 apply renaming_up.
move => /[swap]/[apply].
suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ))
(ren_PTm shift
(subst_PTm
(scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P))= ren_PTm shift
(subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift))
(ren_PTm (upRen_PTm_PTm ξ) P)) by scongruence.
by asimpl.
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ .
apply E_IndSuc' with (i := i). by asimpl. by asimpl.
sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
by eauto with wt.
move /(_ Δ ξ ) : ihb. asimpl. by apply.
set Ξ := cons _ _.
have : Ξ by sauto lq:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) ) : ihc.
move /(_ ltac:(by eauto using renaming_up)).
by asimpl.
- move => Γ a b A B i hPi ihPi ha iha hb ihb he0 ihe1 Δ ξ .
apply : E_FunExt; eauto. move : ihe1. asimpl. apply.
hfcrush use:Bind_Inv.
by apply renaming_up.
- move => Γ a b A B i hPi ihPi ha iha hb ihb hL ihL hR ihR Δ ξ .
apply : E_PairExt; eauto. move : ihR. asimpl. by apply.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- hauto lq:on ctrs:Wff use:renaming_up, Su_Pi.
- hauto lq:on ctrs:Wff use:Su_Sig, renaming_up.
- hauto q:on ctrs:LEq.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
Qed.
Definition morphing_ok Δ Γ (ρ : nat -> PTm) :=
forall i A, lookup i Γ A -> Δ ρ i subst_PTm ρ A.
Lemma morphing_ren Ξ Δ Γ
(ρ : nat -> PTm) (ξ : nat -> nat) :
Ξ ->
renaming_ok Ξ Δ ξ -> morphing_ok Δ Γ ρ ->
morphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ).
Proof.
move => hρ i A.
rewrite {1}/funcomp.
have -> :
subst_PTm (funcomp (ren_PTm ξ) ρ) A =
ren_PTm ξ (subst_PTm ρ A) by asimpl.
move => ?. eapply renaming; eauto.
Qed.
Lemma morphing_ext Δ Γ (ρ : nat -> PTm) (a : PTm) (A : PTm) :
morphing_ok Δ Γ ρ ->
Δ a subst_PTm ρ A ->
morphing_ok
Δ (cons A Γ) (scons a ρ).
Proof.
move => h ha i B.
elim /lookup_inv => //=_.
- move => A0 Γ0 ? [*]. subst.
by asimpl.
- move => i0 Γ0 A0 B0 h0 ? [*]. subst.
asimpl. by apply h.
Qed.
Lemma renaming_wt : forall Γ (a A : PTm), Γ a A -> forall Δ (ξ : nat -> nat), Δ -> renaming_ok Δ Γ ξ -> Δ ren_PTm ξ a ren_PTm ξ A.
Proof. sfirstorder use:renaming. Qed.
Lemma renaming_wt' : forall Δ Γ a A (ξ : nat -> nat) u U,
u = ren_PTm ξ a -> U = ren_PTm ξ A ->
Γ a A -> Δ ->
renaming_ok Δ Γ ξ -> Δ u U.
Proof. hauto use:renaming_wt. Qed.
Lemma morphing_up Γ Δ (ρ : nat -> PTm) (A : PTm) k :
morphing_ok Γ Δ ρ ->
Γ subst_PTm ρ A PUniv k ->
morphing_ok (cons (subst_PTm ρ A) Γ) (cons A Δ) (up_PTm_PTm ρ).
Proof.
move => h h1 [:hp]. apply morphing_ext.
rewrite /morphing_ok.
move => i A0 hA0.
apply : renaming_wt'; last by apply renaming_shift.
rewrite /funcomp. reflexivity.
2 : { eauto. }
by asimpl.
abstract : hp. qauto l:on ctrs:Wff use:wff_mutual.
apply : T_Var;eauto. apply here'. by asimpl.
Qed.
Lemma weakening_wt : forall Γ (a A B : PTm) i,
Γ B PUniv i ->
Γ a A ->
cons B Γ ren_PTm shift a ren_PTm shift A.
Proof.
move => Γ a A B i hB ha.
apply : renaming_wt'; eauto.
apply : Wff_Cons'; eauto.
apply : renaming_shift; eauto.
Qed.
Lemma weakening_wt' : forall Γ (a A B : PTm) i U u,
u = ren_PTm shift a ->
U = ren_PTm shift A ->
Γ B PUniv i ->
Γ a A ->
cons B Γ u U.
