diff --git a/syntax.sig b/syntax.sig index 6b7e4df..a50911e 100644 --- a/syntax.sig +++ b/syntax.sig @@ -16,4 +16,8 @@ PPair : PTm -> PTm -> PTm PProj : PTag -> PTm -> PTm PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm PUniv : nat -> PTm -PBot : PTm \ No newline at end of file +PBot : PTm +PNat : PTm +PZero : PTm +PSuc : PTm -> PTm +PInd : (bind PTm in PTm) -> PTm -> PTm -> (bind PTm,PTm in PTm) -> PTm \ No newline at end of file diff --git a/theories/Autosubst2/syntax.v b/theories/Autosubst2/syntax.v index ff9ec18..5d04c05 100644 --- a/theories/Autosubst2/syntax.v +++ b/theories/Autosubst2/syntax.v @@ -41,7 +41,13 @@ Inductive PTm (n_PTm : nat) : Type := | PProj : PTag -> PTm n_PTm -> PTm n_PTm | PBind : BTag -> PTm n_PTm -> PTm (S n_PTm) -> PTm n_PTm | PUniv : nat -> PTm n_PTm - | PBot : PTm n_PTm. + | PBot : PTm n_PTm + | PNat : PTm n_PTm + | PZero : PTm n_PTm + | PSuc : PTm n_PTm -> PTm n_PTm + | PInd : + PTm (S n_PTm) -> + PTm n_PTm -> PTm n_PTm -> PTm (S (S n_PTm)) -> PTm n_PTm. Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)} (H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0. @@ -95,6 +101,37 @@ Proof. exact (eq_refl). Qed. +Lemma congr_PNat {m_PTm : nat} : PNat m_PTm = PNat m_PTm. +Proof. +exact (eq_refl). +Qed. + +Lemma congr_PZero {m_PTm : nat} : PZero m_PTm = PZero m_PTm. +Proof. +exact (eq_refl). +Qed. + +Lemma congr_PSuc {m_PTm : nat} {s0 : PTm m_PTm} {t0 : PTm m_PTm} + (H0 : s0 = t0) : PSuc m_PTm s0 = PSuc m_PTm t0. +Proof. +exact (eq_trans eq_refl (ap (fun x => PSuc m_PTm x) H0)). +Qed. + +Lemma congr_PInd {m_PTm : nat} {s0 : PTm (S m_PTm)} {s1 : PTm m_PTm} + {s2 : PTm m_PTm} {s3 : PTm (S (S m_PTm))} {t0 : PTm (S m_PTm)} + {t1 : PTm m_PTm} {t2 : PTm m_PTm} {t3 : PTm (S (S m_PTm))} (H0 : s0 = t0) + (H1 : s1 = t1) (H2 : s2 = t2) (H3 : s3 = t3) : + PInd m_PTm s0 s1 s2 s3 = PInd m_PTm t0 t1 t2 t3. +Proof. +exact (eq_trans + (eq_trans + (eq_trans + (eq_trans eq_refl (ap (fun x => PInd m_PTm x s1 s2 s3) H0)) + (ap (fun x => PInd m_PTm t0 x s2 s3) H1)) + (ap (fun x => PInd m_PTm t0 t1 x s3) H2)) + (ap (fun x => PInd m_PTm t0 t1 t2 x) H3)). +Qed. + Lemma upRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) : fin (S m) -> fin (S n). Proof. @@ -119,6 +156,13 @@ Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat} PBind n_PTm s0 (ren_PTm xi_PTm s1) (ren_PTm (upRen_PTm_PTm xi_PTm) s2) | PUniv _ s0 => PUniv n_PTm s0 | PBot _ => PBot n_PTm + | PNat _ => PNat n_PTm + | PZero _ => PZero n_PTm + | PSuc _ s0 => PSuc n_PTm (ren_PTm xi_PTm s0) + | PInd _ s0 s1 s2 s3 => + PInd n_PTm (ren_PTm (upRen_PTm_PTm xi_PTm) s0) (ren_PTm xi_PTm s1) + (ren_PTm xi_PTm s2) + (ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm xi_PTm)) s3) end. Lemma up_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) : @@ -150,6 +194,13 @@ Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat} (subst_PTm (up_PTm_PTm sigma_PTm) s2) | PUniv _ s0 => PUniv n_PTm s0 | PBot _ => PBot n_PTm + | PNat _ => PNat n_PTm + | PZero _ => PZero n_PTm + | PSuc _ s0 => PSuc n_PTm (subst_PTm sigma_PTm s0) + | PInd _ s0 s1 s2 s3 => + PInd n_PTm (subst_PTm (up_PTm_PTm sigma_PTm) s0) + (subst_PTm sigma_PTm s1) (subst_PTm sigma_PTm s2) + (subst_PTm (up_PTm_PTm (up_PTm_PTm sigma_PTm)) s3) end. Lemma upId_PTm_PTm {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm) @@ -193,6 +244,15 @@ Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm) (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => congr_PSuc (idSubst_PTm sigma_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s0) + (idSubst_PTm sigma_PTm Eq_PTm s1) (idSubst_PTm sigma_PTm Eq_PTm s2) + (idSubst_PTm (up_PTm_PTm (up_PTm_PTm sigma_PTm)) + (upId_PTm_PTm _ (upId_PTm_PTm _ Eq_PTm)) s3) end. Lemma upExtRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) @@ -239,6 +299,18 @@ ren_PTm xi_PTm s = ren_PTm zeta_PTm s := (upExtRen_PTm_PTm _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => congr_PSuc (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) + (upExtRen_PTm_PTm _ _ Eq_PTm) s0) + (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) + (extRen_PTm xi_PTm zeta_PTm Eq_PTm s2) + (extRen_PTm (upRen_PTm_PTm (upRen_PTm_PTm xi_PTm)) + (upRen_PTm_PTm (upRen_PTm_PTm zeta_PTm)) + (upExtRen_PTm_PTm _ _ (upExtRen_PTm_PTm _ _ Eq_PTm)) s3) end. Lemma upExt_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) @@ -286,6 +358,18 @@ subst_PTm sigma_PTm s = subst_PTm tau_PTm s := (upExt_PTm_PTm _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => congr_PSuc (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) + (upExt_PTm_PTm _ _ Eq_PTm) s0) + (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) + (ext_PTm sigma_PTm tau_PTm Eq_PTm s2) + (ext_PTm (up_PTm_PTm (up_PTm_PTm sigma_PTm)) + (up_PTm_PTm (up_PTm_PTm tau_PTm)) + (upExt_PTm_PTm _ _ (upExt_PTm_PTm _ _ Eq_PTm)) s3) end. Lemma up_ren_ren_PTm_PTm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) @@ -334,6 +418,20 @@ Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => + congr_PSuc (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) + (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s0) + (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) + (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s2) + (compRenRen_PTm (upRen_PTm_PTm (upRen_PTm_PTm xi_PTm)) + (upRen_PTm_PTm (upRen_PTm_PTm zeta_PTm)) + (upRen_PTm_PTm (upRen_PTm_PTm rho_PTm)) + (up_ren_ren _ _ _ (up_ren_ren _ _ _ Eq_PTm)) s3) end. Lemma up_ren_subst_PTm_PTm {k : nat} {l : nat} {m_PTm : nat} @@ -391,6 +489,21 @@ Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => + congr_PSuc (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm) + (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s0) + (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) + (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s2) + (compRenSubst_PTm (upRen_PTm_PTm (upRen_PTm_PTm xi_PTm)) + (up_PTm_PTm (up_PTm_PTm tau_PTm)) + (up_PTm_PTm (up_PTm_PTm theta_PTm)) + (up_ren_subst_PTm_PTm _ _ _ (up_ren_subst_PTm_PTm _ _ _ Eq_PTm)) + s3) end. Lemma up_subst_ren_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} @@ -468,6 +581,21 @@ ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => + congr_PSuc (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm) + (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s0) + (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) + (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s2) + (compSubstRen_PTm (up_PTm_PTm (up_PTm_PTm sigma_PTm)) + (upRen_PTm_PTm (upRen_PTm_PTm zeta_PTm)) + (up_PTm_PTm (up_PTm_PTm theta_PTm)) + (up_subst_ren_PTm_PTm _ _ _ (up_subst_ren_PTm_PTm _ _ _ Eq_PTm)) + s3) end. Lemma up_subst_subst_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} @@ -547,6 +675,21 @@ subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => + congr_PSuc (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) + (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s0) + (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) + (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s2) + (compSubstSubst_PTm (up_PTm_PTm (up_PTm_PTm sigma_PTm)) + (up_PTm_PTm (up_PTm_PTm tau_PTm)) + (up_PTm_PTm (up_PTm_PTm theta_PTm)) + (up_subst_subst_PTm_PTm _ _ _ + (up_subst_subst_PTm_PTm _ _ _ Eq_PTm)) s3) end. Lemma renRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} @@ -665,6 +808,18 @@ Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat} (rinstInst_up_PTm_PTm _ _ Eq_PTm) s2) | PUniv _ s0 => congr_PUniv (eq_refl s0) | PBot _ => congr_PBot + | PNat _ => congr_PNat + | PZero _ => congr_PZero + | PSuc _ s0 => congr_PSuc (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) + | PInd _ s0 s1 s2 s3 => + congr_PInd + (rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm) + (rinstInst_up_PTm_PTm _ _ Eq_PTm) s0) + (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) + (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s2) + (rinst_inst_PTm (upRen_PTm_PTm (upRen_PTm_PTm xi_PTm)) + (up_PTm_PTm (up_PTm_PTm sigma_PTm)) + (rinstInst_up_PTm_PTm _ _ (rinstInst_up_PTm_PTm _ _ Eq_PTm)) s3) end. Lemma rinstInst'_PTm {m_PTm : nat} {n_PTm : nat} @@ -871,6 +1026,14 @@ Core. Arguments VarPTm {n_PTm}. +Arguments PInd {n_PTm}. + +Arguments PSuc {n_PTm}. + +Arguments PZero {n_PTm}. + +Arguments PNat {n_PTm}. + Arguments PBot {n_PTm}. Arguments PUniv {n_PTm}. @@ -885,9 +1048,9 @@ Arguments PApp {n_PTm}. Arguments PAbs {n_PTm}. -#[global] Hint Opaque subst_PTm: rewrite. +#[global]Hint Opaque subst_PTm: rewrite. -#[global] Hint Opaque ren_PTm: rewrite. +#[global]Hint Opaque ren_PTm: rewrite. End Extra. diff --git a/theories/algorithmic.v b/theories/algorithmic.v index 6fe5fad..096ec94 100644 --- a/theories/algorithmic.v +++ b/theories/algorithmic.v @@ -16,13 +16,22 @@ Module HRed. | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) + | IndZero P b c : + R (PInd P PZero b c) b + + | IndSuc P a b c : + R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) + (*************** Congruence ********************) | AppCong a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) | ProjCong p a0 a1 : R a0 a1 -> - R (PProj p a0) (PProj p a1). + R (PProj p a0) (PProj p a1) + | IndCong P a0 a1 b c : + R a0 a1 -> + R (PInd P a0 b c) (PInd P a1 b c). Lemma ToRRed n (a b : PTm n) : HRed.R a b -> RRed.R a b. Proof. induction 1; hauto lq:on ctrs:RRed.R. Qed. @@ -82,6 +91,17 @@ Lemma T_Bot_Imp n Γ (A : PTm n) : induction hu => //=. Qed. +Lemma Zero_Inv n Γ U : + Γ ⊢ @PZero n ∈ U -> + Γ ⊢ PNat ≲ U. +Proof. + move E : PZero => u hu. + move : E. + elim : n Γ u U /hu=>//=. + by eauto using Su_Eq, E_Refl, T_Nat'. + hauto lq:on rew:off ctrs:LEq. +Qed. + Lemma Sub_Bind_InvR n Γ p (A : PTm n) B C : Γ ⊢ PBind p A B ≲ C -> exists i A0 B0, Γ ⊢ C ≡ PBind p A0 B0 ∈ PUniv i. @@ -121,6 +141,21 @@ Proof. eauto. - hauto lq:on use:synsub_to_usub, Sub.bind_univ_noconf. - hauto lq:on use:regularity, T_Bot_Imp. + - move => _ _ /synsub_to_usub [_ [_ h]]. exfalso. + apply Sub.nat_bind_noconf in h => //=. + - move => h. + have {}h : Γ ⊢ PZero ∈ PUniv i by hauto l:on use:regularity. + exfalso. move : h. clear. + move /Zero_Inv /synsub_to_usub. + hauto l:on use:Sub.univ_nat_noconf. + - move => a h. + have {}h : Γ ⊢ PSuc a ∈ PUniv i by hauto l:on use:regularity. + exfalso. move /Suc_Inv : h => [_ /synsub_to_usub]. + hauto lq:on use:Sub.univ_nat_noconf. + - move => P0 a0 b0 c0 h0 h1 /synsub_to_usub [_ [_ h2]]. + set u := PInd _ _ _ _ in h0. + have hne : SNe u by sfirstorder use:ne_nf_embed. + exfalso. move : h2 hne. hauto l:on use:Sub.bind_sne_noconf. Qed. Lemma Sub_Univ_InvR n (Γ : fin n -> PTm n) i C : @@ -154,6 +189,20 @@ Proof. - hauto lq:on use:synsub_to_usub, Sub.univ_bind_noconf. - sfirstorder. - hauto lq:on use:regularity, T_Bot_Imp. + - hauto q:on use:synsub_to_usub, Sub.nat_univ_noconf. + - move => h. + have {}h : Γ ⊢ PZero ∈ PUniv j by hauto l:on use:regularity. + exfalso. move : h. clear. + move /Zero_Inv /synsub_to_usub. + hauto l:on use:Sub.univ_nat_noconf. + - move => a h. + have {}h : Γ ⊢ PSuc a ∈ PUniv j by hauto l:on use:regularity. + exfalso. move /Suc_Inv : h => [_ /synsub_to_usub]. + hauto lq:on use:Sub.univ_nat_noconf. + - move => P0 a0 b0 c0 h0 h1 /synsub_to_usub [_ [_ h2]]. + set u := PInd _ _ _ _ in h0. + have hne : SNe u by sfirstorder use:ne_nf_embed. + exfalso. move : h2 hne. hauto l:on use:Sub.univ_sne_noconf. Qed. Lemma Sub_Bind_InvL n Γ p (A : PTm n) B C : @@ -195,6 +244,22 @@ Proof. eauto using E_Symmetric. - hauto lq:on use:synsub_to_usub, Sub.univ_bind_noconf. - hauto lq:on use:regularity, T_Bot_Imp. + - move => _ _ /synsub_to_usub [_ [_ h]]. exfalso. + apply Sub.bind_nat_noconf in h => //=. + - move => h. + have {}h : Γ ⊢ PZero ∈ PUniv i by hauto l:on use:regularity. + exfalso. move : h. clear. + move /Zero_Inv /synsub_to_usub. + hauto l:on use:Sub.univ_nat_noconf. + - move => a h. + have {}h : Γ ⊢ PSuc a ∈ PUniv i by hauto l:on use:regularity. + exfalso. move /Suc_Inv : h => [_ /synsub_to_usub]. + hauto lq:on use:Sub.univ_nat_noconf. + - move => P0 a0 b0 c0 h0 h1 /synsub_to_usub [_ [_ h2]]. + set u := PInd _ _ _ _ in h0. + have hne : SNe u by sfirstorder use:ne_nf_embed. + exfalso. move : h2 hne. subst u. + hauto l:on use:Sub.sne_bind_noconf. Qed. Lemma T_Abs_Inv n Γ (a0 a1 : PTm (S n)) U : @@ -222,11 +287,73 @@ Proof. apply : ctx_eq_subst_one; eauto. Qed. +Lemma T_Univ_Raise n Γ (a : PTm n) i j : + Γ ⊢ a ∈ PUniv i -> + i <= j -> + Γ ⊢ a ∈ PUniv j. +Proof. hauto lq:on rew:off use:T_Conv, Su_Univ, wff_mutual. Qed. + +Lemma Bind_Univ_Inv n Γ p (A : PTm n) B i : + Γ ⊢ PBind p A B ∈ PUniv i -> + Γ ⊢ A ∈ PUniv i /\ funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i. +Proof. + move /Bind_Inv. + move => [i0][hA][hB]h. + move /synsub_to_usub : h => [_ [_ /Sub.univ_inj ? ]]. + sfirstorder use:T_Univ_Raise. +Qed. + +Lemma Abs_Pi_Inv n Γ (a : PTm (S n)) A B : + Γ ⊢ PAbs a ∈ PBind PPi A B -> + funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B. +Proof. + move => h. + have [i hi] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by hauto use:regularity. + have [{}i {}hi] : exists i, Γ ⊢ A ∈ PUniv i by hauto use:Bind_Inv. + apply : subject_reduction; last apply RRed.AppAbs'. + apply : T_App'; cycle 1. + apply : weakening_wt'; cycle 2. apply hi. + apply h. reflexivity. reflexivity. rewrite -/ren_PTm. + apply T_Var' with (i := var_zero). by asimpl. + by eauto using Wff_Cons'. + rewrite -/ren_PTm. + by asimpl. + rewrite -/ren_PTm. + by asimpl. +Qed. + +Lemma Pair_Sig_Inv n Γ (a b : PTm n) A B : + Γ ⊢ PPair a b ∈ PBind PSig A B -> + Γ ⊢ a ∈ A /\ Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B. +Proof. + move => /[dup] h0 h1. + have [i hr] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by sfirstorder use:regularity. + move /T_Proj1 in h0. + move /T_Proj2 in h1. + split. + hauto lq:on use:subject_reduction ctrs:RRed.R. + have hE : Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A by + hauto lq:on use:RRed_Eq ctrs:RRed.R. + apply : T_Conv. + move /subject_reduction : h1. apply. + apply RRed.ProjPair. + apply : bind_inst; eauto. +Qed. + + (* Coquand's algorithm with subtyping *) Reserved Notation "a ∼ b" (at level 70). Reserved Notation "a ↔ b" (at level 70). Reserved Notation "a ⇔ b" (at level 70). Inductive CoqEq {n} : PTm n -> PTm n -> Prop := +| CE_ZeroZero : + PZero ↔ PZero + +| CE_SucSuc a b : + a ⇔ b -> + (* ------------- *) + PSuc a ↔ PSuc b + | CE_AbsAbs a b : a ⇔ b -> (* --------------------- *) @@ -274,6 +401,10 @@ Inductive CoqEq {n} : PTm n -> PTm n -> Prop := (* ---------------------------- *) PBind p A0 B0 ↔ PBind p A1 B1 +| CE_NatCong : + (* ------------------ *) + PNat ↔ PNat + | CE_NeuNeu a0 a1 : a0 ∼ a1 -> a0 ↔ a1 @@ -298,6 +429,16 @@ with CoqEq_Neu {n} : PTm n -> PTm n -> Prop := (* ------------------------- *) PApp u0 a0 ∼ PApp u1 a1 +| CE_IndCong P0 P1 u0 u1 b0 b1 c0 c1 : + ishne u0 -> + ishne u1 -> + P0 ⇔ P1 -> + u0 ∼ u1 -> + b0 ⇔ b1 -> + c0 ⇔ c1 -> + (* ----------------------------------- *) + PInd P0 u0 b0 c0 ∼ PInd P1 u1 b1 c1 + with CoqEq_R {n} : PTm n -> PTm n -> Prop := | CE_HRed a a' b b' : rtc HRed.R a a' -> @@ -328,9 +469,6 @@ Lemma coqeq_symmetric_mutual : forall n, (forall (a b : PTm n), a ⇔ b -> b ⇔ a). Proof. apply coqeq_mutual; qauto l:on ctrs:CoqEq,CoqEq_R, CoqEq_Neu. Qed. - -(* Lemma Sub_Univ_InvR *) - Lemma coqeq_sound_mutual : forall n, (forall (a b : PTm n), a ∼ b -> forall Γ A B, Γ ⊢ a ∈ A -> Γ ⊢ b ∈ B -> exists C, Γ ⊢ C ≲ A /\ Γ ⊢ C ≲ B /\ Γ ⊢ a ≡ b ∈ C) /\ @@ -401,6 +539,37 @@ Proof. first by sfirstorder use:bind_inst. apply : Su_Pi_Proj2'; eauto using E_Refl. apply E_App with (A := A2); eauto using E_Conv_E. + - move {hAppL hPairL} => n P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 hP ihP hu ihu hb ihb hc ihc Γ A B. + move /Ind_Inv => [i0][hP0][hu0][hb0][hc0]hSu0. + move /Ind_Inv => [i1][hP1][hu1][hb1][hc1]hSu1. + move : ihu hu0 hu1; do!move/[apply]. move => ihu. + have {}ihu : Γ ⊢ u0 ≡ u1 ∈ PNat by hauto l:on use:E_Conv. + have wfΓ : ⊢ Γ by hauto use:wff_mutual. + have wfΓ' : ⊢ funcomp (ren_PTm shift) (scons PNat Γ) by hauto lq:on use:Wff_Cons', T_Nat'. + move => [:sigeq]. + have sigeq' : Γ ⊢ PBind PSig PNat P0 ≡ PBind PSig PNat P1 ∈ PUniv (max i0 i1). + apply E_Bind. by eauto using T_Nat, E_Refl. + abstract : sigeq. hauto lq:on use:T_Univ_Raise solve+:lia. + have sigleq : Γ ⊢ PBind PSig PNat P0 ≲ PBind PSig PNat P1. + apply Su_Sig with (i := 0)=>//. by apply T_Nat'. by eauto using Su_Eq, T_Nat', E_Refl. + apply Su_Eq with (i := max i0 i1). apply sigeq. + exists (subst_PTm (scons u0 VarPTm) P0). repeat split => //. + suff : Γ ⊢ subst_PTm (scons u0 VarPTm) P0 ≲ subst_PTm (scons u1 VarPTm) P1 by eauto using Su_Transitive. + by eauto using Su_Sig_Proj2. + apply E_IndCong with (i := max i0 i1); eauto. move :sigeq; clear; hauto q:on use:regularity. + apply ihb; eauto. apply : T_Conv; eauto. eapply morphing. apply : Su_Eq. apply E_Symmetric. apply sigeq. + done. apply morphing_ext. apply morphing_id. done. by apply T_Zero. + apply ihc; eauto. + eapply T_Conv; eauto. + eapply ctx_eq_subst_one; eauto. apply : Su_Eq; apply sigeq. + eapply weakening_su; eauto. + eapply morphing; eauto. apply : Su_Eq. apply E_Symmetric. apply sigeq. + apply morphing_ext. set x := {1}(funcomp _ shift). + have -> : x = funcomp (ren_PTm shift) VarPTm by asimpl. + apply : morphing_ren; eauto. apply : renaming_shift; eauto. by apply morphing_id. + apply T_Suc. by apply T_Var. + - hauto lq:on use:Zero_Inv db:wt. + - hauto lq:on use:Suc_Inv db:wt. - move => n a b ha iha Γ A h0 h1. move /Abs_Inv : h0 => [A0][B0][h0]h0'. move /Abs_Inv : h1 => [A1][B1][h1]h1'. @@ -533,6 +702,7 @@ Proof. apply : ctx_eq_subst_one; eauto. apply : Su_Eq; apply eqA. move : weakening_su hjk hA0. by repeat move/[apply]. - hauto lq:on ctrs:Eq,LEq,Wt. + - hauto lq:on ctrs:Eq,LEq,Wt. - move => n a a' b b' ha hb hab ihab Γ A ha0 hb0. have [*] : Γ ⊢ a' ∈ A /\ Γ ⊢ b' ∈ A by eauto using HReds.preservation. hauto lq:on use:HReds.ToEq, E_Symmetric, E_Transitive. @@ -553,8 +723,14 @@ Proof. - hauto l:on use:HRed.AppAbs. - hauto l:on use:HRed.ProjPair. - hauto lq:on ctrs:HRed.R. + - hauto lq:on ctrs:HRed.R. + - hauto lq:on ctrs:HRed.R. - sfirstorder use:ne_hne. - hauto lq:on ctrs:HRed.R. + - sfirstorder use:ne_hne. + - hauto q:on ctrs:HRed.R. + - hauto lq:on use:ne_hne. + - hauto lq:on use:ne_hne. Qed. Lemma algo_metric_case n k (a b : PTm n) : @@ -574,6 +750,15 @@ Proof. inversion E; subst => /=. + hauto lq:on use:HRed.ProjPair unfold:algo_metric solve+:lia. + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:algo_metric solve+:lia. + - inversion h0 as [|A B C D E F]; subst. + hauto qb:on use:ne_hne. + inversion E; subst => /=. + + hauto lq:on use:HRed.IndZero unfold:algo_metric solve+:lia. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + sfirstorder use:ne_hne. Qed. Lemma algo_metric_sym n k (a b : PTm n) : @@ -609,6 +794,53 @@ Proof. clear. move /synsub_to_usub. hauto l:on use:Sub.bind_inj. Qed. +Lemma T_AbsZero_Imp n Γ a (A : PTm n) : + Γ ⊢ PAbs a ∈ A -> + Γ ⊢ PZero ∈ A -> + False. +Proof. + move /Abs_Inv => [A0][B0][_]haU. + move /Zero_Inv => hbU. + move /Sub_Bind_InvR : haU => [i][A2][B2]h2. + have : Γ ⊢ PNat ≲ PBind PPi A2 B2 by eauto using Su_Transitive, Su_Eq. + clear. hauto lq:on use:synsub_to_usub, Sub.bind_nat_noconf. +Qed. + +Lemma T_AbsSuc_Imp n Γ a b (A : PTm n) : + Γ ⊢ PAbs a ∈ A -> + Γ ⊢ PSuc b ∈ A -> + False. +Proof. + move /Abs_Inv => [A0][B0][_]haU. + move /Suc_Inv => [_ hbU]. + move /Sub_Bind_InvR : haU => [i][A2][B2]h2. + have {hbU h2} : Γ ⊢ PNat ≲ PBind PPi A2 B2 by eauto using Su_Transitive, Su_Eq. + hauto lq:on use:Sub.bind_nat_noconf, synsub_to_usub. +Qed. + +Lemma Nat_Inv n Γ A: + Γ ⊢ @PNat n ∈ A -> + exists i, Γ ⊢ PUniv i ≲ A. +Proof. + move E : PNat => u hu. + move : E. + elim : n Γ u A / hu=>//=. + - hauto lq:on use:E_Refl, T_Univ, Su_Eq. + - hauto lq:on ctrs:LEq. +Qed. + +Lemma T_AbsNat_Imp n Γ a (A : PTm n) : + Γ ⊢ PAbs a ∈ A -> + Γ ⊢ PNat ∈ A -> + False. +Proof. + move /Abs_Inv => [A0][B0][_]haU. + move /Nat_Inv => [i hA]. + move /Sub_Univ_InvR : hA => [j][k]hA. + have : Γ ⊢ PBind PPi A0 B0 ≲ PUniv j by eauto using Su_Transitive, Su_Eq. + hauto lq:on use:Sub.bind_univ_noconf, synsub_to_usub. +Qed. + Lemma T_PairBind_Imp n Γ (a0 a1 : PTm n) p A0 B0 U : Γ ⊢ PPair a0 a1 ∈ U -> Γ ⊢ PBind p A0 B0 ∈ U -> @@ -621,6 +853,39 @@ Proof. clear. move /synsub_to_usub. hauto l:on use:Sub.bind_univ_noconf. Qed. +Lemma T_PairNat_Imp n Γ (a0 a1 : PTm n) U : + Γ ⊢ PPair a0 a1 ∈ U -> + Γ ⊢ PNat ∈ U -> + False. +Proof. + move/Pair_Inv => [A1][B1][_][_]hbU. + move /Nat_Inv => [i]/Sub_Univ_InvR[j][k]hU. + have : Γ ⊢ PBind PSig A1 B1 ≲ PUniv j by eauto using Su_Transitive, Su_Eq. + clear. move /synsub_to_usub. hauto l:on use:Sub.bind_univ_noconf. +Qed. + +Lemma T_PairZero_Imp n Γ (a0 a1 : PTm n) U : + Γ ⊢ PPair a0 a1 ∈ U -> + Γ ⊢ PZero ∈ U -> + False. +Proof. + move/Pair_Inv=>[A1][B1][_][_]hbU. + move/Zero_Inv. move/Sub_Bind_InvR : hbU=>[i][A0][B0]*. + have : Γ ⊢ PNat ≲ PBind PSig A0 B0 by eauto using Su_Transitive, Su_Eq. + clear. move /synsub_to_usub. hauto l:on use:Sub.bind_nat_noconf. +Qed. + +Lemma T_PairSuc_Imp n Γ (a0 a1 : PTm n) b U : + Γ ⊢ PPair a0 a1 ∈ U -> + Γ ⊢ PSuc b ∈ U -> + False. +Proof. + move/Pair_Inv=>[A1][B1][_][_]hbU. + move/Suc_Inv=>[_ hU]. move/Sub_Bind_InvR : hbU=>[i][A0][B0]*. + have : Γ ⊢ PNat ≲ PBind PSig A0 B0 by eauto using Su_Transitive, Su_Eq. + clear. move /synsub_to_usub. hauto l:on use:Sub.bind_nat_noconf. +Qed. + Lemma Univ_Inv n Γ i U : Γ ⊢ @PUniv n i ∈ U -> Γ ⊢ PUniv i ∈ PUniv (S i) /\ Γ ⊢ PUniv (S i) ≲ U. @@ -682,6 +947,16 @@ Proof. hauto lq:on use:Sub.bind_univ_noconf. Qed. +Lemma lored_nsteps_suc_inv k n (a : PTm n) b : + nsteps LoRed.R k (PSuc a) b -> exists b', nsteps LoRed.R k a b' /\ b = PSuc b'. +Proof. + move E : (PSuc a) => u hu. + move : a E. + elim : u b /hu. + - hauto l:on. + - scrush ctrs:nsteps inv:LoRed.R. +Qed. + Lemma lored_nsteps_abs_inv k n (a : PTm (S n)) b : nsteps LoRed.R k (PAbs a) b -> exists b', nsteps LoRed.R k a b' /\ b = PAbs b'. Proof. @@ -689,7 +964,7 @@ Proof. move : a E. elim : u b /hu. - hauto l:on. - - hauto lq:on ctrs:nsteps inv:LoRed.R. + - scrush ctrs:nsteps inv:LoRed.R. Qed. Lemma lored_hne_preservation n (a b : PTm n) : @@ -720,6 +995,37 @@ Proof. exists i,(S j),a1,b1. sauto lq:on solve+:lia. Qed. +Lemma lored_nsteps_ind_inv k n P0 (a0 : PTm n) b0 c0 U : + nsteps LoRed.R k (PInd P0 a0 b0 c0) U -> + ishne a0 -> + exists iP ia ib ic P1 a1 b1 c1, + iP <= k /\ ia <= k /\ ib <= k /\ ic <= k /\ + U = PInd P1 a1 b1 c1 /\ + nsteps LoRed.R iP P0 P1 /\ + nsteps LoRed.R ia a0 a1 /\ + nsteps LoRed.R ib b0 b1 /\ + nsteps LoRed.R ic c0 c1. +Proof. + move E : (PInd P0 a0 b0 c0) => u hu. + move : P0 a0 b0 c0 E. + elim : k u U / hu. + - sauto lq:on. + - move => k t0 t1 t2 ht01 ht12 ih P0 a0 b0 c0 ? nea0. subst. + inversion ht01; subst => //=; spec_refl. + * move /(_ ltac:(done)) : ih. + move => [iP][ia][ib][ic]. + exists (S iP), ia, ib, ic. sauto lq:on solve+:lia. + * move /(_ ltac:(sfirstorder use:lored_hne_preservation)) : ih. + move => [iP][ia][ib][ic]. + exists iP, (S ia), ib, ic. sauto lq:on solve+:lia. + * move /(_ ltac:(done)) : ih. + move => [iP][ia][ib][ic]. + exists iP, ia, (S ib), ic. sauto lq:on solve+:lia. + * move /(_ ltac:(done)) : ih. + move => [iP][ia][ib][ic]. + exists iP, ia, ib, (S ic). sauto lq:on solve+:lia. +Qed. + Lemma lored_nsteps_app_inv k n (a0 b0 C : PTm n) : nsteps LoRed.R k (PApp a0 b0) C -> ishne a0 -> @@ -785,6 +1091,7 @@ Proof. lia. Qed. + Lemma lored_nsteps_app_cong k n (a0 a1 b : PTm n) : nsteps LoRed.R k a0 a1 -> ishne a0 -> @@ -917,6 +1224,24 @@ Proof. eapply DJoin.ejoin_pair_inj; hauto qb:on ctrs:rtc, ERed.R. Qed. +Lemma algo_metric_ind n k P0 (a0 : PTm n) b0 c0 P1 a1 b1 c1 : + algo_metric k (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) -> + ishne a0 -> + ishne a1 -> + exists j, j < k /\ algo_metric j P0 P1 /\ algo_metric j a0 a1 /\ + algo_metric j b0 b1 /\ algo_metric j c0 c1. +Proof. + move => [i][j][va][vb][h0][h1][h2][h3][h4]h5 hne0 hne1. + move /lored_nsteps_ind_inv /(_ hne0) : h0. + move =>[iP][ia][ib][ic][P2][a2][b2][c2][?][?][?][?][?][?][?][?]?. subst. + move /lored_nsteps_ind_inv /(_ hne1) : h1. + move =>[iP0][ia0][ib0][ic0][P3][a3][b3][c3][?][?][?][?][?][?][?][?]?. subst. + move /EJoin.ind_inj : h4. + move => [?][?][?]?. + exists (k -1). simpl in *. + hauto lq:on rew:off use:ne_nf b:on solve+:lia. +Qed. + Lemma algo_metric_app n k (a0 b0 a1 b1 : PTm n) : algo_metric k (PApp a0 b0) (PApp a1 b1) -> ishne a0 -> @@ -946,6 +1271,20 @@ Proof. repeat split => //=; sfirstorder b:on use:ne_nf. Qed. +Lemma algo_metric_suc n k (a0 a1 : PTm n) : + algo_metric k (PSuc a0) (PSuc a1) -> + exists j, j < k /\ algo_metric j a0 a1. +Proof. + move => [i][j][va][vb][h0][h1][h2][h3][h4]h5. + exists (k - 1). + move /lored_nsteps_suc_inv : h0. + move => [a0'][ha0]?. subst. + move /lored_nsteps_suc_inv : h1. + move => [b0'][hb0]?. subst. simpl in *. + split; first by lia. + rewrite /algo_metric. + hauto lq:on rew:off use:EJoin.suc_inj solve+:lia. +Qed. Lemma algo_metric_bind n k p0 (A0 : PTm n) B0 p1 A1 B1 : algo_metric k (PBind p0 A0 B0) (PBind p1 A1 B1) -> @@ -966,58 +1305,6 @@ Proof. - exists i1,j1,b2,b3. sfirstorder b:on solve+:lia. Qed. -Lemma T_Univ_Raise n Γ (a : PTm n) i j : - Γ ⊢ a ∈ PUniv i -> - i <= j -> - Γ ⊢ a ∈ PUniv j. -Proof. hauto lq:on rew:off use:T_Conv, Su_Univ, wff_mutual. Qed. - -Lemma Bind_Univ_Inv n Γ p (A : PTm n) B i : - Γ ⊢ PBind p A B ∈ PUniv i -> - Γ ⊢ A ∈ PUniv i /\ funcomp (ren_PTm shift) (scons A Γ) ⊢ B ∈ PUniv i. -Proof. - move /Bind_Inv. - move => [i0][hA][hB]h. - move /synsub_to_usub : h => [_ [_ /Sub.univ_inj ? ]]. - sfirstorder use:T_Univ_Raise. -Qed. - -Lemma Abs_Pi_Inv n Γ (a : PTm (S n)) A B : - Γ ⊢ PAbs a ∈ PBind PPi A B -> - funcomp (ren_PTm shift) (scons A Γ) ⊢ a ∈ B. -Proof. - move => h. - have [i hi] : exists i, Γ ⊢ PBind PPi A B ∈ PUniv i by hauto use:regularity. - have [{}i {}hi] : exists i, Γ ⊢ A ∈ PUniv i by hauto use:Bind_Inv. - apply : subject_reduction; last apply RRed.AppAbs'. - apply : T_App'; cycle 1. - apply : weakening_wt'; cycle 2. apply hi. - apply h. reflexivity. reflexivity. rewrite -/ren_PTm. - apply T_Var' with (i := var_zero). by asimpl. - by eauto using Wff_Cons'. - rewrite -/ren_PTm. - by asimpl. - rewrite -/ren_PTm. - by asimpl. -Qed. - -Lemma Pair_Sig_Inv n Γ (a b : PTm n) A B : - Γ ⊢ PPair a b ∈ PBind PSig A B -> - Γ ⊢ a ∈ A /\ Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B. -Proof. - move => /[dup] h0 h1. - have [i hr] : exists i, Γ ⊢ PBind PSig A B ∈ PUniv i by sfirstorder use:regularity. - move /T_Proj1 in h0. - move /T_Proj2 in h1. - split. - hauto lq:on use:subject_reduction ctrs:RRed.R. - have hE : Γ ⊢ PProj PL (PPair a b) ≡ a ∈ A by - hauto lq:on use:RRed_Eq ctrs:RRed.R. - apply : T_Conv. - move /subject_reduction : h1. apply. - apply RRed.ProjPair. - apply : bind_inst; eauto. -Qed. Lemma coqeq_complete' n k (a b : PTm n) : algo_metric k a b -> @@ -1046,7 +1333,7 @@ Proof. - split; last by sfirstorder use:hf_not_hne. move {hnfneu}. case : a h fb fa => //=. - + case : b => //=; try qauto depth:1 use:T_AbsPair_Imp, T_AbsBind_Imp, T_AbsUniv_Imp. + + case : b => //=; try qauto depth:1 use:T_AbsPair_Imp, T_AbsBind_Imp, T_AbsUniv_Imp, T_AbsZero_Imp, T_AbsSuc_Imp, T_AbsNat_Imp. move => a0 a1 ha0 _ _ Γ A wt0 wt1. move : T_Abs_Inv wt0 wt1; repeat move/[apply]. move => [Δ [V [wt1 wt0]]]. apply : CE_HRed; eauto using rtc_refl. @@ -1077,7 +1364,7 @@ Proof. simpl in *. have [*] : va' = va /\ vb' = vb by eauto using red_uniquenf. subst. sfirstorder. - + case : b => //=; try qauto depth:1 use:T_AbsPair_Imp, T_PairBind_Imp, T_PairUniv_Imp. + + case : b => //=; try qauto depth:1 use:T_AbsPair_Imp, T_PairBind_Imp, T_PairUniv_Imp, T_PairNat_Imp, T_PairSuc_Imp, T_PairZero_Imp. move => a1 b1 a0 b0 h _ _ Γ A hu0 hu1. have [sn0 sn1] : SN (PPair a0 b0) /\ SN (PPair a1 b1) by qauto l:on use:fundamental_theorem, logrel.SemWt_SN. @@ -1145,6 +1432,12 @@ Proof. eauto using Su_Eq. * move => > /algo_metric_join. hauto lq:on use:DJoin.bind_univ_noconf. + * move => > /algo_metric_join. + hauto lq:on use:Sub.nat_bind_noconf, Sub.FromJoin. + * move => > /algo_metric_join. + clear. hauto lq:on rew:off use:REReds.bind_inv, REReds.zero_inv. + * move => > /algo_metric_join. clear. + hauto lq:on rew:off use:REReds.bind_inv, REReds.suc_inv. + case : b => //=. * hauto lq:on use:T_AbsUniv_Imp. * hauto lq:on use:T_PairUniv_Imp. @@ -1152,6 +1445,55 @@ Proof. * move => i j /algo_metric_join /DJoin.univ_inj ? _ _ Γ A hi hj. subst. hauto l:on. + * move => > /algo_metric_join. + hauto lq:on use:Sub.nat_univ_noconf, Sub.FromJoin. + * move => > /algo_metric_join. + clear. hauto lq:on rew:off use:REReds.univ_inv, REReds.zero_inv. + * move => > /algo_metric_join. + clear. hauto lq:on rew:off use:REReds.univ_inv, REReds.suc_inv. + + case : b => //=. + * qauto l:on use:T_AbsNat_Imp. + * qauto l:on use:T_PairNat_Imp. + * move => > /algo_metric_join /Sub.FromJoin. hauto l:on use:Sub.bind_nat_noconf. + * move => > /algo_metric_join /Sub.FromJoin. hauto lq:on use:Sub.univ_nat_noconf. + * hauto l:on. + * move /algo_metric_join. + hauto lq:on rew:off use:REReds.nat_inv, REReds.zero_inv. + * move => > /algo_metric_join. + hauto lq:on rew:off use:REReds.nat_inv, REReds.suc_inv. + (* Zero *) + + case : b => //=. + * hauto lq:on rew:off use:T_AbsZero_Imp. + * hauto lq: on use: T_PairZero_Imp. + * move =>> /algo_metric_join. + hauto lq:on rew:off use:REReds.zero_inv, REReds.bind_inv. + * move =>> /algo_metric_join. + hauto lq:on rew:off use:REReds.zero_inv, REReds.univ_inv. + * move =>> /algo_metric_join. + hauto lq:on rew:off use:REReds.zero_inv, REReds.nat_inv. + * hauto l:on. + * move =>> /algo_metric_join. + hauto lq:on rew:off use:REReds.zero_inv, REReds.suc_inv. + (* Suc *) + + case : b => //=. + * hauto lq:on rew:off use:T_AbsSuc_Imp. + * hauto lq:on use:T_PairSuc_Imp. + * move => > /algo_metric_join. + hauto lq:on rew:off use:REReds.suc_inv, REReds.bind_inv. + * move => > /algo_metric_join. + hauto lq:on rew:off use:REReds.suc_inv, REReds.univ_inv. + * move => > /algo_metric_join. + hauto lq:on rew:off use:REReds.suc_inv, REReds.nat_inv. + * move => > /algo_metric_join. + hauto lq:on rew:off use:REReds.suc_inv, REReds.zero_inv. + * move => a0 a1 h _ _. + move /algo_metric_suc : h => [j [h4 h5]]. + move => Γ A /Suc_Inv [h0 h1] /Suc_Inv [h2 h3]. + move : ih h4 h5;do!move/[apply]. + move => [ih _]. + move : ih h0 h2;do!move/[apply]. + move => h. apply : CE_HRed; eauto using rtc_refl. + by constructor. - move : k a b h fb fa. abstract : hnfneu. move => k. move => + b. @@ -1208,6 +1550,27 @@ Proof. hauto l:on use:Sub.hne_bind_noconf. (* NeuUniv: Impossible *) + hauto lq:on rew:off use:DJoin.hne_univ_noconf, algo_metric_join. + + hauto lq:on rew:off use:DJoin.hne_nat_noconf, algo_metric_join. + (* Zero *) + + case => //=. + * move => i /algo_metric_join. clear. + hauto lq:on rew:off use:REReds.var_inv, REReds.zero_inv. + * move => >/algo_metric_join. clear. + hauto lq:on rew:off use:REReds.hne_app_inv, REReds.zero_inv. + * move => >/algo_metric_join. clear. + hauto lq:on rew:off use:REReds.hne_proj_inv, REReds.zero_inv. + * sfirstorder use:T_Bot_Imp. + * move => >/algo_metric_join. clear. + move => h _ h2. exfalso. + hauto q:on use:REReds.hne_ind_inv, REReds.zero_inv. + (* Suc *) + + move => a0. + case => //=; move => >/algo_metric_join; clear. + * hauto lq:on rew:off use:REReds.var_inv, REReds.suc_inv. + * hauto lq:on rew:off use:REReds.hne_app_inv, REReds.suc_inv. + * hauto lq:on rew:off use:REReds.hne_proj_inv, REReds.suc_inv. + * sfirstorder use:T_Bot_Imp. + * hauto q:on use:REReds.hne_ind_inv, REReds.suc_inv. - move {ih}. move /algo_metric_sym in h. qauto l:on use:coqeq_symmetric_mutual. @@ -1220,20 +1583,22 @@ Proof. by firstorder. case : a h fb fa => //=. - + case : b => //=. - move => i j hi _ _. - * have ? : j = i by hauto lq:on use:algo_metric_join, DJoin.var_inj. subst. - move => Γ A B hA hB. - split. apply CE_VarCong. - exists (Γ i). hauto l:on use:Var_Inv, T_Var. - * move => p p0 f /algo_metric_join. clear => ? ? _. exfalso. + + case : b => //=; move => > /algo_metric_join. + * move /DJoin.var_inj => ?. subst. qauto l:on use:Var_Inv, T_Var,CE_VarCong. + * clear => ? ? _. exfalso. hauto l:on use:REReds.var_inv, REReds.hne_app_inv. - * move => a0 a1 i /algo_metric_join. clear => ? ? _. exfalso. + * clear => ? ? _. exfalso. hauto l:on use:REReds.var_inv, REReds.hne_proj_inv. * sfirstorder use:T_Bot_Imp. - + case : b => //=. - * clear. move => i a a0 /algo_metric_join h _ ?. exfalso. - hauto l:on use:REReds.hne_app_inv, REReds.var_inv. + * clear => ? ? _. exfalso. + hauto q:on use:REReds.var_inv, REReds.hne_ind_inv. + + case : b => //=; + lazymatch goal with + | [|- context[algo_metric _ (PApp _ _) (PApp _ _)]] => idtac + | _ => move => > /algo_metric_join + end. + * clear => *. exfalso. + hauto lq:on rew:off use:REReds.hne_app_inv, REReds.var_inv. (* real case *) * move => b1 a1 b0 a0 halg hne1 hne0 Γ A B wtA wtB. move /App_Inv : wtA => [A0][B0][hb0][ha0]hS0. @@ -1259,7 +1624,7 @@ Proof. move => [ih _]. move : ih (ha0') (ha1'); repeat move/[apply]. move => iha. - split. sauto lq:on. + split. qblast. exists (subst_PTm (scons a0 VarPTm) B2). split. apply : Su_Transitive; eauto. @@ -1279,9 +1644,11 @@ Proof. move /E_Symmetric in h01. move /regularity_sub0 : hSu20 => [i0]. sfirstorder use:bind_inst. - * move => p p0 p1 p2 /algo_metric_join. clear => ? ? ?. exfalso. + * clear => ? ? ?. exfalso. hauto q:on use:REReds.hne_app_inv, REReds.hne_proj_inv. * sfirstorder use:T_Bot_Imp. + * clear => ? ? ?. exfalso. + hauto q:on use:REReds.hne_app_inv, REReds.hne_ind_inv. + case : b => //=. * move => i p h /algo_metric_join. clear => ? _ ?. exfalso. hauto l:on use:REReds.hne_proj_inv, REReds.var_inv. @@ -1342,7 +1709,66 @@ Proof. move /regularity_sub0 in hSu21. sfirstorder use:bind_inst. * sfirstorder use:T_Bot_Imp. + * move => > /algo_metric_join; clear => ? ? ?. exfalso. + hauto q:on use:REReds.hne_proj_inv, REReds.hne_ind_inv. + sfirstorder use:T_Bot_Imp. + (* ind ind case *) + + move => P a0 b0 c0. + case : b => //=; + lazymatch goal with + | [|- context[algo_metric _ (PInd _ _ _ _) (PInd _ _ _ _)]] => idtac + | _ => move => > /algo_metric_join; clear => *; exfalso + end. + * hauto q:on use:REReds.hne_ind_inv, REReds.var_inv. + * hauto q:on use:REReds.hne_ind_inv, REReds.hne_app_inv. + * hauto q:on use:REReds.hne_ind_inv, REReds.hne_proj_inv. + * sfirstorder use:T_Bot_Imp. + * move => P1 a1 b1 c1 /[dup] halg /algo_metric_ind + h0 h1. + move /(_ h1 h0). + move => [j][hj][hP][ha][hb]hc Γ A B hL hR. + move /Ind_Inv : hL => [iP0][wtP0][wta0][wtb0][wtc0]hSu0. + move /Ind_Inv : hR => [iP1][wtP1][wta1][wtb1][wtc1]hSu1. + have {}iha : a0 ∼ a1 by qauto l:on. + have [] : iP0 <= max iP0 iP1 /\ iP1 <= max iP0 iP1 by lia. + move : T_Univ_Raise wtP0; do!move/[apply]. move => wtP0. + move : T_Univ_Raise wtP1; do!move/[apply]. move => wtP1. + have {}ihP : P ⇔ P1 by qauto l:on. + set Δ := funcomp _ _ in wtP0, wtP1, wtc0, wtc1. + have wfΔ :⊢ Δ by hauto l:on use:wff_mutual. + have hPE : Δ ⊢ P ≡ P1 ∈ PUniv (max iP0 iP1) + by hauto l:on use:coqeq_sound_mutual. + have haE : Γ ⊢ a0 ≡ a1 ∈ PNat + by hauto l:on use:coqeq_sound_mutual. + have wtΓ : ⊢ Γ by hauto l:on use:wff_mutual. + have hE : Γ ⊢ subst_PTm (scons PZero VarPTm) P ≡ subst_PTm (scons PZero VarPTm) P1 ∈ subst_PTm (scons PZero VarPTm) (PUniv (Nat.max iP0 iP1)). + eapply morphing; eauto. apply morphing_ext. by apply morphing_id. by apply T_Zero. + have {}wtb1 : Γ ⊢ b1 ∈ subst_PTm (scons PZero VarPTm) P + by eauto using T_Conv_E. + have {}ihb : b0 ⇔ b1 by hauto l:on. + have hPSig : Γ ⊢ PBind PSig PNat P ≡ PBind PSig PNat P1 ∈ PUniv (Nat.max iP0 iP1) by eauto with wt. + set T := ren_PTm shift _ in wtc0. + have : funcomp (ren_PTm shift) (scons P Δ) ⊢ c1 ∈ T. + apply : T_Conv; eauto. apply : ctx_eq_subst_one; eauto with wt. + apply : Su_Eq; eauto. + subst T. apply : weakening_su; eauto. + eapply morphing. apply : Su_Eq. apply E_Symmetric. by eauto. + hauto l:on use:wff_mutual. + apply morphing_ext. set x := funcomp _ _. + have -> : x = funcomp (ren_PTm shift) VarPTm by asimpl. + apply : morphing_ren; eauto using renaming_shift. + apply : renaming_shift; eauto. by apply morphing_id. + apply T_Suc. by apply T_Var. subst T => {}wtc1. + have {}ihc : c0 ⇔ c1 by qauto l:on. + move => [:ih]. + split. abstract : ih. move : h0 h1 ihP iha ihb ihc. clear. sauto lq:on. + have hEInd : Γ ⊢ PInd P a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P by hfcrush use:coqeq_sound_mutual. + exists (subst_PTm (scons a0 VarPTm) P). + repeat split => //=; eauto with wt. + apply : Su_Transitive. + apply : Su_Sig_Proj2; eauto. apply : Su_Sig; eauto using T_Nat' with wt. + apply : Su_Eq. apply E_Refl. by apply T_Nat'. + apply : Su_Eq. apply hPE. by eauto. + move : hEInd. clear. hauto l:on use:regularity. Qed. Lemma coqeq_sound : forall n Γ (a b : PTm n) A, @@ -1389,6 +1815,9 @@ Inductive CoqLEq {n} : PTm n -> PTm n -> Prop := (* ---------------------------- *) PBind PSig A0 B0 ⋖ PBind PSig A1 B1 +| CLE_NatCong : + PNat ⋖ PNat + | CLE_NeuNeu a0 a1 : a0 ∼ a1 -> a0 ⋖ a1 @@ -1451,6 +1880,7 @@ Proof. apply : ihB; by eauto using ctx_eq_subst_one. apply : Su_Sig; eauto using E_Refl, Su_Eq. - sauto lq:on use:coqeq_sound_mutual, Su_Eq. + - sauto lq:on use:coqeq_sound_mutual, Su_Eq. - move => n a a' b b' ? ? ? ih Γ i ha hb. have /Su_Eq ? : Γ ⊢ a ≡ a' ∈ PUniv i by sfirstorder use:HReds.ToEq. have /E_Symmetric /Su_Eq ? : Γ ⊢ b ≡ b' ∈ PUniv i by sfirstorder use:HReds.ToEq. @@ -1475,6 +1905,15 @@ Proof. inversion E; subst => /=. + hauto lq:on use:HRed.ProjPair unfold:algo_metric solve+:lia. + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:algo_metric solve+:lia. + - inversion h0 as [|A B C D E F]; subst. + hauto qb:on use:ne_hne. + inversion E; subst => /=. + + hauto lq:on use:HRed.IndZero unfold:algo_metric solve+:lia. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + sfirstorder use:ne_hne. Qed. Lemma CLE_HRedL n (a a' b : PTm n) : @@ -1511,6 +1950,15 @@ Proof. inversion E; subst => /=. + hauto lq:on use:HRed.ProjPair unfold:algo_metric solve+:lia. + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:algo_metric solve+:lia. + - inversion 1 as [|A B C D E F]; subst. + hauto qb:on use:ne_hne. + inversion E; subst => /=. + + hauto lq:on use:HRed.IndZero unfold:algo_metric solve+:lia. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:algo_metric solve+:lia. + + sfirstorder use:ne_hne. + + sfirstorder use:ne_hne. Qed. Lemma salgo_metric_sub n k (a b : PTm n) : @@ -1595,21 +2043,55 @@ Proof. by hauto l:on. eauto using ctx_eq_subst_one. * hauto lq:on use:salgo_metric_sub, Sub.bind_univ_noconf. + * hauto lq:on use:salgo_metric_sub, Sub.nat_bind_noconf. + * move => _ > _ /salgo_metric_sub. + hauto lq:on rew:off use:REReds.bind_inv, REReds.zero_inv inv:Sub1.R. + * hauto lq:on rew:off use:REReds.bind_inv, REReds.suc_inv, salgo_metric_sub inv:Sub1.R. + case : b fb => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'. * hauto lq:on use:salgo_metric_sub, Sub.univ_bind_noconf. * move => *. econstructor; eauto using rtc_refl. hauto lq:on use:salgo_metric_sub, Sub.univ_inj, CLE_UnivCong. + * hauto lq:on rew:off use:REReds.univ_inv, REReds.nat_inv, salgo_metric_sub inv:Sub1.R. + * hauto lq:on rew:off use:REReds.univ_inv, REReds.zero_inv, salgo_metric_sub inv:Sub1.R. + * hauto lq:on rew:off use:REReds.suc_inv, REReds.univ_inv, salgo_metric_sub inv:Sub1.R. (* Both cases are impossible *) + + case : b fb => //=. + * hauto lq:on use:T_AbsNat_Imp. + * hauto lq:on use:T_PairNat_Imp. + * hauto lq:on rew:off use:REReds.nat_inv, REReds.bind_inv, salgo_metric_sub inv:Sub1.R. + * hauto lq:on rew:off use:REReds.nat_inv, REReds.univ_inv, salgo_metric_sub inv:Sub1.R. + * hauto l:on. + * hauto lq:on rew:off use:REReds.nat_inv, REReds.zero_inv, salgo_metric_sub inv:Sub1.R. + * hauto lq:on rew:off use:REReds.nat_inv, REReds.suc_inv, salgo_metric_sub inv:Sub1.R. + + move => ? ? Γ i /Zero_Inv. + clear. + move /synsub_to_usub => [_ [_ ]]. + hauto lq:on rew:off use:REReds.nat_inv, REReds.univ_inv inv:Sub1.R. + + move => ? _ _ Γ i /Suc_Inv => [[_]]. + move /synsub_to_usub. + hauto lq:on rew:off use:REReds.nat_inv, REReds.univ_inv inv:Sub1.R. - have {}h : DJoin.R a b by hauto lq:on use:salgo_metric_algo_metric, algo_metric_join. case : b fb h => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'. + hauto lq:on use:DJoin.hne_bind_noconf. + hauto lq:on use:DJoin.hne_univ_noconf. + + hauto lq:on use:DJoin.hne_nat_noconf. + + move => _ _ Γ i _. + move /Zero_Inv. + hauto q:on use:REReds.nat_inv, REReds.univ_inv, synsub_to_usub inv:Sub1.R. + + move => p _ _ Γ i _ /Suc_Inv. + hauto q:on use:REReds.nat_inv, REReds.univ_inv, synsub_to_usub inv:Sub1.R. - have {}h : DJoin.R b a by hauto lq:on use:salgo_metric_algo_metric, algo_metric_join, DJoin.symmetric. case : a fa h => //=; try hauto depth:1 lq:on use:T_AbsUniv_Imp', T_PairUniv_Imp'. + hauto lq:on use:DJoin.hne_bind_noconf. + hauto lq:on use:DJoin.hne_univ_noconf. + + hauto lq:on use:DJoin.hne_nat_noconf. + + move => _ _ Γ i. + move /Zero_Inv. + hauto q:on use:REReds.nat_inv, REReds.univ_inv, synsub_to_usub inv:Sub1.R. + + move => p _ _ Γ i /Suc_Inv. + hauto q:on use:REReds.nat_inv, REReds.univ_inv, synsub_to_usub inv:Sub1.R. - move => Γ i ha hb. econstructor; eauto using rtc_refl. apply CLE_NeuNeu. move {ih}. diff --git a/theories/common.v b/theories/common.v index 24e708e..282038d 100644 --- a/theories/common.v +++ b/theories/common.v @@ -1,4 +1,4 @@ -Require Import Autosubst2.fintype Autosubst2.syntax ssreflect. +Require Import Autosubst2.fintype Autosubst2.syntax Autosubst2.core ssreflect. From Ltac2 Require Ltac2. Import Ltac2.Notations. Import Ltac2.Control. @@ -7,16 +7,6 @@ From Hammer Require Import Tactics. Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) := forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i). -Local Ltac2 rec solve_anti_ren () := - let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in - intro $x; - lazy_match! Constr.type (Control.hyp x) with - | fin _ -> _ _ => (ltac1:(case;hauto q:on depth:2)) - | _ => solve_anti_ren () - end. - -Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). - Lemma up_injective n m (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j. @@ -24,43 +14,58 @@ Proof. sblast inv:option. Qed. +Local Ltac2 rec solve_anti_ren () := + let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in + intro $x; + lazy_match! Constr.type (Control.hyp x) with + | fin _ -> _ _ => (ltac1:(case;hauto lq:on rew:off use:up_injective)) + | _ => solve_anti_ren () + end. + +Local Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). + Lemma ren_injective n m (a b : PTm n) (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> ren_PTm ξ a = ren_PTm ξ b -> a = b. Proof. - move : m ξ b. - elim : n / a => //; try solve_anti_ren. - - move => n a iha m ξ []//=. - move => u hξ [h]. - apply iha in h. by subst. - destruct i, j=>//=. - hauto l:on. - - move => n p A ihA B ihB m ξ []//=. - move => b A0 B0 hξ [?]. subst. - move => ?. have ? : A0 = A by firstorder. subst. - move => ?. have : B = B0. apply : ihB; eauto. - sauto. - congruence. + move : m ξ b. elim : n / a => //; try solve_anti_ren. Qed. +Inductive HF : Set := +| H_Pair | H_Abs | H_Univ | H_Bind (p : BTag) | H_Nat | H_Suc | H_Zero | H_Bot. + Definition ishf {n} (a : PTm n) := match a with | PPair _ _ => true | PAbs _ => true | PUniv _ => true | PBind _ _ _ => true + | PNat => true + | PSuc _ => true + | PZero => true | _ => false end. +Definition toHF {n} (a : PTm n) := + match a with + | PPair _ _ => H_Pair + | PAbs _ => H_Abs + | PUniv _ => H_Univ + | PBind p _ _ => H_Bind p + | PNat => H_Nat + | PSuc _ => H_Suc + | PZero => H_Zero + | _ => H_Bot + end. + Fixpoint ishne {n} (a : PTm n) := match a with | VarPTm _ => true | PApp a _ => ishne a | PProj _ a => ishne a | PBot => true + | PInd _ n _ _ => ishne n | _ => false end. @@ -74,6 +79,12 @@ Definition ispair {n} (a : PTm n) := | _ => false end. +Definition isnat {n} (a : PTm n) := if a is PNat then true else false. + +Definition iszero {n} (a : PTm n) := if a is PZero then true else false. + +Definition issuc {n} (a : PTm n) := if a is PSuc _ then true else false. + Definition isabs {n} (a : PTm n) := match a with | PAbs _ => true @@ -95,3 +106,7 @@ Proof. case : a => //=. Qed. Definition ishne_ren n m (a : PTm n) (ξ : fin n -> fin m) : ishne (ren_PTm ξ a) = ishne a. Proof. move : m ξ. elim : n / a => //=. Qed. + +Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A : + renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift. +Proof. sfirstorder. Qed. diff --git a/theories/executable.v b/theories/executable.v new file mode 100644 index 0000000..f773fa6 --- /dev/null +++ b/theories/executable.v @@ -0,0 +1,145 @@ +From Equations Require Import Equations. +Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax + common typing preservation admissible fp_red structural soundness. +Require Import algorithmic. +From stdpp Require Import relations (rtc(..), nsteps(..)). +Require Import ssreflect ssrbool. + +Inductive algo_dom {n} : PTm n -> PTm n -> Prop := +| A_AbsAbs a b : + algo_dom a b -> + (* --------------------- *) + algo_dom (PAbs a) (PAbs b) + +| A_AbsNeu a u : + ishne u -> + algo_dom a (PApp (ren_PTm shift u) (VarPTm var_zero)) -> + (* --------------------- *) + algo_dom (PAbs a) u + +| A_NeuAbs a u : + ishne u -> + algo_dom (PApp (ren_PTm shift u) (VarPTm var_zero)) a -> + (* --------------------- *) + algo_dom u (PAbs a) + +| A_PairPair a0 a1 b0 b1 : + algo_dom a0 a1 -> + algo_dom b0 b1 -> + (* ---------------------------- *) + algo_dom (PPair a0 b0) (PPair a1 b1) + +| A_PairNeu a0 a1 u : + ishne u -> + algo_dom a0 (PProj PL u) -> + algo_dom a1 (PProj PR u) -> + (* ----------------------- *) + algo_dom (PPair a0 a1) u + +| A_NeuPair a0 a1 u : + ishne u -> + algo_dom (PProj PL u) a0 -> + algo_dom (PProj PR u) a1 -> + (* ----------------------- *) + algo_dom u (PPair a0 a1) + +| A_UnivCong i j : + (* -------------------------- *) + algo_dom (PUniv i) (PUniv j) + +| A_BindCong p0 p1 A0 A1 B0 B1 : + algo_dom A0 A1 -> + algo_dom B0 B1 -> + (* ---------------------------- *) + algo_dom (PBind p0 A0 B0) (PBind p1 A1 B1) + +| A_VarCong i j : + (* -------------------------- *) + algo_dom (VarPTm i) (VarPTm j) + +| A_ProjCong p0 p1 u0 u1 : + ishne u0 -> + ishne u1 -> + algo_dom u0 u1 -> + (* --------------------- *) + algo_dom (PProj p0 u0) (PProj p1 u1) + +| A_AppCong u0 u1 a0 a1 : + ishne u0 -> + ishne u1 -> + algo_dom u0 u1 -> + algo_dom a0 a1 -> + (* ------------------------- *) + algo_dom (PApp u0 a0) (PApp u1 a1) + +| A_HRedL a a' b : + HRed.R a a' -> + algo_dom a' b -> + (* ----------------------- *) + algo_dom a b + +| A_HRedR a b b' : + ishne a \/ ishf a -> + HRed.R b b' -> + algo_dom a b' -> + (* ----------------------- *) + algo_dom a b. + + +Definition fin_eq {n} (i j : fin n) : bool. +Proof. + induction n. + - by exfalso. + - refine (match i , j with + | None, None => true + | Some i, Some j => IHn i j + | _, _ => false + end). +Defined. + +Lemma fin_eq_dec {n} (i j : fin n) : + Bool.reflect (i = j) (fin_eq i j). +Proof. + revert i j. induction n. + - destruct i. + - destruct i; destruct j. + + specialize (IHn f f0). + inversion IHn; subst. + simpl. rewrite -H. + apply ReflectT. + reflexivity. + simpl. rewrite -H. + apply ReflectF. + injection. tauto. + + by apply ReflectF. + + by apply ReflectF. + + by apply ReflectT. +Defined. + + +Equations check_equal {n} (a b : PTm n) (h : algo_dom a b) : + bool by struct h := + check_equal a b h with (@idP (ishne a || ishf a)) := { + | Bool.ReflectT _ _ => _ + | Bool.ReflectF _ _ => _ + }. + + + (* check_equal (VarPTm i) (VarPTm j) h := fin_eq i j; *) + (* check_equal (PAbs a) (PAbs b) h := check_equal a b _; *) + (* check_equal (PPair a0 b0) (PPair a1 b1) h := *) + (* check_equal a0 b0 _ && check_equal a1 b1 _; *) + (* check_equal (PUniv i) (PUniv j) _ := _; *) +Next Obligation. + simpl. + intros ih. +Admitted. + +Search (Bool.reflect (is_true _) _). +Check idP. + +Definition metric {n} k (a b : PTm n) := + exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ + nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k. + +Search (nat -> nat -> bool). diff --git a/theories/fp_red.v b/theories/fp_red.v index e89c191..bffe1a7 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -55,7 +55,22 @@ Module EPar. R B0 B1 -> R (PBind p A0 B0) (PBind p A1 B1) | BotCong : - R PBot PBot. + R PBot PBot + | NatCong : + R PNat PNat + | IndCong P0 P1 a0 a1 b0 b1 c0 c1 : + R P0 P1 -> + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + (* ----------------------- *) + R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) + | ZeroCong : + R PZero PZero + | SucCong a0 a1 : + R a0 a1 -> + (* ------------ *) + R (PSuc a0) (PSuc a1). Lemma refl n (a : PTm n) : R a a. Proof. @@ -76,9 +91,10 @@ Module EPar. move => h. move : m ξ. elim : n a b /h. + all : try qauto ctrs:R. + move => n a0 a1 ha iha m ξ /=. eapply AppEta'; eauto. by asimpl. - all : qauto ctrs:R. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : @@ -125,6 +141,12 @@ Inductive SNe {n} : PTm n -> Prop := SNe (PProj p a) | N_Bot : SNe PBot +| N_Ind P a b c : + SN P -> + SNe a -> + SN b -> + SN c -> + SNe (PInd P a b c) with SN {n} : PTm n -> Prop := | N_Pair a b : SN a -> @@ -146,6 +168,13 @@ with SN {n} : PTm n -> Prop := SN (PBind p A B) | N_Univ i : SN (PUniv i) +| N_Nat : + SN PNat +| N_Zero : + SN PZero +| N_Suc a : + SN a -> + SN (PSuc a) with TRedSN {n} : PTm n -> PTm n -> Prop := | N_β a b : SN b -> @@ -162,10 +191,32 @@ with TRedSN {n} : PTm n -> PTm n -> Prop := TRedSN (PProj PR (PPair a b)) b | N_ProjCong p a b : TRedSN a b -> - TRedSN (PProj p a) (PProj p b). + TRedSN (PProj p a) (PProj p b) +| N_IndZero P b c : + SN P -> + SN b -> + SN c -> + TRedSN (PInd P PZero b c) b +| N_IndSuc P a b c : + SN P -> + SN a -> + SN b -> + SN c -> + TRedSN (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) +| N_IndCong P a0 a1 b c : + SN P -> + SN b -> + SN c -> + TRedSN a0 a1 -> + TRedSN (PInd P a0 b c) (PInd P a1 b c). Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop. +Inductive SNat {n} : PTm n -> Prop := +| S_Zero : SNat PZero +| S_Neu a : SNe a -> SNat a +| S_Suc a : SNat a -> SNat (PSuc a) +| S_Red a b : TRedSN a b -> SNat b -> SNat a. Lemma PProj_imp n p a : @ishf n a -> @@ -179,7 +230,7 @@ Proof. hauto lq:on inv:TRedSN. Qed. -Lemma PAbs_imp n a b : +Lemma PApp_imp n a b : @ishf n a -> ~~ isabs a -> ~ SN (PApp a b). @@ -190,34 +241,35 @@ Proof. hauto lq:on inv:TRedSN. Qed. +Lemma PInd_imp n P (a : PTm n) b c : + ishf a -> + ~~ iszero a -> + ~~ issuc a -> + ~ SN (PInd P a b c). +Proof. + move => + + + h. move E : (PInd P a b c) h => u h. + move : P a b c E. + elim : n u /h => //=. + hauto lq:on inv:SNe,PTm. + hauto lq:on inv:TRedSN. +Qed. + Lemma PProjAbs_imp n p (a : PTm (S n)) : ~ SN (PProj p (PAbs a)). Proof. - move E : (PProj p (PAbs a)) => u hu. - move : p a E. - elim : n u / hu=>//=. - hauto lq:on inv:SNe. - hauto lq:on inv:TRedSN. + sfirstorder use:PProj_imp. Qed. Lemma PAppPair_imp n (a b0 b1 : PTm n ) : ~ SN (PApp (PPair b0 b1) a). Proof. - move E : (PApp (PPair b0 b1) a) => u hu. - move : a b0 b1 E. - elim : n u / hu=>//=. - hauto lq:on inv:SNe. - hauto lq:on inv:TRedSN. + sfirstorder use:PApp_imp. Qed. Lemma PAppBind_imp n p (A : PTm n) B b : ~ SN (PApp (PBind p A B) b). Proof. - move E :(PApp (PBind p A B) b) => u hu. - move : p A B b E. - elim : n u /hu=> //=. - hauto lq:on inv:SNe. - hauto lq:on inv:TRedSN. + sfirstorder use:PApp_imp. Qed. Lemma PProjBind_imp n p p' (A : PTm n) B : @@ -246,6 +298,10 @@ Fixpoint ne {n} (a : PTm n) := | PUniv _ => false | PBind _ _ _ => false | PBot => true + | PInd P a b c => nf P && ne a && nf b && nf c + | PNat => false + | PSuc a => false + | PZero => false end with nf {n} (a : PTm n) := match a with @@ -257,6 +313,10 @@ with nf {n} (a : PTm n) := | PUniv _ => true | PBind _ A B => nf A && nf B | PBot => true + | PInd P a b c => nf P && ne a && nf b && nf c + | PNat => true + | PSuc a => nf a + | PZero => true end. Lemma ne_nf n a : @ne n a -> nf a. @@ -289,6 +349,15 @@ Lemma N_β' n a (b : PTm n) u : TRedSN (PApp (PAbs a) b) u. Proof. move => ->. apply N_β. Qed. +Lemma N_IndSuc' n P a b c u : + u = (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) -> + SN P -> + @SN n a -> + SN b -> + SN c -> + TRedSN (PInd P (PSuc a) b c) u. +Proof. move => ->. apply N_IndSuc. Qed. + Lemma sn_renaming n : (forall (a : PTm n) (s : SNe a), forall m (ξ : fin n -> fin m), SNe (ren_PTm ξ a)) /\ (forall (a : PTm n) (s : SN a), forall m (ξ : fin n -> fin m), SN (ren_PTm ξ a)) /\ @@ -297,6 +366,9 @@ Proof. move : n. apply sn_mutual => n; try qauto ctrs:SN, SNe, TRedSN depth:1. move => a b ha iha m ξ /=. apply N_β'. by asimpl. eauto. + + move => * /=. + apply N_IndSuc';eauto. by asimpl. Qed. Lemma ne_nf_embed n (a : PTm n) : @@ -336,7 +408,15 @@ Proof. move => a b ha iha m ξ[]//= u u0 [? ]. subst. case : u0 => //=. move => p p0 [*]. subst. spec_refl. by eauto with sn. -Qed. + + move => P b c ha iha hb ihb hc ihc m ξ []//= P0 a0 b0 c0 [?]. subst. + case : a0 => //= _ *. subst. + spec_refl. by eauto with sn. + + move => P a b c hP ihP ha iha hb ihb hc ihc m ξ []//= P0 a0 b0 c0 [?]. subst. + case : a0 => //= a0 [*]. subst. + spec_refl. eexists; repeat split; eauto with sn. + by asimpl. Qed. Lemma sn_unmorphing n : (forall (a : PTm n) (s : SNe a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SNe b) /\ @@ -375,7 +455,9 @@ Proof. * move => p p0 [*]. subst. hauto lq:on db:sn. - move => a b ha iha m ρ []//=; first by hauto l:on db:sn. - hauto q:on inv:PTm db:sn. + case => //=. move => []//=. + + hauto lq:on db:sn. + + hauto lq:on db:sn. - move => p a b ha iha m ρ []//=; first by hauto l:on db:sn. move => t0 t1 [*]. subst. spec_refl. @@ -384,6 +466,29 @@ Proof. left. eexists. split; last by eauto with sn. reflexivity. + hauto lq:on db:sn. + - move => P b c hP ihP hb ihb hc ihc m ρ []//=. + + hauto lq:on db:sn. + + move => p []//=. + * hauto lq:on db:sn. + * hauto q:on db:sn. + - move => P a b c hP ihP ha iha hb ihb hc ihc m ρ []//=. + + hauto lq:on db:sn. + + move => P0 a0 b0 c0 [?]. subst. + case : a0 => //=. + * hauto lq:on db:sn. + * move => a0 [*]. subst. + spec_refl. + left. eexists. split; last by eauto with sn. + by asimpl. + - move => P a0 a1 b c hP ihP hb ihb hc ihc ha iha m ρ[]//=. + + hauto lq:on db:sn. + + move => P1 a2 b2 c2 [*]. subst. + spec_refl. + case : iha. + * move => [a3][?]h. subst. + left. eexists; split; last by eauto with sn. + asimpl. eauto with sn. + * hauto lq:on db:sn. Qed. Lemma SN_AppInv : forall n (a b : PTm n), SN (PApp a b) -> SN a /\ SN b. @@ -407,6 +512,14 @@ Proof. hauto lq:on rew:off inv:TRedSN db:sn. Qed. +Lemma SN_IndInv : forall n P (a : PTm n) b c, SN (PInd P a b c) -> SN P /\ SN a /\ SN b /\ SN c. +Proof. + move => n P a b c. move E : (PInd P a b c) => u hu. move : P a b c E. + elim : n u / hu => //=. + hauto lq:on rew:off inv:SNe db:sn. + hauto lq:on rew:off inv:TRedSN db:sn. +Qed. + Lemma epar_sn_preservation n : (forall (a : PTm n) (s : SNe a), forall b, EPar.R a b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall b, EPar.R a b -> SN b) /\ @@ -417,6 +530,7 @@ Proof. - sauto lq:on. - sauto lq:on. - sauto lq:on. + - sauto lq:on. - move => a b ha iha hb ihb b0. inversion 1; subst. + have /iha : (EPar.R (PProj PL a0) (PProj PL b0)) by sauto lq:on. @@ -435,6 +549,9 @@ Proof. - sauto lq:on. - sauto lq:on. - sauto lq:on. + - sauto lq:on. + - sauto lq:on. + - sauto lq:on. - move => a b ha iha c h0. inversion h0; subst. inversion H1; subst. @@ -466,17 +583,31 @@ Proof. sauto lq:on. + sauto lq:on. - sauto. + - sauto q:on. + - move => P a b c hP ihP ha iha hb ihb hc ihc u. + elim /EPar.inv => //=_. + move => P0 P1 a0 a1 b0 b1 c0 c1 hP0 ha0 hb0 hc0 [*]. subst. + elim /EPar.inv : ha0 => //=_. + move => a0 a2 ha0 [*]. subst. + eexists. split. apply T_Once. apply N_IndSuc; eauto. + hauto q:on ctrs:EPar.R use:EPar.morphing, EPar.refl inv:option. + - sauto q:on. Qed. Module RRed. Inductive R {n} : PTm n -> PTm n -> Prop := - (****************** Eta ***********************) + (****************** Beta ***********************) | AppAbs a b : R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) + | IndZero P b c : + R (PInd P PZero b c) b + + | IndSuc P a b c : + R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> @@ -501,7 +632,22 @@ Module RRed. R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PBind p A B0) (PBind p A B1) + | IndCong0 P0 P1 a b c : + R P0 P1 -> + R (PInd P0 a b c) (PInd P1 a b c) + | IndCong1 P a0 a1 b c : + R a0 a1 -> + R (PInd P a0 b c) (PInd P a1 b c) + | IndCong2 P a b0 b1 c : + R b0 b1 -> + R (PInd P a b0 c) (PInd P a b1 c) + | IndCong3 P a b c0 c1 : + R c0 c1 -> + R (PInd P a b c0) (PInd P a b c1) + | SucCong a0 a1 : + R a0 a1 -> + R (PSuc a0) (PSuc a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. @@ -511,15 +657,21 @@ Module RRed. Proof. move => ->. by apply AppAbs. Qed. + Lemma IndSuc' n P a b c u : + u = (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) -> + R (@PInd n P (PSuc a) b c) u. + Proof. move => ->. apply IndSuc. Qed. + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. + all : try qauto ctrs:R. move => n a b m ξ /=. apply AppAbs'. by asimpl. - all : qauto ctrs:R. + move => */=; apply IndSuc'; eauto. by asimpl. Qed. Ltac2 rec solve_anti_ren () := @@ -541,6 +693,14 @@ Module RRed. eexists. split. apply AppAbs. by asimpl. - move => n p a b m ξ []//=. move => p0 []//=. hauto q:on ctrs:R. + - move => n p b c m ξ []//= P a0 b0 c0 [*]. subst. + destruct a0 => //=. + hauto lq:on ctrs:R. + - move => n P a b c m ξ []//=. + move => p p0 p1 p2 [?]. subst. + case : p0 => //=. + move => p0 [?] *. subst. eexists. split; eauto using IndSuc. + by asimpl. Qed. Lemma nf_imp n (a b : PTm n) : @@ -557,9 +717,11 @@ Module RRed. R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). Proof. move => h. move : m ρ. elim : n a b / h => n. + + all : try hauto lq:on ctrs:R. move => a b m ρ /=. eapply AppAbs'; eauto; cycle 1. by asimpl. - all : hauto lq:on ctrs:R. + move => */=; apply : IndSuc'; eauto. by asimpl. Qed. End RRed. @@ -577,6 +739,18 @@ Module RPar. R b0 b1 -> R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) + | IndZero P b0 b1 c : + R b0 b1 -> + R (PInd P PZero b0 c) b1 + + | IndSuc P0 P1 a0 a1 b0 b1 c0 c1 : + R P0 P1 -> + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + (* ----------------------------- *) + R (PInd P0 (PSuc a0) b0 c0) (subst_PTm (scons (PInd P1 a1 b1 c1) (scons a1 VarPTm)) c1) + (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> @@ -601,7 +775,22 @@ Module RPar. R B0 B1 -> R (PBind p A0 B0) (PBind p A1 B1) | BotCong : - R PBot PBot. + R PBot PBot + | NatCong : + R PNat PNat + | IndCong P0 P1 a0 a1 b0 b1 c0 c1 : + R P0 P1 -> + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + (* ----------------------- *) + R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) + | ZeroCong : + R PZero PZero + | SucCong a0 a1 : + R a0 a1 -> + (* ------------ *) + R (PSuc a0) (PSuc a1). Lemma refl n (a : PTm n) : R a a. Proof. @@ -624,15 +813,28 @@ Module RPar. R (PProj p (PPair a0 b0)) u. Proof. move => ->. apply ProjPair. Qed. + Lemma IndSuc' n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 u : + u = (subst_PTm (scons (PInd P1 a1 b1 c1) (scons a1 VarPTm)) c1) -> + R P0 P1 -> + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + (* ----------------------------- *) + R (PInd P0 (PSuc a0) b0 c0) u. + Proof. move => ->. apply IndSuc. Qed. + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. move => h. move : m ξ. elim : n a b /h. + all : try qauto ctrs:R use:ProjPair'. + move => n a0 a1 b0 b1 ha iha hb ihb m ξ /=. eapply AppAbs'; eauto. by asimpl. - all : qauto ctrs:R use:ProjPair'. + + move => * /=. apply : IndSuc'; eauto. by asimpl. Qed. Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : @@ -656,10 +858,13 @@ Module RPar. R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b / h => n. + all : try hauto lq:on ctrs:R use:morphing_up, ProjPair'. move => a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. - eapply AppAbs'; eauto; cycle 1. sfirstorder use:morphing_up. + eapply AppAbs'; eauto; cycle 1. sfirstorder use:morphing_up. by asimpl. + move => */=; eapply IndSuc'; eauto; cycle 1. + sfirstorder use:morphing_up. + sfirstorder use:morphing_up. by asimpl. - all : hauto lq:on ctrs:R use:morphing_up, ProjPair'. Qed. Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : @@ -669,7 +874,6 @@ Module RPar. hauto l:on use:morphing, refl. Qed. - Lemma cong n (a0 a1 : PTm (S n)) b0 b1 : R a0 a1 -> R b0 b1 -> @@ -697,6 +901,13 @@ Module RPar. | PUniv i => PUniv i | PBind p A B => PBind p (tstar A) (tstar B) | PBot => PBot + | PNat => PNat + | PZero => PZero + | PSuc a => PSuc (tstar a) + | PInd P PZero b c => tstar b + | PInd P (PSuc a) b c => + (subst_PTm (scons (PInd (tstar P) (tstar a) (tstar b) (tstar c)) (scons (tstar a) VarPTm)) (tstar c)) + | PInd P a b c => PInd (tstar P) (tstar a) (tstar b) (tstar c) end. Lemma triangle n (a b : PTm n) : @@ -728,6 +939,18 @@ Module RPar. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. - hauto lq:on ctrs:R inv:R. + - hauto lq:on ctrs:R inv:R. + - hauto lq:on ctrs:R inv:R. + - hauto lq:on ctrs:R inv:R. + - move => P b c ?. subst. + move => h0. inversion 1; subst. hauto lq:on ctrs:R. qauto l:on inv:R ctrs:R. + - move => P a0 b c ? hP ihP ha iha hb ihb u. subst. + elim /inv => //= _. + + move => P0 P1 a1 a2 b0 b1 c0 c1 hP' ha' hb' hc' [*]. subst. + apply morphing. hauto lq:on ctrs:R inv:option. + eauto. + + sauto q:on ctrs:R. + - sauto lq:on. Qed. Lemma diamond n (a b c : PTm n) : @@ -745,12 +968,16 @@ Proof. - qauto l:on inv:RPar.R,SNe,SN ctrs:SNe. - hauto lq:on inv:RPar.R, SNe ctrs:SNe. - hauto lq:on inv:RPar.R, SNe ctrs:SNe. + - qauto l:on inv:RPar.R, SN,SNe ctrs:SNe. - qauto l:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN. - hauto q:on ctrs:SN inv:SN, TRedSN'. - hauto lq:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN inv:RPar.R. + - hauto l:on inv:RPar.R. + - hauto l:on inv:RPar.R. + - hauto lq:on ctrs:SN inv:RPar.R. - move => a b ha iha hb ihb. elim /RPar.inv : ihb => //=_. + move => a0 a1 b0 b1 ha0 hb0 [*]. subst. @@ -770,6 +997,19 @@ Proof. - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. - sauto. + - sauto. + - move => P a b c hP ihP ha iha hb ihb hc ihc u. + elim /RPar.inv => //=_. + + move => P0 P1 a0 a1 b0 b1 c0 c1 hP' ha' hb' hc' [*]. subst. + eexists. split; first by apply T_Refl. + apply RPar.morphing=>//. hauto lq:on ctrs:RPar.R inv:option. + + move => P0 P1 a0 a1 b0 b1 c0 c1 hP' ha' hb' hc' [*]. subst. + elim /RPar.inv : ha' => //=_. + move => a0 a2 ha' [*]. subst. + eexists. split. apply T_Once. + apply N_IndSuc; eauto. + hauto q:on use:RPar.morphing ctrs:RPar.R inv:option. + - sauto q:on. Qed. Module RReds. @@ -803,6 +1043,19 @@ Module RReds. rtc RRed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. + Lemma SucCong n (a0 a1 : PTm n) : + rtc RRed.R a0 a1 -> + rtc RRed.R (PSuc a0) (PSuc a1). + Proof. solve_s. Qed. + + Lemma IndCong n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + rtc RRed.R P0 P1 -> + rtc RRed.R a0 a1 -> + rtc RRed.R b0 b1 -> + rtc RRed.R c0 c1 -> + rtc RRed.R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1). + Proof. solve_s. Qed. + Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc RRed.R A0 A1 -> rtc RRed.R B0 B1 -> @@ -818,7 +1071,7 @@ Module RReds. Lemma FromRPar n (a b : PTm n) (h : RPar.R a b) : rtc RRed.R a b. Proof. - elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. + elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong, IndCong, SucCong. move => n a0 a1 b0 b1 ha iha hb ihb. apply : rtc_r; last by apply RRed.AppAbs. by eauto using AppCong, AbsCong. @@ -826,6 +1079,12 @@ Module RReds. move => n p a0 a1 b0 b1 ha iha hb ihb. apply : rtc_r; last by apply RRed.ProjPair. by eauto using PairCong, ProjCong. + + hauto lq:on ctrs:RRed.R, rtc. + + move => *. + apply : rtc_r; last by apply RRed.IndSuc. + by eauto using SucCong, IndCong. Qed. Lemma RParIff n (a b : PTm n) : @@ -884,6 +1143,21 @@ Module NeEPar. R_nonelim (PBind p A0 B0) (PBind p A1 B1) | BotCong : R_nonelim PBot PBot + | NatCong : + R_nonelim PNat PNat + | IndCong P0 P1 a0 a1 b0 b1 c0 c1 : + R_nonelim P0 P1 -> + R_elim a0 a1 -> + R_nonelim b0 b1 -> + R_nonelim c0 c1 -> + (* ----------------------- *) + R_nonelim (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) + | ZeroCong : + R_nonelim PZero PZero + | SucCong a0 a1 : + R_nonelim a0 a1 -> + (* ------------ *) + R_nonelim (PSuc a0) (PSuc a1) with R_elim {n} : PTm n -> PTm n -> Prop := | NAbsCong a0 a1 : R_nonelim a0 a1 -> @@ -908,7 +1182,22 @@ Module NeEPar. R_nonelim B0 B1 -> R_elim (PBind p A0 B0) (PBind p A1 B1) | NBotCong : - R_elim PBot PBot. + R_elim PBot PBot + | NNatCong : + R_elim PNat PNat + | NIndCong P0 P1 a0 a1 b0 b1 c0 c1 : + R_nonelim P0 P1 -> + R_elim a0 a1 -> + R_nonelim b0 b1 -> + R_nonelim c0 c1 -> + (* ----------------------- *) + R_elim (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) + | NZeroCong : + R_elim PZero PZero + | NSucCong a0 a1 : + R_nonelim a0 a1 -> + (* ------------ *) + R_elim (PSuc a0) (PSuc a1). Scheme epar_elim_ind := Induction for R_elim Sort Prop with epar_nonelim_ind := Induction for R_nonelim Sort Prop. @@ -927,6 +1216,7 @@ Module NeEPar. - hauto lb:on. - hauto lq:on inv:R_elim. - hauto b:on. + - hauto lqb:on inv:R_elim. - move => a0 a1 /negP ha' ha ih ha1. have {ih} := ih ha1. move => ha0. @@ -944,6 +1234,7 @@ Module NeEPar. - hauto lb: on drew: off. - hauto lq:on rew:off inv:R_elim. - sfirstorder b:on. + - hauto lqb:on inv:R_elim. Qed. Lemma R_nonelim_nothf n (a b : PTm n) : @@ -978,12 +1269,18 @@ Module Type NoForbid. (* Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). *) (* Axiom P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). *) (* Axiom P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). *) - Axiom PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). + Axiom PApp_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). Axiom PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). + Axiom PInd_imp : forall n Q (a : PTm n) b c, + ishf a -> + ~~ iszero a -> + ~~ issuc a -> ~ P (PInd Q a b c). Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. + Axiom P_SucInv : forall n (a : PTm n), P (PSuc a) -> P a. Axiom P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B. + Axiom P_IndInv : forall n Q (a : PTm n) b c, P (PInd Q a b c) -> P Q /\ P a /\ P b /\ P c. Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. @@ -1023,11 +1320,17 @@ Module SN_NoForbid <: NoForbid. Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed. - Lemma PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). - sfirstorder use:fp_red.PAbs_imp. Qed. + Lemma PApp_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). + sfirstorder use:fp_red.PApp_imp. Qed. Lemma PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). sfirstorder use:fp_red.PProj_imp. Qed. + Lemma PInd_imp : forall n Q (a : PTm n) b c, + ishf a -> + ~~ iszero a -> + ~~ issuc a -> ~ P (PInd Q a b c). + Proof. sfirstorder use: fp_red.PInd_imp. Qed. + Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Proof. sfirstorder use:SN_AppInv. Qed. @@ -1045,6 +1348,9 @@ Module SN_NoForbid <: NoForbid. move : p A B E. elim : n u /hu=>//=;sauto lq:on rew:off. Qed. + Lemma P_SucInv : forall n (a : PTm n), P (PSuc a) -> P a. + Proof. sauto lq:on. Qed. + Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Proof. move => n a. move E : (PAbs a) => u h. @@ -1061,13 +1367,16 @@ Module SN_NoForbid <: NoForbid. Lemma P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). Proof. sfirstorder use:PAppBind_imp. Qed. + Lemma P_IndInv : forall n Q (a : PTm n) b c, P (PInd Q a b c) -> P Q /\ P a /\ P b /\ P c. + Proof. sfirstorder use:SN_IndInv. Qed. + End SN_NoForbid. Module NoForbid_FactSN := NoForbid_Fact SN_NoForbid. Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). Import M MFacts. - #[local]Hint Resolve P_EPar P_RRed PAbs_imp PProj_imp : forbid. + #[local]Hint Resolve P_EPar P_RRed PApp_imp PProj_imp : forbid. Lemma η_split n (a0 a1 : PTm n) : EPar.R a0 a1 -> @@ -1104,7 +1413,7 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). have ? : ~~ isabs (ren_PTm shift b) by scongruence use:isabs_ren. have ? : ishf (ren_PTm shift b) by scongruence use:ishf_ren. exfalso. - sfirstorder use:PAbs_imp. + sfirstorder use:PApp_imp. - move => n a0 a1 h ih /[dup] hP. move /P_PairInv => [/P_ProjInv + _]. move : ih => /[apply]. @@ -1151,7 +1460,7 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). (* Impossible *) * move =>*. exfalso. have : P (PApp a2 b0) by sfirstorder use:RReds.AppCong, @rtc_refl, P_RReds. - sfirstorder use:PAbs_imp. + sfirstorder use:PApp_imp. - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.PairCong, P_PairInv. - move => n p a0 a1 ha ih /[dup] hP /P_ProjInv. move : ih => /[apply]. move => [a2 [iha0 iha1]]. @@ -1178,9 +1487,33 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). - hauto l:on. - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. + - hauto l:on ctrs:NeEPar.R_nonelim. + - move => n P0 P1 a0 a1 b0 b1 c0 c1 hP ihP ha iha hb ihb hc ihc /[dup] hInd /P_IndInv. + move => []. move : ihP => /[apply]. + move => [P01][ihP0]ihP1. + move => []. move : iha => /[apply]. + move => [a01][iha0]iha1. + move => []. move : ihb => /[apply]. + move => [b01][ihb0]ihb1. + move : ihc => /[apply]. + move => [c01][ihc0]ihc1. + case /orP : (orNb (ishf a01)) => [h|]. + + eexists. split. by eauto using RReds.IndCong. + hauto q:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf. + + move => h. + case /orP : (orNb (issuc a01 || iszero a01)). + * move /norP. + have : P (PInd P01 a01 b01 c01) by eauto using P_RReds, RReds.IndCong. + hauto lq:on use:PInd_imp. + * move => ha01. + eexists. split. eauto using RReds.IndCong. + apply NeEPar.IndCong; eauto. + move : iha1 ha01. clear. + inversion 1; subst => //=; hauto lq:on ctrs:NeEPar.R_elim. + - hauto l:on. + - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.SucCong, P_SucInv. Qed. - Lemma eta_postponement n a b c : @P n a -> EPar.R a b -> @@ -1231,7 +1564,7 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). have : rtc RRed.R (PApp a0 b0) (PApp (PPair (PProj PL a1) (PProj PR a1)) b0) by qauto l:on ctrs:rtc use:RReds.AppCong. move : P_RReds hP. repeat move/[apply]. - sfirstorder use:PAbs_imp. + sfirstorder use:PApp_imp. * exists (subst_PTm (scons b0 VarPTm) a1). split. apply : rtc_r; last by apply RRed.AppAbs. @@ -1286,6 +1619,66 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). - hauto lq:on inv:RRed.R ctrs:rtc. - sauto lq:on ctrs:EPar.R, rtc use:RReds.BindCong, P_BindInv, @relations.rtc_transitive. - hauto lq:on inv:RRed.R ctrs:rtc. + - hauto q:on ctrs:rtc inv:RRed.R. + - move => n P0 P1 a0 a1 b0 b1 c0 c1 hP ihP ha iha hb ihb hc ihc u. + move => /[dup] hInd. + move /P_IndInv. + move => [pP0][pa0][pb0]pc0. + elim /RRed.inv => //= _. + + move => P2 b2 c2 [*]. subst. + move /η_split : pa0 ha; repeat move/[apply]. + move => [a1][h0]h1 {iha}. + inversion h1; subst. + * exfalso. + have :P (PInd P0 (PAbs (PApp (ren_PTm shift a2) (VarPTm var_zero))) b0 c0) by eauto using RReds.IndCong, rtc_refl, P_RReds. + clear. hauto lq:on use:PInd_imp. + * have :P (PInd P0 (PPair (PProj PL a2) (PProj PR a2)) b0 c0) by eauto using RReds.IndCong, rtc_refl, P_RReds. + clear. hauto lq:on use:PInd_imp. + * eexists. split; eauto. + apply : rtc_r. + apply : RReds.IndCong; eauto; eauto using rtc_refl. + apply RRed.IndZero. + + move => P2 a2 b2 c [*]. subst. + move /η_split /(_ pa0) : ha. + move => [a1][h0]h1. + inversion h1; subst. + * have :P (PInd P0 (PAbs (PApp (ren_PTm shift a3) (VarPTm var_zero))) b0 c0) by eauto using RReds.IndCong, rtc_refl, P_RReds. + clear. hauto q:on use:PInd_imp. + * have :P (PInd P0 (PPair (PProj PL a3) (PProj PR a3)) b0 c0) by eauto using RReds.IndCong, rtc_refl, P_RReds. + clear. hauto q:on use:PInd_imp. + * eexists. split. + apply : rtc_r. + apply RReds.IndCong; eauto; eauto using rtc_refl. + apply RRed.IndSuc. + apply EPar.morphing;eauto. hauto lq:on ctrs:EPar.R inv:option use:NeEPar.ToEPar. + + move => P2 P3 a2 b2 c hP0 [*]. subst. + move : ihP hP0 pP0. repeat move/[apply]. + move => [P2][h0]h1. + exists (PInd P2 a0 b0 c0). + sfirstorder use:RReds.IndCong, @rtc_refl, EPar.IndCong. + + move => P2 a2 a3 b2 c + [*]. subst. + move : iha pa0; repeat move/[apply]. + move => [a2][*]. + exists (PInd P0 a2 b0 c0). + sfirstorder use:RReds.IndCong, @rtc_refl, EPar.IndCong. + + move => P2 a2 b2 b3 c + [*]. subst. + move : ihb pb0; repeat move/[apply]. + move => [b2][*]. + exists (PInd P0 a0 b2 c0). + sfirstorder use:RReds.IndCong, @rtc_refl, EPar.IndCong. + + move => P2 a2 b2 b3 c + [*]. subst. + move : ihc pc0; repeat move/[apply]. + move => [c2][*]. + exists (PInd P0 a0 b0 c2). + sfirstorder use:RReds.IndCong, @rtc_refl, EPar.IndCong. + - hauto lq:on inv:RRed.R ctrs:rtc, EPar.R. + - move => n a0 a1 ha iha u /P_SucInv ha0. + elim /RRed.inv => //= _ a2 a3 h [*]. subst. + move : iha (ha0) (h); repeat move/[apply]. + move => [a2 [ih0 ih1]]. + exists (PSuc a2). + split. by apply RReds.SucCong. + by apply EPar.SucCong. Qed. Lemma η_postponement_star n a b c : @@ -1355,7 +1748,22 @@ Module ERed. R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PBind p A B0) (PBind p A B1) + | IndCong0 P0 P1 a b c : + R P0 P1 -> + R (PInd P0 a b c) (PInd P1 a b c) + | IndCong1 P a0 a1 b c : + R a0 a1 -> + R (PInd P a0 b c) (PInd P a1 b c) + | IndCong2 P a b0 b1 c : + R b0 b1 -> + R (PInd P a b0 c) (PInd P a b1 c) + | IndCong3 P a b c0 c1 : + R c0 c1 -> + R (PInd P a b c0) (PInd P a b c1) + | SucCong a0 a1 : + R a0 a1 -> + R (PSuc a0) (PSuc a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. @@ -1395,7 +1803,54 @@ Module ERed. all : qauto ctrs:R. Qed. - (* Need to generalize to injective renaming *) + (* Characterization of variable freeness conditions *) + Definition tm_i_free {n} a (i : fin n) := exists m (ξ ξ0 : fin n -> fin m), ξ i <> ξ0 i /\ ren_PTm ξ a = ren_PTm ξ0 a. + + Lemma subst_differ_one_ren_up n m i (ξ0 ξ1 : fin n -> fin m) : + (forall j, i <> j -> ξ0 j = ξ1 j) -> + (forall j, shift i <> j -> upRen_PTm_PTm ξ0 j = upRen_PTm_PTm ξ1 j). + Proof. + move => hξ. + destruct j. asimpl. + move => h. have : i<> f by hauto lq:on rew:off inv:option. + move /hξ. by rewrite /funcomp => ->. + done. + Qed. + + Lemma tm_free_ren_any n a i : + tm_i_free a i -> + forall m (ξ0 ξ1 : fin n -> fin m), (forall j, i <> j -> ξ0 j = ξ1 j) -> + ren_PTm ξ0 a = ren_PTm ξ1 a. + Proof. + rewrite /tm_i_free. + move => [+ [+ [+ +]]]. + move : i. + elim : n / a => n. + - hauto q:on. + - move => a iha i m ρ0 ρ1 [] => h [] h' m' ξ0 ξ1 hξ /=. + f_equal. move /subst_differ_one_ren_up in hξ. + move /(_ (shift i)) in iha. + move : iha hξ; move/[apply]. + apply=>//. split; eauto. + asimpl. rewrite /funcomp. hauto l:on. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - move => p A ihA a iha i m ρ0 ρ1 [] ? h m' ξ0 ξ1 hξ /=. + f_equal. hauto lq:on rew:off. + move /subst_differ_one_ren_up in hξ. + move /(_ (shift i)) in iha. + move : iha hξ. repeat move/[apply]. + move /(_ _ (upRen_PTm_PTm ρ0) (upRen_PTm_PTm ρ1)). + apply. hauto l:on. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - hauto lq:on rew:off. + - admit. + Admitted. + Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : (forall i j, ξ i = ξ j -> i = j) -> R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. @@ -1494,6 +1949,19 @@ Module EReds. Proof. solve_s. Qed. + Lemma SucCong n (a0 a1 : PTm n) : + rtc ERed.R a0 a1 -> + rtc ERed.R (PSuc a0) (PSuc a1). + Proof. solve_s. Qed. + + Lemma IndCong n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + rtc ERed.R P0 P1 -> + rtc ERed.R a0 a1 -> + rtc ERed.R b0 b1 -> + rtc ERed.R c0 c1 -> + rtc ERed.R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1). + Proof. solve_s. Qed. + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc ERed.R a b -> rtc ERed.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto l:on use:ERed.renaming ctrs:rtc. Qed. @@ -1502,7 +1970,7 @@ Module EReds. EPar.R a b -> rtc ERed.R a b. Proof. - move => h. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. + move => h. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong, IndCong, SucCong. - move => n a0 a1 _ h. have {}h : rtc ERed.R (ren_PTm shift a0) (ren_PTm shift a1) by apply renaming. apply : rtc_r. apply AbsCong. apply AppCong; eauto. apply rtc_refl. @@ -1545,7 +2013,7 @@ Module EReds. move E : (PProj p a) => u hu. move : p a E. elim : u C /hu; - hauto q:on ctrs:rtc,ERed.R inv:ERed.R. + scrush ctrs:rtc,ERed.R inv:ERed.R. Qed. Lemma bind_inv n p (A : PTm n) B C : @@ -1559,6 +2027,37 @@ Module EReds. hauto lq:on rew:off ctrs:rtc, ERed.R inv:ERed.R, rtc. Qed. + Lemma suc_inv n (a : PTm n) C : + rtc ERed.R (PSuc a) C -> + exists b, rtc ERed.R a b /\ C = PSuc b. + Proof. + move E : (PSuc a) => u hu. + move : a E. + elim : u C / hu=>//=. + - hauto l:on. + - hauto lq:on rew:off ctrs:rtc, ERed.R inv:ERed.R, rtc. + Qed. + + Lemma zero_inv n (C : PTm n) : + rtc ERed.R PZero C -> C = PZero. + move E : PZero => u hu. + move : E. elim : u C /hu=>//=. + - hauto lq:on rew:off ctrs:rtc, ERed.R inv:ERed.R, rtc. + Qed. + + Lemma ind_inv n P (a : PTm n) b c C : + rtc ERed.R (PInd P a b c) C -> + exists P0 a0 b0 c0, rtc ERed.R P P0 /\ rtc ERed.R a a0 /\ + rtc ERed.R b b0 /\ rtc ERed.R c c0 /\ + C = PInd P0 a0 b0 c0. + Proof. + move E : (PInd P a b c) => u hu. + move : P a b c E. + elim : u C / hu. + - hauto lq:on ctrs:rtc. + - hauto lq:on rew:off ctrs:rtc, ERed.R inv:ERed.R, rtc. + Qed. + End EReds. #[export]Hint Constructors ERed.R RRed.R EPar.R : red. @@ -1587,6 +2086,18 @@ Module EJoin. hauto lq:on rew:off use:EReds.bind_inv. Qed. + Lemma suc_inj n (A0 A1 : PTm n) : + R (PSuc A0) (PSuc A1) -> + R A0 A1. + Proof. + hauto lq:on rew:off use:EReds.suc_inv. + Qed. + + Lemma ind_inj n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) -> + R P0 P1 /\ R a0 a1 /\ R b0 b1 /\ R c0 c1. + Proof. hauto q:on use:EReds.ind_inv. Qed. + End EJoin. Module RERed. @@ -1598,6 +2109,12 @@ Module RERed. | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) + | IndZero P b c : + R (PInd P PZero b c) b + + | IndSuc P a b c : + R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) + (****************** Eta ***********************) | AppEta a : R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a @@ -1628,7 +2145,22 @@ Module RERed. R (PBind p A0 B) (PBind p A1 B) | BindCong1 p A B0 B1 : R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PBind p A B0) (PBind p A B1) + | IndCong0 P0 P1 a b c : + R P0 P1 -> + R (PInd P0 a b c) (PInd P1 a b c) + | IndCong1 P a0 a1 b c : + R a0 a1 -> + R (PInd P a0 b c) (PInd P a1 b c) + | IndCong2 P a b0 b1 c : + R b0 b1 -> + R (PInd P a b0 c) (PInd P a b1 c) + | IndCong3 P a b c0 c1 : + R c0 c1 -> + R (PInd P a b c0) (PInd P a b c1) + | SucCong a0 a1 : + R a0 a1 -> + R (PSuc a0) (PSuc a1). Lemma ToBetaEta n (a b : PTm n) : R a b -> @@ -1664,6 +2196,10 @@ Module RERed. R a b -> isuniv a -> isuniv b. Proof. hauto q:on inv:R. Qed. + Lemma nat_preservation n (a b : PTm n) : + R a b -> isnat a -> isnat b. + Proof. hauto q:on inv:R. Qed. + Lemma sne_preservation n (a b : PTm n) : R a b -> SNe a -> SNe b. Proof. @@ -1732,6 +2268,19 @@ Module REReds. rtc RERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. + Lemma SucCong n (a0 a1 : PTm n) : + rtc RERed.R a0 a1 -> + rtc RERed.R (PSuc a0) (PSuc a1). + Proof. solve_s. Qed. + + Lemma IndCong n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + rtc RERed.R P0 P1 -> + rtc RERed.R a0 a1 -> + rtc RERed.R b0 b1 -> + rtc RERed.R c0 c1 -> + rtc RERed.R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1). + Proof. solve_s. Qed. + Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : rtc RERed.R A0 A1 -> rtc RERed.R B0 B1 -> @@ -1746,6 +2295,10 @@ Module REReds. rtc RERed.R a b -> isuniv a -> isuniv b. Proof. induction 1; qauto l:on ctrs:rtc use:RERed.univ_preservation. Qed. + Lemma nat_preservation n (a b : PTm n) : + rtc RERed.R a b -> isnat a -> isnat b. + Proof. induction 1; qauto l:on ctrs:rtc use:RERed.nat_preservation. Qed. + Lemma sne_preservation n (a b : PTm n) : rtc RERed.R a b -> SNe a -> SNe b. Proof. induction 1; qauto l:on ctrs:rtc use:RERed.sne_preservation. Qed. @@ -1798,8 +2351,22 @@ Module REReds. Proof. move E : (PProj p a) => u hu. move : p a E. - elim : u C /hu; - hauto q:on ctrs:rtc,RERed.R use:RERed.hne_preservation inv:RERed.R. + elim : u C /hu => //=; + scrush ctrs:rtc,RERed.R use:RERed.hne_preservation inv:RERed.R. + Qed. + + Lemma hne_ind_inv n P a b c (C : PTm n) : + rtc RERed.R (PInd P a b c) C -> ishne a -> + exists P0 a0 b0 c0, C = PInd P0 a0 b0 c0 /\ + rtc RERed.R P P0 /\ + rtc RERed.R a a0 /\ + rtc RERed.R b b0 /\ + rtc RERed.R c c0. + Proof. + move E : (PInd P a b c) => u hu. + move : P a b c E. + elim : u C / hu => //=; + scrush ctrs:rtc,RERed.R use:RERed.hne_preservation inv:RERed.R. Qed. Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : @@ -1818,12 +2385,17 @@ Module REReds. apply rtc_refl. Qed. + Lemma cong_up2 n m (ρ0 ρ1 : fin n -> PTm m) : + (forall i, rtc RERed.R (ρ0 i) (ρ1 i)) -> + (forall i, rtc RERed.R (up_PTm_PTm (up_PTm_PTm ρ0) i) (up_PTm_PTm (up_PTm_PTm ρ1) i)). + Proof. hauto l:on use:cong_up. Qed. + Lemma cong n m (a : PTm n) (ρ0 ρ1 : fin n -> PTm m) : (forall i, rtc RERed.R (ρ0 i) (ρ1 i)) -> rtc RERed.R (subst_PTm ρ0 a) (subst_PTm ρ1 a). Proof. - move : m ρ0 ρ1. elim : n / a; - eauto using AppCong, AbsCong, BindCong, ProjCong, PairCong, cong_up, rtc_refl. + move : m ρ0 ρ1. elim : n / a => /=; + eauto 20 using AppCong, AbsCong, BindCong, ProjCong, PairCong, cong_up, rtc_refl, IndCong, SucCong, cong_up2. Qed. Lemma cong' n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : @@ -1845,6 +2417,33 @@ Module REReds. induction h; hauto lq:on rew:off ctrs:rtc use:RERed.ToBetaEta, RReds.nf_refl, @rtc_once, ERed.nf_preservation. Qed. + Lemma zero_inv n (C : PTm n) : + rtc RERed.R PZero C -> C = PZero. + move E : PZero => u hu. + move : E. elim : u C /hu=>//=. + - hauto lq:on rew:off ctrs:rtc, RERed.R inv:RERed.R, rtc. + Qed. + + Lemma suc_inv n (a : PTm n) C : + rtc RERed.R (PSuc a) C -> + exists b, rtc RERed.R a b /\ C = PSuc b. + Proof. + move E : (PSuc a) => u hu. + move : a E. + elim : u C / hu=>//=. + - hauto l:on. + - hauto lq:on rew:off ctrs:rtc, RERed.R inv:RERed.R, rtc. + Qed. + + Lemma nat_inv n C : + rtc RERed.R (@PNat n) C -> + C = PNat. + Proof. + move E : PNat => u hu. move : E. + elim : u C / hu=>//=. + hauto lq:on rew:off ctrs:rtc, RERed.R inv:RERed.R. + Qed. + End REReds. Module LoRed. @@ -1856,6 +2455,13 @@ Module LoRed. | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) + | IndZero P b c : + R (PInd P PZero b c) b + + | IndSuc P a b c : + R (PInd P (PSuc a) b c) (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) + + (*************** Congruence ********************) | AbsCong a0 a1 : R a0 a1 -> @@ -1885,7 +2491,29 @@ Module LoRed. | BindCong1 p A B0 B1 : nf A -> R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PBind p A B0) (PBind p A B1) + | IndCong0 P0 P1 a b c : + ne a -> + R P0 P1 -> + R (PInd P0 a b c) (PInd P1 a b c) + | IndCong1 P a0 a1 b c : + ~~ ishf a0 -> + R a0 a1 -> + R (PInd P a0 b c) (PInd P a1 b c) + | IndCong2 P a b0 b1 c : + nf P -> + ne a -> + R b0 b1 -> + R (PInd P a b0 c) (PInd P a b1 c) + | IndCong3 P a b c0 c1 : + nf P -> + ne a -> + nf b -> + R c0 c1 -> + R (PInd P a b c0) (PInd P a b c1) + | SucCong a0 a1 : + R a0 a1 -> + R (PSuc a0) (PSuc a1). Lemma hf_preservation n (a b : PTm n) : LoRed.R a b -> @@ -1905,6 +2533,11 @@ Module LoRed. R (PApp (PAbs a) b) u. Proof. move => ->. apply AppAbs. Qed. + Lemma IndSuc' n P a b c u : + u = (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) -> + R (@PInd n P (PSuc a) b c) u. + Proof. move => ->. apply IndSuc. Qed. + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). Proof. @@ -1914,6 +2547,7 @@ Module LoRed. move => n a b m ξ /=. apply AppAbs'. by asimpl. all : try qauto ctrs:R use:ne_nf_ren, ishf_ren. + move => * /=; apply IndSuc'. by asimpl. Qed. End LoRed. @@ -1975,6 +2609,22 @@ Module LoReds. rtc LoRed.R (PBind p A0 B0) (PBind p A1 B1). Proof. solve_s. Qed. + Lemma IndCong n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + rtc LoRed.R a0 a1 -> + rtc LoRed.R P0 P1 -> + rtc LoRed.R b0 b1 -> + rtc LoRed.R c0 c1 -> + ne a1 -> + nf P1 -> + nf b1 -> + rtc LoRed.R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1). + Proof. solve_s. Qed. + + Lemma SucCong n (a0 a1 : PTm n) : + rtc LoRed.R a0 a1 -> + rtc LoRed.R (PSuc a0) (PSuc a1). + Proof. solve_s. Qed. + Local Ltac triv := simpl in *; itauto. Lemma FromSN_mutual : forall n, @@ -1987,12 +2637,16 @@ Module LoReds. - hauto lq:on rew:off use:LoReds.AppCong solve+:triv. - hauto l:on use:LoReds.ProjCong solve+:triv. - hauto lq:on ctrs:rtc. + - hauto lq:on use:LoReds.IndCong solve+:triv. - hauto q:on use:LoReds.PairCong solve+:triv. - hauto q:on use:LoReds.AbsCong solve+:triv. - sfirstorder use:ne_nf. - hauto lq:on ctrs:rtc. - hauto lq:on use:LoReds.BindCong solve+:triv. - hauto lq:on ctrs:rtc. + - hauto lq:on ctrs:rtc. + - hauto lq:on ctrs:rtc. + - hauto l:on use:SucCong. - qauto ctrs:LoRed.R. - move => n a0 a1 b hb ihb h. have : ~~ ishf a0 by inversion h. @@ -2002,6 +2656,11 @@ Module LoReds. - move => n p a b h. have : ~~ ishf a by inversion h. hauto lq:on ctrs:LoRed.R. + - sfirstorder. + - sfirstorder. + - move => n P a0 a1 b c hP ihP hb ihb hc ihc hr. + have : ~~ ishf a0 by inversion hr. + hauto q:on ctrs:LoRed.R. Qed. Lemma FromSN : forall n a, @SN n a -> exists v, rtc LoRed.R a v /\ nf v. @@ -2022,6 +2681,10 @@ Fixpoint size_PTm {n} (a : PTm n) := | PPair a b => 3 + Nat.add (size_PTm a) (size_PTm b) | PUniv _ => 3 | PBind p A B => 3 + Nat.add (size_PTm A) (size_PTm B) + | PInd P a b c => 3 + size_PTm P + size_PTm a + size_PTm b + size_PTm c + | PNat => 3 + | PSuc a => 3 + size_PTm a + | PZero => 3 | PBot => 1 end. @@ -2112,7 +2775,43 @@ Proof. hauto lq:on ctrs:rtc use:EReds.BindCong. - move => p A B0 B1 hB ihB u. elim /ERed.inv => //=_; - hauto lq:on ctrs:rtc use:EReds.BindCong. + hauto lq:on ctrs:rtc use:EReds.BindCong. + - move => P0 P1 a b c hP ihP u. + elim /ERed.inv => //=_. + + move => P2 P3 a0 b0 c0 hP' [*]. subst. + move : ihP hP' => /[apply]. move => [P4][hP0]hP1. + eauto using EReds.IndCong, rtc_refl. + + move => P2 a0 a1 b0 c0 + [*]. subst. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + + move => P2 a0 b0 b1 c0 hb [*] {ihP}. subst. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + + move => P2 a0 b0 c0 c1 h [*] {ihP}. subst. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + - move => P a0 a1 b c ha iha u. + elim /ERed.inv => //=_; + try solve [move => P0 P1 a2 b0 c0 hP[*]; subst; + eauto 20 using rtc_refl, EReds.IndCong, rtc_l]. + move => P0 P1 a2 b0 c0 hP[*]. subst. + move : iha hP => /[apply]. + move => [? [*]]. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + - move => P a b0 b1 c hb ihb u. + elim /ERed.inv => //=_; + try solve [ + move => P0 P1 a0 b2 c0 hP [*]; subst; + eauto 20 using rtc_refl, EReds.IndCong, rtc_l]. + move => P0 a0 b2 b3 c0 h [*]. subst. + move : ihb h => /[apply]. move => [b2 [*]]. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + - move => P a b c0 c1 hc ihc u. + elim /ERed.inv => //=_; + try solve [ + move => P0 P1 a0 b0 c hP [*]; subst; + eauto 20 using rtc_refl, EReds.IndCong, rtc_l]. + move => P0 a0 b0 c2 c3 h [*]. subst. + move : ihc h => /[apply]. move => [c2][*]. + eauto 20 using rtc_refl, EReds.IndCong, rtc_l. + - qauto l:on inv:ERed.R ctrs:rtc use:EReds.SucCong. Qed. Lemma ered_confluence n (a b c : PTm n) : @@ -2229,16 +2928,16 @@ Module BJoin. exists v. sfirstorder use:@relations.rtc_transitive. Qed. - Lemma AbsCong n (a b : PTm (S n)) : - R a b -> - R (PAbs a) (PAbs b). - Proof. hauto lq:on use:RReds.AbsCong unfold:R. Qed. + (* Lemma AbsCong n (a b : PTm (S n)) : *) + (* R a b -> *) + (* R (PAbs a) (PAbs b). *) + (* Proof. hauto lq:on use:RReds.AbsCong unfold:R. Qed. *) - Lemma AppCong n (a0 a1 b0 b1 : PTm n) : - R a0 a1 -> - R b0 b1 -> - R (PApp a0 b0) (PApp a1 b1). - Proof. hauto lq:on use:RReds.AppCong unfold:R. Qed. + (* Lemma AppCong n (a0 a1 b0 b1 : PTm n) : *) + (* R a0 a1 -> *) + (* R b0 b1 -> *) + (* R (PApp a0 b0) (PApp a1 b1). *) + (* Proof. hauto lq:on use:RReds.AppCong unfold:R. Qed. *) End BJoin. Module DJoin. @@ -2293,6 +2992,19 @@ Module DJoin. R (PBind p A0 B0) (PBind p A1 B1). Proof. hauto q:on use:REReds.BindCong. Qed. + Lemma IndCong n P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 : + R P0 P1 -> + R a0 a1 -> + R b0 b1 -> + R c0 c1 -> + R (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1). + Proof. hauto q:on use:REReds.IndCong. Qed. + + Lemma SucCong n (a0 a1 : PTm n) : + R a0 a1 -> + R (PSuc a0) (PSuc a1). + Proof. qauto l:on use:REReds.SucCong. Qed. + Lemma FromRedSNs n (a b : PTm n) : rtc TRedSN a b -> R a b. @@ -2301,6 +3013,14 @@ Module DJoin. sfirstorder use:@rtc_refl unfold:R. Qed. + Lemma sne_nat_noconf n (a b : PTm n) : + R a b -> SNe a -> isnat b -> False. + Proof. + move => [c [? ?]] *. + have : SNe c /\ isnat c by sfirstorder use:REReds.sne_preservation, REReds.nat_preservation. + qauto l:on inv:SNe. + Qed. + Lemma sne_bind_noconf n (a b : PTm n) : R a b -> SNe a -> isbind b -> False. Proof. @@ -2348,6 +3068,14 @@ Module DJoin. case : c => //=. Qed. + Lemma hne_nat_noconf n (a b : PTm n) : + R a b -> ishne a -> isnat b -> False. + Proof. + move => [c [h0 h1]] h2 h3. + have : ishne c /\ isnat c by sfirstorder use:REReds.hne_preservation, REReds.nat_preservation. + clear. case : c => //=; itauto. + Qed. + Lemma bind_inj n p0 p1 (A0 A1 : PTm n) B0 B1 : DJoin.R (PBind p0 A0 B0) (PBind p1 A1 B1) -> p0 = p1 /\ DJoin.R A0 A1 /\ DJoin.R B0 B1. @@ -2366,6 +3094,13 @@ Module DJoin. sauto lq:on rew:off use:REReds.univ_inv. Qed. + Lemma suc_inj n (A0 A1 : PTm n) : + R (PSuc A0) (PSuc A1) -> + R A0 A1. + Proof. + hauto lq:on rew:off use:REReds.suc_inv. + Qed. + Lemma hne_app_inj n (a0 b0 a1 b1 : PTm n) : R (PApp a0 b0) (PApp a1 b1) -> ishne a0 -> @@ -2430,6 +3165,15 @@ Module DJoin. hauto q:on ctrs:rtc inv:option use:REReds.cong. Qed. + Lemma cong' n m (a b : PTm (S n)) c d (ρ : fin n -> PTm m) : + R a b -> + R c d -> R (subst_PTm (scons c ρ) a) (subst_PTm (scons d ρ) b). + Proof. + rewrite /R. move => [ab [h2 h3]] [cd [h0 h1]]. + exists (subst_PTm (scons cd ρ) ab). + hauto q:on ctrs:rtc inv:option use:REReds.cong'. + Qed. + Lemma pair_inj n (a0 a1 b0 b1 : PTm n) : SN (PPair a0 b0) -> SN (PPair a1 b1) -> @@ -2660,6 +3404,13 @@ Module ESub. sauto lq:on rew:off inv:Sub1.R. Qed. + Lemma suc_inj n (a b : PTm n) : + R (PSuc a) (PSuc b) -> + R a b. + Proof. + sauto lq:on use:EReds.suc_inv inv:Sub1.R. + Qed. + End ESub. Module Sub. @@ -2722,6 +3473,22 @@ Module Sub. @R n (PUniv i) (PUniv j). Proof. hauto lq:on ctrs:Sub1.R, rtc. Qed. + Lemma sne_nat_noconf n (a b : PTm n) : + R a b -> SNe a -> isnat b -> False. + Proof. + move => [c [d [h0 [h1 h2]]]] *. + have : SNe c /\ isnat d by sfirstorder use:REReds.sne_preservation, REReds.nat_preservation, Sub1.sne_preservation. + move : h2. clear. hauto q:on inv:Sub1.R, SNe. + Qed. + + Lemma nat_sne_noconf n (a b : PTm n) : + R a b -> isnat a -> SNe b -> False. + Proof. + move => [c [d [h0 [h1 h2]]]] *. + have : SNe d /\ isnat c by sfirstorder use:REReds.sne_preservation, REReds.nat_preservation. + move : h2. clear. hauto q:on inv:Sub1.R, SNe. + Qed. + Lemma sne_bind_noconf n (a b : PTm n) : R a b -> SNe a -> isbind b -> False. Proof. @@ -2770,6 +3537,48 @@ Module Sub. clear. case : c => //=. inversion 2. Qed. + Lemma univ_nat_noconf n (a b : PTm n) : + R a b -> isuniv b -> isnat a -> False. + Proof. + move => [c[d] [? []]] h0 h1 h2 h3. + have : isuniv d by eauto using REReds.univ_preservation. + have : isnat c by sfirstorder use:REReds.nat_preservation. + inversion h1; subst => //=. + clear. case : d => //=. + Qed. + + Lemma nat_univ_noconf n (a b : PTm n) : + R a b -> isnat b -> isuniv a -> False. + Proof. + move => [c[d] [? []]] h0 h1 h2 h3. + have : isuniv c by eauto using REReds.univ_preservation. + have : isnat d by sfirstorder use:REReds.nat_preservation. + inversion h1; subst => //=. + clear. case : d => //=. + Qed. + + Lemma bind_nat_noconf n (a b : PTm n) : + R a b -> isbind b -> isnat a -> False. + Proof. + move => [c[d] [? []]] h0 h1 h2 h3. + have : isbind d by eauto using REReds.bind_preservation. + have : isnat c by sfirstorder use:REReds.nat_preservation. + move : h1. clear. + inversion 1; subst => //=. + case : d h1 => //=. + Qed. + + Lemma nat_bind_noconf n (a b : PTm n) : + R a b -> isnat b -> isbind a -> False. + Proof. + move => [c[d] [? []]] h0 h1 h2 h3. + have : isbind c by eauto using REReds.bind_preservation. + have : isnat d by sfirstorder use:REReds.nat_preservation. + move : h1. clear. + inversion 1; subst => //=. + case : d h1 => //=. + Qed. + Lemma bind_univ_noconf n (a b : PTm n) : R a b -> isbind a -> isuniv b -> False. Proof. @@ -2809,6 +3618,14 @@ Module Sub. sauto lq:on rew:off use:REReds.univ_inv. Qed. + Lemma suc_inj n (A0 A1 : PTm n) : + R (PSuc A0) (PSuc A1) -> + R A0 A1. + Proof. + sauto q:on use:REReds.suc_inv. + Qed. + + Lemma cong n m (a b : PTm (S n)) c d (ρ : fin n -> PTm m) : R a b -> DJoin.R c d -> R (subst_PTm (scons c ρ) a) (subst_PTm (scons d ρ) b). Proof. diff --git a/theories/logrel.v b/theories/logrel.v index 52a4438..a245362 100644 --- a/theories/logrel.v +++ b/theories/logrel.v @@ -31,6 +31,9 @@ Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) -> ⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF +| InterpExt_Nat : + ⟦ PNat ⟧ i ;; I ↘ SNat + | InterpExt_Univ j : j < i -> ⟦ PUniv j ⟧ i ;; I ↘ (I j) @@ -68,6 +71,7 @@ Proof. - hauto q:on ctrs:InterpExt. - hauto lq:on rew:off ctrs:InterpExt. - hauto q:on ctrs:InterpExt. + - hauto q:on ctrs:InterpExt. - hauto lq:on ctrs:InterpExt. Qed. @@ -88,14 +92,14 @@ Lemma InterpUnivN_nolt n i : Proof. simp InterpUnivN. extensionality A. extensionality PA. - set I0 := (fun _ => _). - set I1 := (fun _ => _). apply InterpExt_lt_eq. hauto q:on. Qed. #[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. +Check InterpExt_ind. + Lemma InterpUniv_ind : forall n (P : nat -> PTm n -> (PTm n -> Prop) -> Prop), (forall i (A : PTm n), SNe A -> P i A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) -> @@ -107,11 +111,12 @@ Lemma InterpUniv_ind (forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> (forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) -> P i (PBind p A B) (BindSpace p PA PF)) -> + (forall i, P i PNat SNat) -> (forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) -> (forall i (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) -> forall i (p : PTm n) (P0 : PTm n -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0. Proof. - move => n P hSN hBind hUniv hRed. + move => n P hSN hBind hNat hUniv hRed. elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv. move => A PA. move => h. set I := fun _ => _ in h. elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto. @@ -144,6 +149,9 @@ Lemma InterpUniv_Step i n A A0 PA : ⟦ A ⟧ i ↘ PA. Proof. simp InterpUniv. apply InterpExt_Step. Qed. +Lemma InterpUniv_Nat i n : + ⟦ PNat : PTm n ⟧ i ↘ SNat. +Proof. simp InterpUniv. apply InterpExt_Nat. Qed. #[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv. @@ -176,6 +184,14 @@ Proof. induction 1; eauto using N_Exp. Qed. +Lemma CR_SNat : forall n, @CR n SNat. +Proof. + move => n. rewrite /CR. + split. + induction 1; hauto q:on ctrs:SN,SNe. + hauto lq:on ctrs:SNat. +Qed. + Lemma adequacy : forall i n A PA, ⟦ A : PTm n ⟧ i ↘ PA -> CR PA /\ SN A. @@ -202,6 +218,7 @@ Proof. apply : N_Exp; eauto using N_β. hauto lq:on. qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv. + - qauto use:CR_SNat. - hauto l:on ctrs:InterpExt rew:db:InterpUniv. - hauto l:on ctrs:SN unfold:CR. Qed. @@ -227,6 +244,7 @@ Proof. apply N_AppL => //=. hauto q:on use:adequacy. + hauto lq:on ctrs:rtc unfold:SumSpace. + - hauto lq:on ctrs:SNat. - hauto l:on use:InterpUniv_Step. Qed. @@ -238,14 +256,14 @@ Proof. induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos. Qed. - Lemma InterpUniv_case n i (A : PTm n) PA : ⟦ A ⟧ i ↘ PA -> - exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H). + exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H \/ isnat H). Proof. move : i A PA. apply InterpUniv_ind => //=. hauto lq:on ctrs:rtc use:InterpUniv_Ne. hauto l:on use:InterpUniv_Bind. + hauto l:on use:InterpUniv_Nat. hauto l:on use:InterpUniv_Univ. hauto lq:on ctrs:rtc. Qed. @@ -262,7 +280,7 @@ Lemma redsns_preservation : forall n a b, @SN n a -> rtc TRedSN a b -> SN b. Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed. #[export]Hint Resolve Sub.sne_bind_noconf Sub.sne_univ_noconf Sub.bind_univ_noconf - Sub.bind_sne_noconf Sub.univ_sne_noconf Sub.univ_bind_noconf: noconf. + Sub.bind_sne_noconf Sub.univ_sne_noconf Sub.univ_bind_noconf Sub.nat_bind_noconf Sub.bind_nat_noconf Sub.sne_nat_noconf Sub.nat_sne_noconf Sub.univ_nat_noconf Sub.nat_univ_noconf: noconf. Lemma InterpUniv_SNe_inv n i (A : PTm n) PA : SNe A -> @@ -285,6 +303,14 @@ Proof. simp InterpUniv. sauto lq:on. Qed. +Lemma InterpUniv_Nat_inv n i S : + ⟦ PNat : PTm n ⟧ i ↘ S -> S = SNat. +Proof. + simp InterpUniv. + inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual. + sauto lq:on. +Qed. + Lemma InterpUniv_Univ_inv n i j S : ⟦ PUniv j : PTm n ⟧ i ↘ S -> S = (fun A => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i. @@ -331,7 +357,7 @@ Proof. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R A H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : SNe H. - suff : ~ isbind H /\ ~ isuniv H by itauto. + suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by itauto. move : hA hAB. clear. hauto lq:on db:noconf. move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst. tauto. @@ -341,7 +367,7 @@ Proof. move => [H [/DJoin.FromRedSNs h [h1 h0]]]. have {h}{}hAB : Sub.R H A by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have {}h0 : SNe H. - suff : ~ isbind H /\ ~ isuniv H by itauto. + suff : ~ isbind H /\ ~ isuniv H /\ ~ isnat H by itauto. move : hAB hA h0. clear. hauto lq:on db:noconf. move : InterpUniv_SNe_inv h1 h0. repeat move/[apply]. move => ?. subst. tauto. @@ -351,7 +377,7 @@ Proof. have {hU} {}h : Sub.R (PBind p A B) H by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have{h0} : isbind H. - suff : ~ SNe H /\ ~ isuniv H by itauto. + suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by itauto. have : isbind (PBind p A B) by scongruence. move : h. clear. hauto l:on db:noconf. case : H h1 h => //=. @@ -370,7 +396,7 @@ Proof. have {hU} {}h : Sub.R H (PBind p A B) by move : hU hU' h; clear; hauto q:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. have{h0} : isbind H. - suff : ~ SNe H /\ ~ isuniv H by itauto. + suff : ~ SNe H /\ ~ isuniv H /\ ~ isnat H by itauto. have : isbind (PBind p A B) by scongruence. move : h. clear. move : (PBind p A B). hauto lq:on db:noconf. case : H h1 h => //=. @@ -382,13 +408,36 @@ Proof. move => a PB PB' ha hPB hPB'. eapply ihPF; eauto. apply Sub.cong => //=; eauto using DJoin.refl. + - move => i B PB h. split. + + move => hAB a ha. + have ? : SN B by hauto l:on use:adequacy. + move /InterpUniv_case : h. + move => [H [/DJoin.FromRedSNs h [h1 h0]]]. + have {h}{}hAB : Sub.R PNat H by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. + have {}h0 : isnat H. + suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by itauto. + have : @isnat n PNat by simpl. + move : h0 hAB. clear. qauto l:on db:noconf. + case : H h1 hAB h0 => //=. + move /InterpUniv_Nat_inv. scongruence. + + move => hAB a ha. + have ? : SN B by hauto l:on use:adequacy. + move /InterpUniv_case : h. + move => [H [/DJoin.FromRedSNs h [h1 h0]]]. + have {h}{}hAB : Sub.R H PNat by qauto l:on use:Sub.FromJoin, DJoin.symmetric, Sub.transitive. + have {}h0 : isnat H. + suff : ~ isbind H /\ ~ isuniv H /\ ~ SNe H by itauto. + have : @isnat n PNat by simpl. + move : h0 hAB. clear. qauto l:on db:noconf. + case : H h1 hAB h0 => //=. + move /InterpUniv_Nat_inv. scongruence. - move => i j jlti ih B PB hPB. split. + have ? : SN B by hauto l:on use:adequacy. move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]]. move => hj. have {hj}{}h : Sub.R (PUniv j) H by eauto using Sub.transitive, Sub.FromJoin. have {h0} : isuniv H. - suff : ~ SNe H /\ ~ isbind H by tauto. move : h. clear. hauto lq:on db:noconf. + suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf. case : H h1 h => //=. move => j' hPB h _. have {}h : j <= j' by hauto lq:on use: Sub.univ_inj. subst. @@ -400,7 +449,7 @@ Proof. move => hj. have {hj}{}h : Sub.R H (PUniv j) by eauto using Sub.transitive, Sub.FromJoin, DJoin.symmetric. have {h0} : isuniv H. - suff : ~ SNe H /\ ~ isbind H by tauto. move : h. clear. hauto lq:on db:noconf. + suff : ~ SNe H /\ ~ isbind H /\ ~ isnat H by tauto. move : h. clear. hauto lq:on db:noconf. case : H h1 h => //=. move => j' hPB h _. have {}h : j' <= j by hauto lq:on use: Sub.univ_inj. @@ -634,6 +683,70 @@ Proof. hauto q:on solve+:(by asimpl). Qed. +Definition smorphing_ok {n m} (Δ : fin m -> PTm m) Γ (ρ : fin n -> PTm m) := + forall ξ, ρ_ok Δ ξ -> ρ_ok Γ (funcomp (subst_PTm ξ) ρ). + +Lemma smorphing_ok_refl n (Δ : fin n -> PTm n) : smorphing_ok Δ Δ VarPTm. + rewrite /smorphing_ok => ξ. apply. +Qed. + +Lemma smorphing_ren n m p Ξ Δ Γ + (ρ : fin n -> PTm m) (ξ : fin m -> fin p) : + renaming_ok Ξ Δ ξ -> smorphing_ok Δ Γ ρ -> + smorphing_ok Ξ Γ (funcomp (ren_PTm ξ) ρ). +Proof. + move => hξ hρ τ. + move /ρ_ok_renaming : hξ => /[apply]. + move => h. + rewrite /smorphing_ok in hρ. + asimpl. + Check (funcomp τ ξ). + set u := funcomp _ _. + have : u = funcomp (subst_PTm (funcomp τ ξ)) ρ. + subst u. extensionality i. by asimpl. + move => ->. by apply hρ. +Qed. + +Lemma smorphing_ext n m Δ Γ (ρ : fin n -> PTm m) (a : PTm m) (A : PTm n) : + smorphing_ok Δ Γ ρ -> + Δ ⊨ a ∈ subst_PTm ρ A -> + smorphing_ok + Δ (funcomp (ren_PTm shift) (scons A Γ)) (scons a ρ). +Proof. + move => h ha τ. move => /[dup] hτ. + move : ha => /[apply]. + move => [k][PA][h0]h1. + apply h in hτ. + move => i. + destruct i as [i|]. + - move => k0 PA0. asimpl. rewrite {2}/funcomp. asimpl. + move : hτ => /[apply]. + by asimpl. + - move => k0 PA0. asimpl. rewrite {2}/funcomp. asimpl. + move => *. suff : PA0 = PA by congruence. + move : h0. asimpl. + eauto using InterpUniv_Functional'. +Qed. + +Lemma morphing_SemWt : forall n Γ (a A : PTm n), + Γ ⊨ a ∈ A -> forall m Δ (ρ : fin n -> PTm m), + smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ subst_PTm ρ A. +Proof. + move => n Γ a A ha m Δ ρ hρ τ hτ. + have {}/hρ {}/ha := hτ. + asimpl. eauto. +Qed. + +Lemma morphing_SemWt_Univ : forall n Γ (a : PTm n) i, + Γ ⊨ a ∈ PUniv i -> forall m Δ (ρ : fin n -> PTm m), + smorphing_ok Δ Γ ρ -> Δ ⊨ subst_PTm ρ a ∈ PUniv i. +Proof. + move => n Γ a i ha. + move => m Δ ρ. + have -> : PUniv i = subst_PTm ρ (PUniv i) by reflexivity. + by apply morphing_SemWt. +Qed. + Lemma weakening_Sem n Γ (a : PTm n) A B i (h0 : Γ ⊨ B ∈ PUniv i) (h1 : Γ ⊨ a ∈ A) : @@ -683,15 +796,20 @@ Proof. Qed. (* Semantic typing rules *) +Lemma ST_Var' n Γ (i : fin n) j : + Γ ⊨ Γ i ∈ PUniv j -> + Γ ⊨ VarPTm i ∈ Γ i. +Proof. + move => /SemWt_Univ h. + rewrite /SemWt => ρ /[dup] hρ {}/h [S hS]. + exists j,S. + asimpl. firstorder. +Qed. + Lemma ST_Var n Γ (i : fin n) : ⊨ Γ -> Γ ⊨ VarPTm i ∈ Γ i. -Proof. - move /(_ i) => [j /SemWt_Univ h]. - rewrite /SemWt => ρ /[dup] hρ {}/h [S hS]. - exists j, S. - asimpl. firstorder. -Qed. +Proof. hauto l:on use:ST_Var' unfold:SemWff. Qed. Lemma InterpUniv_Bind_nopf n p i (A : PTm n) B PA : ⟦ A ⟧ i ↘ PA -> @@ -925,6 +1043,59 @@ Proof. hauto l:on use:DJoin.transitive. Qed. +Definition Γ_sub' {n} (Γ Δ : fin n -> PTm n) := forall ρ, ρ_ok Δ ρ -> ρ_ok Γ ρ. + +Definition Γ_eq' {n} (Γ Δ : fin n -> PTm n) := forall ρ, ρ_ok Δ ρ <-> ρ_ok Γ ρ. + +Lemma Γ_sub'_refl n (Γ : fin n -> PTm n) : Γ_sub' Γ Γ. + rewrite /Γ_sub'. itauto. Qed. + +Lemma Γ_sub'_cons n (Γ Δ : fin n -> PTm n) A B i j : + Sub.R B A -> + Γ_sub' Γ Δ -> + Γ ⊨ A ∈ PUniv i -> + Δ ⊨ B ∈ PUniv j -> + Γ_sub' (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Δ)). +Proof. + move => hsub hsub' hA hB ρ hρ. + + move => k. + move => k0 PA. + have : ρ_ok Δ (funcomp ρ shift). + move : hρ. clear. + move => hρ i. + specialize (hρ (shift i)). + move => k PA. move /(_ k PA) in hρ. + move : hρ. asimpl. by eauto. + move => hρ_inv. + destruct k as [k|]. + - rewrite /Γ_sub' in hsub'. + asimpl. + move /(_ (funcomp ρ shift) hρ_inv) in hsub'. + sfirstorder simp+:asimpl. + - asimpl. + move => h. + have {}/hsub' hρ' := hρ_inv. + move /SemWt_Univ : (hA) (hρ')=> /[apply]. + move => [S]hS. + move /SemWt_Univ : (hB) (hρ_inv)=>/[apply]. + move => [S1]hS1. + move /(_ None) : hρ (hS1). asimpl => /[apply]. + suff : forall x, S1 x -> PA x by firstorder. + apply : InterpUniv_Sub; eauto. + by apply Sub.substing. +Qed. + +Lemma Γ_sub'_SemWt n (Γ Δ : fin n -> PTm n) a A : + Γ_sub' Γ Δ -> + Γ ⊨ a ∈ A -> + Δ ⊨ a ∈ A. +Proof. + move => hs ha ρ hρ. + have {}/hs hρ' := hρ. + hauto l:on. +Qed. + Definition Γ_eq {n} (Γ Δ : fin n -> PTm n) := forall i, DJoin.R (Γ i) (Δ i). Lemma Γ_eq_ρ_ok n Γ Δ (ρ : fin n -> PTm 0) : Γ_eq Γ Δ -> ⊨ Γ -> ρ_ok Γ ρ -> ρ_ok Δ ρ. @@ -942,6 +1113,25 @@ Proof. hauto l:on use: DJoin.substing. Qed. +Lemma Γ_eq_sub n (Γ Δ : fin n -> PTm n) : Γ_eq' Γ Δ <-> Γ_sub' Γ Δ /\ Γ_sub' Δ Γ. +Proof. rewrite /Γ_eq' /Γ_sub'. hauto l:on. Qed. + +Lemma Γ_eq'_cons n (Γ Δ : fin n -> PTm n) A B i j : + DJoin.R B A -> + Γ_eq' Γ Δ -> + Γ ⊨ A ∈ PUniv i -> + Δ ⊨ B ∈ PUniv j -> + Γ_eq' (funcomp (ren_PTm shift) (scons A Γ)) (funcomp (ren_PTm shift) (scons B Δ)). +Proof. + move => h. + have {h} [h0 h1] : Sub.R A B /\ Sub.R B A by hauto lq:on use:Sub.FromJoin, DJoin.symmetric. + repeat rewrite ->Γ_eq_sub. + hauto l:on use:Γ_sub'_cons. +Qed. + +Lemma Γ_eq'_refl n (Γ : fin n -> PTm n) : Γ_eq' Γ Γ. +Proof. rewrite /Γ_eq'. firstorder. Qed. + Definition Γ_sub {n} (Γ Δ : fin n -> PTm n) := forall i, Sub.R (Γ i) (Δ i). Lemma Γ_sub_ρ_ok n Γ Δ (ρ : fin n -> PTm 0) : Γ_sub Γ Δ -> ⊨ Γ -> ρ_ok Γ ρ -> ρ_ok Δ ρ. @@ -1153,6 +1343,206 @@ Proof. hauto lq:on use: DJoin.cong, DJoin.ProjCong. Qed. + +Lemma ST_Nat n Γ i : + Γ ⊨ PNat : PTm n ∈ PUniv i. +Proof. + move => ?. apply SemWt_Univ. move => ρ hρ. + eexists. by apply InterpUniv_Nat. +Qed. + +Lemma ST_Zero n Γ : + Γ ⊨ PZero : PTm n ∈ PNat. +Proof. + move => ρ hρ. exists 0, SNat. simpl. split. + apply InterpUniv_Nat. + apply S_Zero. +Qed. + +Lemma ST_Suc n Γ (a : PTm n) : + Γ ⊨ a ∈ PNat -> + Γ ⊨ PSuc a ∈ PNat. +Proof. + move => ha ρ. + move : ha => /[apply] /=. + move => [k][PA][h0 h1]. + move /InterpUniv_Nat_inv : h0 => ?. subst. + exists 0, SNat. split. apply InterpUniv_Nat. + eauto using S_Suc. +Qed. + + +Lemma sn_unmorphing' n : (forall (a : PTm n) (s : SN a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SN b). +Proof. hauto l:on use:sn_unmorphing. Qed. + +Lemma sn_bot_up n m (a : PTm (S n)) (ρ : fin n -> PTm m) : + SN (subst_PTm (scons PBot ρ) a) -> SN (subst_PTm (up_PTm_PTm ρ) a). + rewrite /up_PTm_PTm. + move => h. eapply sn_unmorphing' with (ρ := (scons PBot VarPTm)); eauto. + by asimpl. +Qed. + +Lemma sn_bot_up2 n m (a : PTm (S (S n))) (ρ : fin n -> PTm m) : + SN ((subst_PTm (scons PBot (scons PBot ρ)) a)) -> SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) a). + rewrite /up_PTm_PTm. + move => h. eapply sn_unmorphing' with (ρ := (scons PBot (scons PBot VarPTm))); eauto. + by asimpl. +Qed. + +Lemma SNat_SN n (a : PTm n) : SNat a -> SN a. + induction 1; hauto lq:on ctrs:SN. Qed. + +Lemma ST_Ind s Γ P (a : PTm s) b c i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P ∈ PUniv i -> + Γ ⊨ a ∈ PNat -> + Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊨ PInd P a b c ∈ subst_PTm (scons a VarPTm) P. +Proof. + move => hA hc ha hb ρ hρ. + move /(_ ρ hρ) : ha => [m][PA][ha0]ha1. + move /(_ ρ hρ) : hc => [n][PA0][/InterpUniv_Nat_inv ->]. + simpl. + (* Use localiaztion to block asimpl from simplifying pind *) + set x := PInd _ _ _ _. asimpl. subst x. move : {a} (subst_PTm ρ a) . + move : (subst_PTm ρ b) ha1 => {}b ha1. + move => u hu. + have hρb : ρ_ok (funcomp (ren_PTm shift) (scons PNat Γ)) (scons PBot ρ) by apply : ρ_ok_cons; hauto lq:on ctrs:SNat, SNe use:(@InterpUniv_Nat 0). + + have hρbb : ρ_ok (funcomp (ren_PTm shift) (scons P (funcomp (ren_PTm shift) (scons PNat Γ)))) (scons PBot (scons PBot ρ)). + move /SemWt_Univ /(_ _ hρb) : hA => [S ?]. + apply : ρ_ok_cons; eauto. sauto lq:on use:adequacy. + + (* have snP : SN P by hauto l:on use:SemWt_SN. *) + have snb : SN b by hauto q:on use:adequacy. + have snP : SN (subst_PTm (up_PTm_PTm ρ) P) + by apply sn_bot_up; move : hA hρb => /[apply]; hauto lq:on use:adequacy. + have snc : SN (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c) + by apply sn_bot_up2; move : hb hρbb => /[apply]; hauto lq:on use:adequacy. + + elim : u /hu. + + exists m, PA. split. + * move : ha0. by asimpl. + * apply : InterpUniv_back_clos; eauto. + apply N_IndZero; eauto. + + move => a snea. + have hρ' : ρ_ok (funcomp (ren_PTm shift) (scons PNat Γ)) (scons a ρ)by + apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat. + move /SemWt_Univ : (hA) hρ' => /[apply]. + move => [S0 hS0]. + exists i, S0. split=>//. + eapply adequacy; eauto. + apply N_Ind; eauto. + + move => a ha [j][S][h0]h1. + have hρ' : ρ_ok (funcomp (ren_PTm shift) (scons PNat Γ)) (scons (PSuc a) ρ)by + apply : ρ_ok_cons; eauto using (InterpUniv_Nat 0); hauto ctrs:SNat. + move /SemWt_Univ : (hA) (hρ') => /[apply]. + move => [S0 hS0]. + exists i, S0. split => //. + apply : InterpUniv_back_clos; eauto. + apply N_IndSuc; eauto using SNat_SN. + move : (PInd (subst_PTm (up_PTm_PTm ρ) P) a b + (subst_PTm (up_PTm_PTm (up_PTm_PTm ρ)) c)) h1. + move => r hr. + have hρ'' : ρ_ok + (funcomp (ren_PTm shift) (scons P (funcomp (ren_PTm shift) (scons PNat Γ)))) (scons r (scons a ρ)) by + eauto using ρ_ok_cons, (InterpUniv_Nat 0). + move : hb hρ'' => /[apply]. + move => [k][PA1][h2]h3. + move : h2. asimpl => ?. + have ? : PA1 = S0 by eauto using InterpUniv_Functional'. + by subst. + + move => a a' hr ha' [k][PA1][h0]h1. + have : ρ_ok (funcomp (ren_PTm shift) (scons PNat Γ)) (scons a ρ) + by apply : ρ_ok_cons; hauto l:on use:S_Red,(InterpUniv_Nat 0). + move /SemWt_Univ : hA => /[apply]. move => [PA2]h2. + exists i, PA2. split => //. + apply : InterpUniv_back_clos; eauto. + apply N_IndCong; eauto. + suff : PA1 = PA2 by congruence. + move : h0 h2. move : InterpUniv_Join'; repeat move/[apply]. apply. + apply DJoin.FromRReds. + apply RReds.FromRPar. + apply RPar.morphing; last by apply RPar.refl. + eapply LoReds.FromSN_mutual in hr. + move /LoRed.ToRRed /RPar.FromRRed in hr. + hauto lq:on inv:option use:RPar.refl. +Qed. + +Lemma SE_SucCong n Γ (a b : PTm n) : + Γ ⊨ a ≡ b ∈ PNat -> + Γ ⊨ PSuc a ≡ PSuc b ∈ PNat. +Proof. + move /SemEq_SemWt => [ha][hb]he. + apply SemWt_SemEq; eauto using ST_Suc. + hauto q:on use:REReds.suc_inv, REReds.SucCong. +Qed. + +Lemma SE_IndCong n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P0 ≡ P1 ∈ PUniv i -> + Γ ⊨ a0 ≡ a1 ∈ PNat -> + Γ ⊨ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 -> + funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ))) ⊨ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) -> + Γ ⊨ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0. +Proof. + move /SemEq_SemWt=>[hP0][hP1]hPe. + move /SemEq_SemWt=>[ha0][ha1]hae. + move /SemEq_SemWt=>[hb0][hb1]hbe. + move /SemEq_SemWt=>[hc0][hc1]hce. + apply SemWt_SemEq; eauto using ST_Ind, DJoin.IndCong. + apply ST_Conv_E with (A := subst_PTm (scons a1 VarPTm) P1) (i := i); + last by eauto using DJoin.cong', DJoin.symmetric. + apply : ST_Ind; eauto. eapply ST_Conv_E with (i := i); eauto. + apply : morphing_SemWt_Univ; eauto. + apply smorphing_ext. rewrite /smorphing_ok. + move => ξ. rewrite /funcomp. by asimpl. + by apply ST_Zero. + by apply DJoin.substing. + eapply ST_Conv_E with (i := i); eauto. + apply : Γ_sub'_SemWt; eauto. + apply : Γ_sub'_cons; eauto using DJoin.symmetric, Sub.FromJoin. + apply : Γ_sub'_cons; eauto using Sub.refl, Γ_sub'_refl, (@ST_Nat _ _ 0). + change (PUniv i) with (ren_PTm shift (@PUniv (S n) i)). + apply : weakening_Sem; eauto. move : hP1. + move /morphing_SemWt. apply. apply smorphing_ext. + have -> : (funcomp VarPTm shift) = funcomp (ren_PTm shift) (@VarPTm n) by asimpl. + apply : smorphing_ren; eauto using smorphing_ok_refl. hauto l:on inv:option. + apply ST_Suc. apply ST_Var' with (j := 0). apply ST_Nat. + apply DJoin.renaming. by apply DJoin.substing. + apply : morphing_SemWt_Univ; eauto. + apply smorphing_ext; eauto using smorphing_ok_refl. +Qed. + +Lemma SE_IndZero n Γ P i (b : PTm n) c : + funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P ∈ PUniv i -> + Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊨ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P. +Proof. + move => hP hb hc. + apply SemWt_SemEq; eauto using ST_Zero, ST_Ind. + apply DJoin.FromRRed0. apply RRed.IndZero. +Qed. + +Lemma SE_IndSuc s Γ P (a : PTm s) b c i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊨ P ∈ PUniv i -> + Γ ⊨ a ∈ PNat -> + Γ ⊨ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊨ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊨ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P. +Proof. + move => hP ha hb hc. + apply SemWt_SemEq; eauto using ST_Suc, ST_Ind. + set Δ := (X in X ⊨ _ ∈ _) in hc. + have : smorphing_ok Γ Δ (scons (PInd P a b c) (scons a VarPTm)). + apply smorphing_ext. apply smorphing_ext. apply smorphing_ok_refl. + done. eauto using ST_Ind. + move : morphing_SemWt hc; repeat move/[apply]. + by asimpl. + apply DJoin.FromRRed0. + apply RRed.IndSuc. +Qed. + Lemma SE_ProjPair1 n Γ (a b : PTm n) A B i : Γ ⊨ PBind PSig A B ∈ (PUniv i) -> Γ ⊨ a ∈ A -> @@ -1188,6 +1578,15 @@ Proof. rewrite /DJoin.R. hauto lq:on ctrs:rtc,RERed.R. Qed. +Lemma SE_Nat n Γ (a b : PTm n) : + Γ ⊨ a ≡ b ∈ PNat -> + Γ ⊨ PSuc a ≡ PSuc b ∈ PNat. +Proof. + move /SemEq_SemWt => [ha][hb]hE. + apply SemWt_SemEq; eauto using ST_Suc. + eauto using DJoin.SucCong. +Qed. + Lemma SE_App n Γ i (b0 b1 a0 a1 : PTm n) A B : Γ ⊨ PBind PPi A B ∈ (PUniv