Proof. move => > -> ->. apply weakening_wt. Qed.
Lemma morphing :
(forall Γ, Γ -> True) /\
(forall Γ a A, Γ a A -> forall Δ ρ, Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ a subst_PTm ρ A) /\
(forall Γ a b A, Γ a b A -> forall Δ ρ, Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ a subst_PTm ρ b subst_PTm ρ A) /\
(forall Γ A B, Γ A B -> forall Δ ρ, Δ -> morphing_ok Δ Γ ρ ->
Δ subst_PTm ρ A subst_PTm ρ B).
Proof.
apply wt_mutual => //=.
- hauto l:on unfold:morphing_ok.
- hauto lq:on use:morphing_up, Wff_Cons', T_Bind.
- move => Γ a A B i hP ihP ha iha Δ ρ hρ.
move : ihP () (hρ); repeat move/[apply].
move /Bind_Inv => [j][h0][h1]h2. move {hP}.
have ? : Δ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv i by hauto lq:on ctrs:Wt.
apply : T_Abs; eauto.
apply : iha.
hauto lq:on use:Wff_Cons', Bind_Inv.
apply : morphing_up; eauto.
- move => *; apply : T_App'; eauto; by asimpl.
- move => Γ a A b B i hA ihA hB ihB hS ihS Δ ρ hρ .
eapply T_Pair' with (U := subst_PTm ρ (subst_PTm (scons a VarPTm) B));eauto. by asimpl.
- hauto lq:on use:T_Proj1.
- move => *. apply : T_Proj2'; eauto. by asimpl.
- hauto lq:on ctrs:Wt,LEq.
- qauto l:on ctrs:Wt.
- qauto l:on ctrs:Wt.
- qauto l:on ctrs:Wt.
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ .
have hξ' : morphing_ok (cons PNat Δ) (cons PNat Γ) (up_PTm_PTm ξ).
move /morphing_up : . move /(_ PNat 0).
apply. by apply T_Nat.
move => [:hP].
apply : T_Ind'; eauto. by asimpl.
abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'.
move /morphing_up : . move /(_ PNat 0).
apply. by apply T_Nat.
move : ihb ; do!move/[apply]. by asimpl.
set Ξ := cons _ _.
have : Ξ. subst Ξ.
apply : Wff_Cons'; eauto. apply hP.
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) ) : ihc.
set Ξ' := (cons _ _) .
have : morphing_ok Ξ Ξ' (up_PTm_PTm (up_PTm_PTm ξ)).
eapply morphing_up; eauto. apply hP.
move /[swap]/[apply].
set x := (x in _ _ x).
set y := (y in _ -> _ _ y).
suff : x = y by scongruence.
subst x y. asimpl. substify. by asimpl.
- qauto l:on ctrs:Wt.
- hauto lq:on ctrs:Eq.
- hauto lq:on ctrs:Eq.
- hauto lq:on ctrs:Eq.
- hauto lq:on rew:off use:E_Bind', Wff_Cons, morphing_up.
- move => *. apply : E_App'; eauto. by asimpl.
- hauto q:on ctrs:Eq.
- move => *. apply : E_Proj2'; eauto. by asimpl.
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc.
move => Δ ξ .
have hξ' : morphing_ok (cons PNat Δ)
(cons PNat Γ) (up_PTm_PTm ξ).
move /morphing_up : . move /(_ PNat 0).
apply. by apply T_Nat.
move => [:hP'].
apply E_IndCong' with (i := i).
by asimpl.
abstract : hP'.
qauto l:on use:morphing_up, Wff_Cons', T_Nat'.
qauto l:on use:renaming_up, Wff_Cons', T_Nat'.
by eauto with wt.
move : ihb () (); do! move/[apply]. by asimpl.
set Ξ := cons _ _.
have : Ξ.
subst Ξ. apply :Wff_Cons'; eauto. apply hP'.
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) ) : ihc.
move /(_ ltac:(qauto l:on use:morphing_up)).
asimpl. substify. by asimpl.
- eauto with wt.
- qauto l:on ctrs:Eq, LEq.
- move => Γ a b A B i hP ihP hb ihb ha iha Δ ρ hρ.
move : ihP (hρ) (). repeat move/[apply].
move /Bind_Inv.
move => [j][h0][h1]h2.
have ? : Δ PBind PPi (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv j by qauto l:on ctrs:Wt.
apply : E_AppAbs'; eauto. by asimpl. by asimpl.
hauto lq:on ctrs:Wff use:morphing_up.
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ρ hρ.
move : {hP} ihP (hρ) (). repeat move/[apply].
move /Bind_Inv => [i0][h0][h1]h2.
have ? : Δ PBind PSig (subst_PTm ρ A) (subst_PTm (up_PTm_PTm ρ) B) PUniv i0 by qauto l:on ctrs:Wt.
apply : E_ProjPair1; eauto.
move : ihb hρ . repeat move/[apply]. by asimpl.
- move => Γ a b A B i hP ihP ha iha hb ihb Δ ρ hρ.
apply : E_ProjPair2'; eauto. by asimpl.
move : ihb hρ ; repeat move/[apply]. by asimpl.
- move => Γ P i b c hP ihP hb ihb hc ihc Δ ξ .
have hξ' : morphing_ok (cons PNat Δ)(cons PNat Γ) (up_PTm_PTm ξ).
move /morphing_up : . move /(_ PNat 0).
apply. by apply T_Nat.
apply E_IndZero' with (i := i); eauto. by asimpl.
qauto l:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Δ ξ ) : ihb.
asimpl. by apply.
set Ξ := cons _ _.
have : Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) ) : ihc.
move /(_ ltac:(sauto lq:on use:morphing_up)).
asimpl. substify. by asimpl.
- move => Γ P a b c i hP ihP ha iha hb ihb hc ihc Δ ξ .
have hξ' : morphing_ok (cons PNat Δ) (cons PNat Γ) (up_PTm_PTm ξ).
move /morphing_up : . move /(_ PNat 0).
apply. by apply T_Nat'.
apply E_IndSuc' with (i := i). by asimpl. by asimpl.
qauto l:on use:Wff_Cons', T_Nat', renaming_up.
by eauto with wt.
move /(_ Δ ξ ) : ihb. asimpl. by apply.
set Ξ := cons _ _.
have : Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up.
move /(_ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) ) : ihc.
move /(_ ltac:(sauto l:on use:morphing_up)).
asimpl. substify. by asimpl.
- move => Γ a b A B i hPi ihPi ha iha hb ihb he0 ihe1 Δ ξ .
move : ihPi () (); repeat move/[apply]. move /[dup] /Bind_Inv => ihPi ?.
decompose [and ex] ihPi.
apply : E_FunExt; eauto. move : ihe1. asimpl. apply.
by eauto with wt.
by eauto using morphing_up with wt.
- move => Γ a b A B i hPi ihPi ha iha hb ihb hL ihL hR ihR Δ ξ .
apply : E_PairExt; eauto. move : ihR. asimpl. by apply.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- hauto lq:on ctrs:Wff use:morphing_up, Su_Pi.
- hauto lq:on ctrs:Wff use:Su_Sig, morphing_up.
- hauto q:on ctrs:LEq.
- hauto lq:on ctrs:LEq.
- qauto l:on ctrs:LEq.
- move => *; apply : Su_Pi_Proj2'; eauto; by asimpl.
- move => *. apply : Su_Sig_Proj2'; eauto; by asimpl.
Qed.
Lemma morphing_wt : forall Γ (a A : PTm ), Γ a A -> forall Δ (ρ : nat -> PTm), Δ -> morphing_ok Δ Γ ρ -> Δ subst_PTm ρ a subst_PTm ρ A.
Proof. sfirstorder use:morphing. Qed.
Lemma morphing_wt' : forall Δ Γ a A (ρ : nat -> PTm) u U,
u = subst_PTm ρ a -> U = subst_PTm ρ A ->
Γ a A -> Δ ->
morphing_ok Δ Γ ρ -> Δ u U.
Proof. hauto use:morphing_wt. Qed.
Lemma morphing_id : forall Γ, Γ -> morphing_ok Γ Γ VarPTm.
Proof.
rewrite /morphing_ok => Γ i. asimpl.
eauto using T_Var.
Qed.
Lemma substing_wt : forall Γ (a : PTm) (b A : PTm) B,
(cons A Γ) a B ->
Γ b A ->
Γ subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm) B.
Proof.
move => Γ a b A B ha hb [:]. apply : morphing_wt; eauto.
abstract : . sfirstorder use:wff_mutual.
apply morphing_ext; last by asimpl.
by apply morphing_id.
Qed.
(* Could generalize to all equal contexts *)
Lemma ctx_eq_subst_one (A0 A1 : PTm) i j Γ a A :
(cons A0 Γ) a A ->
Γ A0 PUniv i ->
Γ A1 PUniv j ->
Γ A1 A0 ->
(cons A1 Γ) a A.
Proof.
move => h0 h1 h2 h3.
replace a with (subst_PTm VarPTm a); last by asimpl.
replace A with (subst_PTm VarPTm A); last by asimpl.
have ? : Γ by sfirstorder use:wff_mutual.
apply : morphing_wt; eauto.
apply : Wff_Cons'; eauto.
move => k A2. elim/lookup_inv => //=_; cycle 1.
- move => i0 Γ0 A3 B hi ? [*]. subst.
asimpl.
eapply weakening_wt' with (a := VarPTm i0);eauto using T_Var.
by substify.
- move => A3 Γ0 ? [*]. subst.
move => [:hΓ'].
apply : T_Conv.
apply T_Var.
abstract : hΓ'.
eauto using Wff_Cons'. apply here.
asimpl. renamify.
eapply renaming; eauto.
apply : renaming_shift; eauto.
Qed.
Lemma bind_inst Γ p (A : PTm) B i a0 a1 :
Γ PBind p A B PUniv i ->
Γ a0 a1 A ->
Γ subst_PTm (scons a0 VarPTm) B subst_PTm (scons a1 VarPTm) B.
Proof.
move => h h0.
have {}h : Γ PBind p A B PBind p A B by eauto using E_Refl, Su_Eq.
case : p h => //=; hauto l:on use:Su_Pi_Proj2, Su_Sig_Proj2.
Qed.
Lemma Cumulativity Γ (a : PTm ) i j :
i <= j ->
Γ a PUniv i ->
Γ a PUniv j.
Proof.
move => h0 h1. apply : T_Conv; eauto.
apply Su_Univ => //=.
sfirstorder use:wff_mutual.
Qed.
Lemma T_Bind' Γ i j p (A : PTm ) (B : PTm) :
Γ A PUniv i ->
(cons A Γ) B PUniv j ->
Γ PBind p A B PUniv (max i j).
Proof.
move => h0 h1.
have [*] : i <= max i j /\ j <= max i j by lia.
qauto l:on ctrs:Wt use:Cumulativity.
Qed.
Hint Resolve T_Bind' : wt.
Lemma regularity :
(forall Γ, Γ -> forall i A, lookup i Γ A -> exists j, Γ A PUniv j) /\
(forall Γ a A, Γ a A -> exists i, Γ A PUniv i) /\
(forall Γ a b A, Γ a b A -> Γ a A /\ Γ b A /\ exists i, Γ A PUniv i) /\
(forall Γ A B, Γ A B -> exists i, Γ A PUniv i /\ Γ B PUniv i).
Proof.
apply wt_mutual => //=; eauto with wt.
- move => i A. elim/lookup_inv => //=_.
- move => Γ A i ihΓ hA _ j A0.
elim /lookup_inv => //=_; cycle 1.
+ move => i0 Γ0 A1 B + ? [*]. subst.
move : ihΓ => /[apply]. move => [j hA1].
exists j. apply : renaming_wt' => //=; eauto using renaming_shift. done.
apply : Wff_Cons'; eauto.
+ move => A1 Γ0 ? [*]. subst.
exists i. apply : renaming_wt'; eauto. reflexivity.
econstructor; eauto.
apply : renaming_shift; eauto.
- move => Γ b a A B hb [i ihb] ha [j iha].
move /Bind_Inv : ihb => [k][h0][h1]h2.
move : substing_wt ha h1; repeat move/[apply].
move => h. exists k.
move : h. by asimpl.
- hauto lq:on use:Bind_Inv.
- move => Γ a A B ha [i /Bind_Inv[j][h0][h1]h2].
exists j. have : Γ PProj PL a A by qauto use:T_Proj1.
move : substing_wt h1; repeat move/[apply].
by asimpl.
- move => Γ P a b c i + ? + *. clear. move => h ha. exists i.
hauto lq:on use:substing_wt.
- sfirstorder.
- sfirstorder.
- sfirstorder.
- move => Γ i p A0 A1 B0 B1 ihΓ hA0
[i0 ihA0] hA [ihA [ihA' [i1 ihA'']]].
repeat split => //=.
qauto use:T_Bind.
apply T_Bind; eauto.
sfirstorder.
apply : ctx_eq_subst_one; eauto using Su_Eq, E_Symmetric.
hauto lq:on.
- move => n i b0 b1 a0 a1 A B hP _ hb [ihb0 [ihb1 [i0 ihb2]]]
ha [iha0 [iha1 [i1 iha2]]].
repeat split.
qauto use:T_App.
apply : T_Conv; eauto.
qauto use:T_App.
move /E_Symmetric in ha.
by eauto using bind_inst.
hauto lq:on ctrs:Wt,Eq,LEq lq:on use:Bind_Inv, substing_wt.
- hauto lq:on use:Bind_Inv db:wt.
- move => Γ i a b A B hS _ hab [iha][ihb][j]ihs.
repeat split => //=; eauto with wt.
apply : T_Conv; eauto with wt.
move /E_Symmetric /E_Proj1 in hab.
eauto using bind_inst.
move /T_Proj1 in iha.
hauto lq:on ctrs:Wt,Eq,LEq use:Bind_Inv, substing_wt.
- move => Γ P0 P1 a0 a1 b0 b1 c0 c1 i _ _ hPE [hP0 [hP1 _]] hae [ha0 [ha1 _]] _ [hb0 [hb1 hb2]] _ [hc0 [hc1 [j hc2]]].
have wfΓ : Γ by hauto use:wff_mutual.
have wfΓ' : (PNat :: Γ) by qauto use:Wff_Cons', T_Nat'.
repeat split. by eauto using T_Ind.
apply : T_Conv. apply : T_Ind; eauto.
apply : T_Conv; eauto.
eapply morphing; by eauto using Su_Eq, morphing_ext, morphing_id with wt.
apply : T_Conv. apply : ctx_eq_subst_one; eauto.
by eauto using Su_Eq, E_Symmetric.
eapply renaming; eauto.
eapply morphing. apply : Su_Eq. apply hPE. apply wfΓ'.
apply morphing_ext.
replace (funcomp VarPTm shift) with (funcomp (@ren_PTm shift) VarPTm); last by asimpl.
apply : morphing_ren; eauto using morphing_id, renaming_shift.
apply T_Suc. apply T_Var=>//. apply here. apply : Wff_Cons'; eauto using T_Nat'.
apply renaming_shift.
have /E_Symmetric /Su_Eq : Γ PBind PSig PNat P0 PBind PSig PNat P1 PUniv i by eauto with wt.
move /E_Symmetric in hae.
by eauto using Su_Sig_Proj2.
sauto lq:on use:substing_wt.
- hauto lq:on ctrs:Wt.
- hauto lq:on ctrs:Wt.
- hauto q:on use:substing_wt db:wt.
- hauto l:on use:bind_inst db:wt.
- move => Γ P i b c hP _ hb _ hc _.
have ? : Γ by hauto use:wff_mutual.
repeat split=>//.
by eauto with wt.
sauto lq:on use:substing_wt.
- move => Γ P a b c i hP _ ha _ hb _ hc _.
have ? : Γ by hauto use:wff_mutual.
repeat split=>//.
apply : T_Ind; eauto with wt.
set Ξ := (X in X _ _) in hc.
have : morphing_ok Γ Ξ (scons (PInd P a b c) (scons a VarPTm)).
apply morphing_ext. apply morphing_ext. by apply morphing_id.
by eauto. by eauto with wt.
subst Ξ.
move : morphing_wt hc; repeat move/[apply]. asimpl. by apply.
sauto lq:on use:substing_wt.
- move => Γ A B C hA [i [ihA0 ihA1]] hC [j [ihC0 ihC1]].
have ? : Γ by sfirstorder use:wff_mutual.
exists (max i j).
have [? ?] : i <= Nat.max i j /\ j <= Nat.max i j by lia.
qauto l:on use:T_Conv, Su_Univ.
- move => Γ i j *. exists (S (max i j)).
have [? ?] : S i <= S (Nat.max i j) /\ S j <= S (Nat.max i j) by lia.
hauto lq:on ctrs:Wt,LEq.
- move => Γ A0 A1 B0 B1 i hA0 _ hA1 [i0][ih0]ih1 hB[j0][ihB0]ihB1.
exists (max i0 j0).
split; eauto with wt.
apply T_Bind'; eauto.
sfirstorder use:ctx_eq_subst_one.
- move => n A0 A1 B0 B1 i hA1 _ hA0 [i0][ihA0]ihA1 hB[i1][ihB0]ihB1.
exists (max i0 i1). repeat split; eauto with wt.
apply T_Bind'; eauto.
sfirstorder use:ctx_eq_subst_one.
- sfirstorder.
- move => Γ A0 A1 B0 B1 _ [i][ih0 ih1].
move /Bind_Inv : ih0 => [i0][h _].
move /Bind_Inv : ih1 => [i1][h' _].
exists (max i0 i1).
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
eauto using Cumulativity.
- move => Γ A0 A1 B0 B1 _ [i][ih0 ih1].
move /Bind_Inv : ih0 => [i0][h _].
move /Bind_Inv : ih1 => [i1][h' _].
exists (max i0 i1).
have [? ?] : i0 <= Nat.max i0 i1 /\ i1 <= Nat.max i0 i1 by lia.
eauto using Cumulativity.
- move => Γ a0 a1 A0 A1 B0 B1 /Su_Pi_Proj1 hA1.
move => [i][ihP0]ihP1.
move => ha [iha0][iha1][j]ihA1.
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
exists (max i0 i1).
split.
+ apply Cumulativity with (i := i0); eauto.
have : Γ a0 A0 by eauto using T_Conv.
move : substing_wt ih0';repeat move/[apply]. by asimpl.
+ apply Cumulativity with (i := i1); eauto.
move : substing_wt ih1' iha1;repeat move/[apply]. by asimpl.
- move => Γ a0 a1 A0 A1 B0 B1 /Su_Sig_Proj1 hA1.
move => [i][ihP0]ihP1.
move => ha [iha0][iha1][j]ihA1.
move /Bind_Inv :ihP0 => [i0][ih0][ih0' _].
move /Bind_Inv :ihP1 => [i1][ih1][ih1' _].
have [*] : i0 <= max i0 i1 /\ i1 <= max i0 i1 by lia.
exists (max i0 i1).
split.
+ apply Cumulativity with (i := i0); eauto.
move : substing_wt iha0 ih0';repeat move/[apply]. by asimpl.
+ apply Cumulativity with (i := i1); eauto.
have : Γ a1 A1 by eauto using T_Conv.
move : substing_wt ih1';repeat move/[apply]. by asimpl.
Unshelve. all: exact 0.
Qed.
Lemma Var_Inv Γ (i : nat) A :
Γ VarPTm i A ->
Γ /\ exists B, lookup i Γ B /\ Γ B A.
Proof.
move E : (VarPTm i) => u hu.
move : i E.
elim : Γ u A / hu=>//=.
- move => i Γ A hi i0 [*]. subst.
split => //.
exists A. split => //.
have h : Γ VarPTm i A by eauto using T_Var.
eapply regularity in h.
move : h => [i0]?.
apply : Su_Eq. apply E_Refl; eassumption.
- sfirstorder use:Su_Transitive.
Qed.
Lemma renaming_su' : forall Δ Γ ξ (A B : PTm) u U ,
u = ren_PTm ξ A ->
U = ren_PTm ξ B ->
Γ A B ->
Δ -> renaming_ok Δ Γ ξ ->
Δ u U.
Proof. move => > -> ->. hauto l:on use:renaming. Qed.
Lemma weakening_su : forall Γ (A0 A1 B : PTm) i,
Γ B PUniv i ->
Γ A0 A1 ->
(cons B Γ) ren_PTm shift A0 ren_PTm shift A1.
Proof.
move => Γ A0 A1 B i hB hlt.
apply : renaming_su'; eauto.
apply : Wff_Cons'; eauto.
apply : renaming_shift; eauto.
Qed.
Lemma regularity_sub0 : forall Γ (A B : PTm), Γ A B -> exists i, Γ A PUniv i.
Proof. hauto lq:on use:regularity. Qed.
Lemma Su_Pi_Proj2_Var Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
cons A1 Γ B0 B1.
Proof.
move => h.
have /Su_Pi_Proj1 h1 := h.
have /regularity_sub0 [i h2] := h1.
move /weakening_su : (h) h2. move => /[apply].
move => h2.
apply : Su_Pi_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
apply E_Refl. apply T_Var with (i := var_zero); eauto.
sfirstorder use:wff_mutual.
apply here.
by asimpl; rewrite subst_scons_id.
by asimpl; rewrite subst_scons_id.
Qed.
Lemma Su_Sig_Proj2_Var Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
(cons A0 Γ) B0 B1.
Proof.
move => h.
have /Su_Sig_Proj1 h1 := h.
have /regularity_sub0 [i h2] := h1.
move /weakening_su : (h) h2. move => /[apply].
move => h2.
apply : Su_Sig_Proj2'; try eassumption; rewrite -?/ren_PTm; cycle 2.
apply E_Refl. apply T_Var with (i := var_zero); eauto.
sfirstorder use:wff_mutual.
apply here.
by asimpl; rewrite subst_scons_id.
by asimpl; rewrite subst_scons_id.
Qed.

View file

@ -1,5 +0,0 @@
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
From Hammer Require Import Tactics.
Require Import ssreflect ssrbool.
From stdpp Require Import relations (nsteps (..), rtc(..)).
Import Psatz.

View file

@ -1,237 +0,0 @@
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Reserved Notation "Γ ⊢ a ∈ A" (at level 70).
Reserved Notation "Γ ⊢ a ≡ b ∈ A" (at level 70).
Reserved Notation "Γ ⊢ A ≲ B" (at level 70).
Reserved Notation "⊢ Γ" (at level 70).
Inductive Wt : list PTm -> PTm -> PTm -> Prop :=
| T_Var i Γ A :
Γ ->
lookup i Γ A ->
Γ VarPTm i A
| T_Bind Γ i p (A : PTm) (B : PTm) :
Γ A PUniv i ->
cons A Γ B PUniv i ->
Γ PBind p A B PUniv i
| T_Abs Γ (a : PTm) A B i :
Γ PBind PPi A B (PUniv i) ->
(cons A Γ) a B ->
Γ PAbs a PBind PPi A B
| T_App Γ (b a : PTm) A B :
Γ b PBind PPi A B ->
Γ a A ->
Γ PApp b a subst_PTm (scons a VarPTm) B
| T_Pair Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PPair a b PBind PSig A B
| T_Proj1 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PL a A
| T_Proj2 Γ (a : PTm) A B :
Γ a PBind PSig A B ->
Γ PProj PR a subst_PTm (scons (PProj PL a) VarPTm) B
| T_Univ Γ i :
Γ ->
Γ PUniv i PUniv (S i)
| T_Nat Γ i :
Γ ->
Γ PNat PUniv i
| T_Zero Γ :
Γ ->
Γ PZero PNat
| T_Suc Γ (a : PTm) :
Γ a PNat ->
Γ PSuc a PNat
| T_Ind Γ P (a : PTm) b c i :
cons PNat Γ P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P a b c subst_PTm (scons a VarPTm) P
| T_Conv Γ (a : PTm) A B :
Γ a A ->
Γ A B ->
Γ a B
with Eq : list PTm -> PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| E_Refl Γ (a : PTm ) A :
Γ a A ->
Γ a a A
| E_Symmetric Γ (a b : PTm) A :
Γ a b A ->
Γ b a A
| E_Transitive Γ (a b c : PTm) A :
Γ a b A ->
Γ b c A ->
Γ a c A
(* Congruence *)
| E_Bind Γ i p (A0 A1 : PTm) B0 B1 :
Γ A0 PUniv i ->
Γ A0 A1 PUniv i ->
(cons A0 Γ) B0 B1 PUniv i ->
Γ PBind p A0 B0 PBind p A1 B1 PUniv i
| E_App Γ i (b0 b1 a0 a1 : PTm) A B :
Γ PBind PPi A B (PUniv i) ->
Γ b0 b1 PBind PPi A B ->
Γ a0 a1 A ->
Γ PApp b0 a0 PApp b1 a1 subst_PTm (scons a0 VarPTm) B
| E_Proj1 Γ (a b : PTm) A B :
Γ a b PBind PSig A B ->
Γ PProj PL a PProj PL b A
| E_Proj2 Γ i (a b : PTm) A B :
Γ PBind PSig A B (PUniv i) ->
Γ a b PBind PSig A B ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B
| E_IndCong Γ P0 P1 (a0 a1 : PTm) b0 b1 c0 c1 i :
(cons PNat Γ) P0 PUniv i ->
(cons PNat Γ) P0 P1 PUniv i ->
Γ a0 a1 PNat ->
Γ b0 b1 subst_PTm (scons PZero VarPTm) P0 ->
(cons P0 ((cons PNat Γ))) c0 c1 ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) ->
Γ PInd P0 a0 b0 c0 PInd P1 a1 b1 c1 subst_PTm (scons a0 VarPTm) P0
| E_SucCong Γ (a b : PTm) :
Γ a b PNat ->
Γ PSuc a PSuc b PNat
| E_Conv Γ (a b : PTm) A B :
Γ a b A ->
Γ A B ->
Γ a b B
(* Beta *)
| E_AppAbs Γ (a : PTm) b A B i:
Γ PBind PPi A B PUniv i ->
Γ b A ->
(cons A Γ) a B ->
Γ PApp (PAbs a) b subst_PTm (scons b VarPTm) a subst_PTm (scons b VarPTm ) B
| E_ProjPair1 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PL (PPair a b) a A
| E_ProjPair2 Γ (a b : PTm) A B i :
Γ PBind PSig A B (PUniv i) ->
Γ a A ->
Γ b subst_PTm (scons a VarPTm) B ->
Γ PProj PR (PPair a b) b subst_PTm (scons a VarPTm) B
| E_IndZero Γ P i (b : PTm) c :
(cons PNat Γ) P PUniv i ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P PZero b c b subst_PTm (scons PZero VarPTm) P
| E_IndSuc Γ P (a : PTm) b c i :
(cons PNat Γ) P PUniv i ->
Γ a PNat ->
Γ b subst_PTm (scons PZero VarPTm) P ->
(cons P (cons PNat Γ)) c ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) ->
Γ PInd P (PSuc a) b c (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) subst_PTm (scons (PSuc a) VarPTm) P
| E_FunExt Γ (a b : PTm) A B i :
Γ PBind PPi A B PUniv i ->
Γ a PBind PPi A B ->
Γ b PBind PPi A B ->
A :: Γ PApp (ren_PTm shift a) (VarPTm var_zero) PApp (ren_PTm shift b) (VarPTm var_zero) B ->
Γ a b PBind PPi A B
| E_PairExt Γ (a b : PTm) A B i :
Γ PBind PSig A B PUniv i ->
Γ a PBind PSig A B ->
Γ b PBind PSig A B ->
Γ PProj PL a PProj PL b A ->
Γ PProj PR a PProj PR b subst_PTm (scons (PProj PL a) VarPTm) B ->
Γ a b PBind PSig A B
with LEq : list PTm -> PTm -> PTm -> Prop :=
(* Structural *)
| Su_Transitive Γ (A B C : PTm) :
Γ A B ->
Γ B C ->
Γ A C
(* Congruence *)
| Su_Univ Γ i j :
Γ ->
i <= j ->
Γ PUniv i PUniv j
| Su_Pi Γ (A0 A1 : PTm) B0 B1 i :
Γ A0 PUniv i ->
Γ A1 A0 ->
(cons A0 Γ) B0 B1 ->
Γ PBind PPi A0 B0 PBind PPi A1 B1
| Su_Sig Γ (A0 A1 : PTm) B0 B1 i :
Γ A1 PUniv i ->
Γ A0 A1 ->
(cons A1 Γ) B0 B1 ->
Γ PBind PSig A0 B0 PBind PSig A1 B1
(* Injecting from equalities *)
| Su_Eq Γ (A : PTm) B i :
Γ A B PUniv i ->
Γ A B
(* Projection axioms *)
| Su_Pi_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ A1 A0
| Su_Sig_Proj1 Γ (A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ A0 A1
| Su_Pi_Proj2 Γ (a0 a1 A0 A1 : PTm ) B0 B1 :
Γ PBind PPi A0 B0 PBind PPi A1 B1 ->
Γ a0 a1 A1 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
| Su_Sig_Proj2 Γ (a0 a1 A0 A1 : PTm) B0 B1 :
Γ PBind PSig A0 B0 PBind PSig A1 B1 ->
Γ a0 a1 A0 ->
Γ subst_PTm (scons a0 VarPTm) B0 subst_PTm (scons a1 VarPTm) B1
with Wff : list PTm -> Prop :=
| Wff_Nil :
nil
| Wff_Cons Γ (A : PTm) i :
Γ ->
Γ A PUniv i ->
(* -------------------------------- *)
(cons A Γ)
where
"Γ ⊢ a ∈ A" := (Wt Γ a A) and "⊢ Γ" := (Wff Γ) and "Γ ⊢ a ≡ b ∈ A" := (Eq Γ a b A) and "Γ ⊢ A ≲ B" := (LEq Γ A B).
Scheme wf_ind := Induction for Wff Sort Prop
with wt_ind := Induction for Wt Sort Prop
with eq_ind := Induction for Eq Sort Prop
with le_ind := Induction for LEq Sort Prop.
Combined Scheme wt_mutual from wf_ind, wt_ind, eq_ind, le_ind.