i) -> Γ ⊨ b0 ≡ b1 ∈ PBind PPi A B -> @@ -1332,4 +1731,4 @@ Qed. #[export]Hint Resolve ST_Var ST_Bind ST_Abs ST_App ST_Pair ST_Proj1 ST_Proj2 ST_Univ ST_Conv SE_Refl SE_Symmetric SE_Transitive SE_Bind SE_Abs SE_App SE_Proj1 SE_Proj2 - SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta : sem. + SE_Conv SSu_Pi_Proj1 SSu_Pi_Proj2 SSu_Sig_Proj1 SSu_Sig_Proj2 SSu_Eq SSu_Transitive SSu_Pi SSu_Sig SemWff_nil SemWff_cons SSu_Univ SE_AppAbs SE_ProjPair1 SE_ProjPair2 SE_AppEta SE_PairEta ST_Nat ST_Ind ST_Suc ST_Zero SE_IndCong SE_SucCong SE_IndZero SE_IndSuc SE_SucCong : sem. diff --git a/theories/preservation.v b/theories/preservation.v index 6fe081d..b78f87e 100644 --- a/theories/preservation.v +++ b/theories/preservation.v @@ -76,6 +76,23 @@ Proof. - hauto lq:on rew:off ctrs:LEq. Qed. +Lemma Ind_Inv n Γ P (a : PTm n) b c U : + Γ ⊢ PInd P a b c ∈ U -> + exists i, funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i /\ + Γ ⊢ a ∈ PNat /\ + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P /\ + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) /\ + Γ ⊢ subst_PTm (scons a VarPTm) P ≲ U. +Proof. + move E : (PInd P a b c)=> u hu. + move : P a b c E. elim : n Γ u U / hu => n //=. + - move => Γ P a b c i hP _ ha _ hb _ hc _ P0 a0 b0 c0 [*]. subst. + exists i. repeat split => //=. + have : Γ ⊢ subst_PTm (scons a VarPTm) P ∈ subst_PTm (scons a VarPTm) (PUniv i) by hauto l:on use:substing_wt. + eauto using E_Refl, Su_Eq. + - hauto lq:on rew:off ctrs:LEq. +Qed. + Lemma E_AppAbs : forall n (a : PTm (S n)) (b : PTm n) (Γ : fin n -> PTm n) (A : PTm n), Γ ⊢ PApp (PAbs a) b ∈ A -> Γ ⊢ PApp (PAbs a) b ≡ subst_PTm (scons b VarPTm) a ∈ A. Proof. @@ -108,6 +125,19 @@ Proof. apply : E_ProjPair1; eauto. Qed. +Lemma Suc_Inv n Γ (a : PTm n) A : + Γ ⊢ PSuc a ∈ A -> Γ ⊢ a ∈ PNat /\ Γ ⊢ PNat ≲ A. +Proof. + move E : (PSuc a) => u hu. + move : a E. + elim : n Γ u A /hu => //=. + - move => n Γ a ha iha a0 [*]. subst. + split => //=. eapply wff_mutual in ha. + apply : Su_Eq. + apply E_Refl. by apply T_Nat'. + - hauto lq:on rew:off ctrs:LEq. +Qed. + Lemma RRed_Eq n Γ (a b : PTm n) A : Γ ⊢ a ∈ A -> RRed.R a b -> @@ -130,6 +160,13 @@ Proof. move : hA0 => /[swap]. move : Su_Transitive. repeat move/[apply]. move {hS}. move => ?. apply : E_Conv; eauto. apply : E_ProjPair2; eauto. + - hauto lq:on use:Ind_Inv, E_Conv, E_IndZero. + - move => P a b c Γ A. + move /Ind_Inv. + move => [i][hP][ha][hb][hc]hSu. + apply : E_Conv; eauto. + apply : E_IndSuc'; eauto. + hauto l:on use:Suc_Inv. - qauto l:on use:Abs_Inv, E_Conv, regularity_sub0, E_Abs. - move => a0 a1 b ha iha Γ A /App_Inv [A0][B0][ih0][ih1]hU. have {}/iha iha := ih0. @@ -170,6 +207,11 @@ Proof. have {}/ihA ihA := h1. apply : E_Conv; eauto. apply E_Bind'; eauto using E_Refl. + - hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt. + - hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt. + - hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt. + - hauto lq:on rew:off use:Ind_Inv, E_Conv, E_IndCong db:wt. + - hauto lq:on use:Suc_Inv, E_Conv, E_SucCong. Qed. Theorem subject_reduction n Γ (a b A : PTm n) : diff --git a/theories/structural.v b/theories/structural.v index 2773c3c..c25986c 100644 --- a/theories/structural.v +++ b/theories/structural.v @@ -12,6 +12,11 @@ Proof. apply wt_mutual; eauto. Qed. #[export]Hint Constructors Wt Wff Eq : wt. +Lemma T_Nat' n Γ : + ⊢ Γ -> + Γ ⊢ PNat : PTm n ∈ PUniv 0. +Proof. apply T_Nat. Qed. + Lemma renaming_up n m (ξ : fin n -> fin m) Δ Γ A : renaming_ok Δ Γ ξ -> renaming_ok (funcomp (ren_PTm shift) (scons (ren_PTm ξ A) Δ)) (funcomp (ren_PTm shift) (scons A Γ)) (upRen_PTm_PTm ξ) . @@ -45,7 +50,10 @@ Proof. move E :(PBind p A B) => T h. move : p A B E. elim : n Γ T U / h => //=. - - hauto lq:on ctrs:Wt,LEq,Eq use:Wt_Univ. + - move => n Γ i p A B hA _ hB _ p0 A0 B0 [*]. subst. + exists i. repeat split => //=. + eapply wff_mutual in hA. + apply Su_Univ; eauto. - hauto lq:on rew:off ctrs:LEq. Qed. @@ -92,6 +100,25 @@ Proof. move => ->. eauto using T_Pair. Qed. +Lemma E_IndCong' n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i U : + U = subst_PTm (scons a0 VarPTm) P0 -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P0 ∈ PUniv i -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i -> + Γ ⊢ a0 ≡ a1 ∈ PNat -> + Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 -> + funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) -> + Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ U. +Proof. move => ->. apply E_IndCong. Qed. + +Lemma T_Ind' s Γ P (a : PTm s) b c i U : + U = subst_PTm (scons a VarPTm) P -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ a ∈ PNat -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P a b c ∈ U. +Proof. move =>->. apply T_Ind. Qed. + Lemma T_Proj2' n Γ (a : PTm n) A B U : U = subst_PTm (scons (PProj PL a) VarPTm) B -> Γ ⊢ a ∈ PBind PSig A B -> @@ -103,9 +130,7 @@ Lemma E_Proj2' n Γ i (a b : PTm n) A B U : Γ ⊢ PBind PSig A B ∈ (PUniv i) -> Γ ⊢ a ≡ b ∈ PBind PSig A B -> Γ ⊢ PProj PR a ≡ PProj PR b ∈ U. -Proof. - move => ->. apply E_Proj2. -Qed. +Proof. move => ->. apply E_Proj2. Qed. Lemma E_Bind' n Γ i p (A0 A1 : PTm n) B0 B1 : Γ ⊢ A0 ∈ PUniv i -> @@ -162,6 +187,30 @@ Lemma Su_Sig_Proj2' n Γ (a0 a1 A0 A1 : PTm n) B0 B1 U T : Γ ⊢ U ≲ T. Proof. move => -> ->. apply Su_Sig_Proj2. Qed. +Lemma E_IndZero' n Γ P i (b : PTm n) c U : + U = subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P PZero b c ≡ b ∈ U. +Proof. move => ->. apply E_IndZero. Qed. + +Lemma Wff_Cons' n Γ (A : PTm n) i : + Γ ⊢ A ∈ PUniv i -> + (* -------------------------------- *) + ⊢ funcomp (ren_PTm shift) (scons A Γ). +Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed. + +Lemma E_IndSuc' s Γ P (a : PTm s) b c i u U : + u = subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c -> + U = subst_PTm (scons (PSuc a) VarPTm) P -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ a ∈ PNat -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P (PSuc a) b c ≡ u ∈ U. +Proof. move => ->->. apply E_IndSuc. Qed. + Lemma renaming : (forall n (Γ : fin n -> PTm n), ⊢ Γ -> True) /\ (forall n Γ (a A : PTm n), Γ ⊢ a ∈ A -> forall m Δ (ξ : fin n -> fin m), ⊢ Δ -> renaming_ok Δ Γ ξ -> @@ -184,6 +233,22 @@ Proof. - move => n Γ a A b B i hA ihA hB ihB hS ihS m Δ ξ hξ hΔ. eapply T_Pair' with (U := ren_PTm ξ (subst_PTm (scons a VarPTm) B));eauto. by asimpl. - move => n Γ a A B ha iha m Δ ξ hΔ hξ. apply : T_Proj2'; eauto. by asimpl. + - move => s Γ P a b c i hP ihP ha iha hb ihb hc ihc m Δ ξ hΔ hξ. + move => [:hP]. + apply : T_Ind'; eauto. by asimpl. + abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'. + hauto l:on use:renaming_up. + set x := subst_PTm _ _. have -> : x = ren_PTm ξ (subst_PTm (scons PZero VarPTm) P) by subst x; asimpl. + by subst x; eauto. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ. subst Ξ. + apply : Wff_Cons'; eauto. apply hP. + move /(_ _ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc. + set Ξ' := (funcomp _ _ : fin (S (S _)) -> _) . + have : renaming_ok Ξ Ξ' (upRen_PTm_PTm (upRen_PTm_PTm ξ)). + by do 2 apply renaming_up. + move /[swap] /[apply]. + by asimpl. - hauto lq:on ctrs:Wt,LEq. - hauto lq:on ctrs:Eq. - hauto lq:on rew:off use:E_Bind', Wff_Cons, renaming_up. @@ -199,6 +264,27 @@ Proof. move : ihb hΔ hξ. repeat move/[apply]. by asimpl. - move => *. apply : E_Proj2'; eauto. by asimpl. + - move => n Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc. + move => m Δ ξ hΔ hξ [:hP']. + apply E_IndCong' with (i := i). + by asimpl. + abstract : hP'. + qauto l:on use:renaming_up, Wff_Cons', T_Nat'. + qauto l:on use:renaming_up, Wff_Cons', T_Nat'. + by eauto with wt. + move : ihb (hΔ) (hξ); do! move/[apply]. by asimpl. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ. + subst Ξ. apply :Wff_Cons'; eauto. apply hP'. + move /(_ _ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(qauto l:on use:renaming_up)). + suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ)) + (ren_PTm shift + (subst_PTm + (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P0)) = ren_PTm shift + (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) + (ren_PTm (upRen_PTm_PTm ξ) P0)) by scongruence. + by asimpl. - qauto l:on ctrs:Eq, LEq. - move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ξ hΔ hξ. move : ihP (hξ) (hΔ). repeat move/[apply]. @@ -216,6 +302,32 @@ Proof. - move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ξ hΔ hξ. apply : E_ProjPair2'; eauto. by asimpl. move : ihb hξ hΔ; repeat move/[apply]. by asimpl. + - move => n Γ P i b c hP ihP hb ihb hc ihc m Δ ξ hΔ hξ. + apply E_IndZero' with (i := i); eauto. by asimpl. + qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ m Δ ξ hΔ) : ihb. + asimpl. by apply. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ _ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(qauto l:on use:renaming_up)). + suff : ren_PTm (upRen_PTm_PTm (upRen_PTm_PTm ξ)) + (ren_PTm shift + (subst_PTm + (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) P))= ren_PTm shift + (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift)) + (ren_PTm (upRen_PTm_PTm ξ) P)) by scongruence. + by asimpl. + - move => n Γ P a b c i hP ihP ha iha hb ihb hc ihc m Δ ξ hΔ hξ. + apply E_IndSuc' with (i := i). by asimpl. by asimpl. + qauto l:on use:Wff_Cons', T_Nat', renaming_up. + by eauto with wt. + move /(_ m Δ ξ hΔ) : ihb. asimpl. by apply. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ _ Ξ (upRen_PTm_PTm (upRen_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(qauto l:on use:renaming_up)). + by asimpl. - move => *. apply : E_AppEta'; eauto. by asimpl. - qauto l:on use:E_PairEta. @@ -272,10 +384,6 @@ Lemma renaming_wt' : forall n m Δ Γ a A (ξ : fin n -> fin m) u U, renaming_ok Δ Γ ξ -> Δ ⊢ u ∈ U. Proof. hauto use:renaming_wt. Qed. -Lemma renaming_shift n m Γ (ρ : fin n -> PTm m) A : - renaming_ok (funcomp (ren_PTm shift) (scons (subst_PTm ρ A) Γ)) Γ shift. -Proof. sfirstorder. Qed. - Lemma morphing_up n m Γ Δ (ρ : fin n -> PTm m) (A : PTm n) k : morphing_ok Γ Δ ρ -> Γ ⊢ subst_PTm ρ A ∈ PUniv k -> @@ -291,12 +399,6 @@ Proof. apply : T_Var';eauto. rewrite /funcomp. by asimpl. Qed. -Lemma Wff_Cons' n Γ (A : PTm n) i : - Γ ⊢ A ∈ PUniv i -> - (* -------------------------------- *) - ⊢ funcomp (ren_PTm shift) (scons A Γ). -Proof. hauto lq:on rew:off use:Wff_Cons, wff_mutual. Qed. - Lemma weakening_wt : forall n Γ (a A B : PTm n) i, Γ ⊢ B ∈ PUniv i -> Γ ⊢ a ∈ A -> @@ -342,6 +444,32 @@ Proof. - move => *. apply : T_Proj2'; eauto. by asimpl. - hauto lq:on ctrs:Wt,LEq. - qauto l:on ctrs:Wt. + - qauto l:on ctrs:Wt. + - qauto l:on ctrs:Wt. + - move => s Γ P a b c i hP ihP ha iha hb ihb hc ihc m Δ ξ hΔ hξ. + have hξ' : morphing_ok (funcomp (ren_PTm shift) (scons PNat Δ)) + (funcomp (ren_PTm shift) (scons PNat Γ)) (up_PTm_PTm ξ). + move /morphing_up : hξ. move /(_ PNat 0). + apply. by apply T_Nat. + move => [:hP]. + apply : T_Ind'; eauto. by asimpl. + abstract :hP. apply ihP. by eauto using Wff_Cons', T_Nat'. + move /morphing_up : hξ. move /(_ PNat 0). + apply. by apply T_Nat. + move : ihb hξ hΔ; do!move/[apply]. by asimpl. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ. subst Ξ. + apply : Wff_Cons'; eauto. apply hP. + move /(_ _ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc. + set Ξ' := (funcomp _ _ : fin (S (S _)) -> _) . + have : morphing_ok Ξ Ξ' (up_PTm_PTm (up_PTm_PTm ξ)). + eapply morphing_up; eauto. apply hP. + move /[swap]/[apply]. + set x := (x in _ ⊢ _ ∈ x). + set y := (y in _ -> _ ⊢ _ ∈ y). + suff : x = y by scongruence. + subst x y. asimpl. substify. by asimpl. + - qauto l:on ctrs:Wt. - hauto lq:on ctrs:Eq. - hauto lq:on ctrs:Eq. - hauto lq:on ctrs:Eq. @@ -359,6 +487,27 @@ Proof. by asimpl. - hauto q:on ctrs:Eq. - move => *. apply : E_Proj2'; eauto. by asimpl. + - move => n Γ P0 P1 a0 a1 b0 b1 c0 c1 i hP0 ihP0 hP ihP ha iha hb ihb hc ihc. + move => m Δ ξ hΔ hξ. + have hξ' : morphing_ok (funcomp (ren_PTm shift) (scons PNat Δ)) + (funcomp (ren_PTm shift) (scons PNat Γ)) (up_PTm_PTm ξ). + move /morphing_up : hξ. move /(_ PNat 0). + apply. by apply T_Nat. + move => [:hP']. + apply E_IndCong' with (i := i). + by asimpl. + abstract : hP'. + qauto l:on use:morphing_up, Wff_Cons', T_Nat'. + qauto l:on use:renaming_up, Wff_Cons', T_Nat'. + by eauto with wt. + move : ihb (hΔ) (hξ); do! move/[apply]. by asimpl. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ. + subst Ξ. apply :Wff_Cons'; eauto. apply hP'. + move /(_ _ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(qauto l:on use:morphing_up)). + asimpl. substify. by asimpl. + - eauto with wt. - qauto l:on ctrs:Eq, LEq. - move => n Γ a b A B i hP ihP hb ihb ha iha m Δ ρ hΔ hρ. move : ihP (hρ) (hΔ). repeat move/[apply]. @@ -376,6 +525,34 @@ Proof. - move => n Γ a b A B i hP ihP ha iha hb ihb m Δ ρ hΔ hρ. apply : E_ProjPair2'; eauto. by asimpl. move : ihb hρ hΔ; repeat move/[apply]. by asimpl. + - move => n Γ P i b c hP ihP hb ihb hc ihc m Δ ξ hΔ hξ. + have hξ' : morphing_ok (funcomp (ren_PTm shift) (scons PNat Δ)) + (funcomp (ren_PTm shift) (scons PNat Γ)) (up_PTm_PTm ξ). + move /morphing_up : hξ. move /(_ PNat 0). + apply. by apply T_Nat. + apply E_IndZero' with (i := i); eauto. by asimpl. + qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ m Δ ξ hΔ) : ihb. + asimpl. by apply. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ _ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(sauto lq:on use:morphing_up)). + asimpl. substify. by asimpl. + - move => n Γ P a b c i hP ihP ha iha hb ihb hc ihc m Δ ξ hΔ hξ. + have hξ' : morphing_ok (funcomp (ren_PTm shift) (scons PNat Δ)) + (funcomp (ren_PTm shift) (scons PNat Γ)) (up_PTm_PTm ξ). + move /morphing_up : hξ. move /(_ PNat 0). + apply. by apply T_Nat'. + apply E_IndSuc' with (i := i). by asimpl. by asimpl. + qauto l:on use:Wff_Cons', T_Nat', renaming_up. + by eauto with wt. + move /(_ m Δ ξ hΔ) : ihb. asimpl. by apply. + set Ξ := funcomp _ _. + have hΞ : ⊢ Ξ by qauto l:on use:Wff_Cons', T_Nat', renaming_up. + move /(_ _ Ξ (up_PTm_PTm (up_PTm_PTm ξ)) hΞ) : ihc. + move /(_ ltac:(sauto l:on use:morphing_up)). + asimpl. substify. by asimpl. - move => *. apply : E_AppEta'; eauto. by asimpl. - qauto l:on use:E_PairEta. @@ -505,6 +682,8 @@ Proof. exists j. have : Γ ⊢ PProj PL a ∈ A by qauto use:T_Proj1. move : substing_wt h1; repeat move/[apply]. by asimpl. + - move => s Γ P a b c i + ? + *. clear. move => h ha. exists i. + hauto lq:on use:substing_wt. - sfirstorder. - sfirstorder. - sfirstorder. @@ -535,9 +714,46 @@ Proof. eauto using bind_inst. move /T_Proj1 in iha. hauto lq:on ctrs:Wt,Eq,LEq use:Bind_Inv, substing_wt. + - move => n Γ P0 P1 a0 a1 b0 b1 c0 c1 i _ _ hPE [hP0 [hP1 _]] hae [ha0 [ha1 _]] _ [hb0 [hb1 hb2]] _ [hc0 [hc1 hc2]]. + have wfΓ : ⊢ Γ by hauto use:wff_mutual. + repeat split. by eauto using T_Ind. + apply : T_Conv. apply : T_Ind; eauto. + apply : T_Conv; eauto. + eapply morphing; by eauto using Su_Eq, morphing_ext, morphing_id with wt. + apply : T_Conv. apply : ctx_eq_subst_one; eauto. + by eauto using Su_Eq, E_Symmetric. + eapply renaming; eauto. + eapply morphing; eauto 20 using Su_Eq, morphing_ext, morphing_id with wt. + apply morphing_ext; eauto. + replace (funcomp VarPTm shift) with (funcomp (@ren_PTm n _ shift) VarPTm); last by asimpl. + apply : morphing_ren; eauto using Wff_Cons' with wt. + apply : renaming_shift; eauto. by apply morphing_id. + apply T_Suc. apply T_Var'. by asimpl. apply : Wff_Cons'; eauto using T_Nat'. + apply : Wff_Cons'; eauto. apply : renaming_shift; eauto. + have /E_Symmetric /Su_Eq : Γ ⊢ PBind PSig PNat P0 ≡ PBind PSig PNat P1 ∈ PUniv i by eauto with wt. + move /E_Symmetric in hae. + by eauto using Su_Sig_Proj2. + sauto lq:on use:substing_wt. + - hauto lq:on ctrs:Wt. - hauto lq:on ctrs:Wt. - hauto q:on use:substing_wt db:wt. - hauto l:on use:bind_inst db:wt. + - move => n Γ P i b c hP _ hb _ hc _. + have ? : ⊢ Γ by hauto use:wff_mutual. + repeat split=>//. + by eauto with wt. + sauto lq:on use:substing_wt. + - move => s Γ P a b c i hP _ ha _ hb _ hc _. + have ? : ⊢ Γ by hauto use:wff_mutual. + repeat split=>//. + apply : T_Ind; eauto with wt. + set Ξ : fin (S (S _)) -> _ := (X in X ⊢ _ ∈ _) in hc. + have : morphing_ok Γ Ξ (scons (PInd P a b c) (scons a VarPTm)). + apply morphing_ext. apply morphing_ext. by apply morphing_id. + by eauto. by eauto with wt. + subst Ξ. + move : morphing_wt hc; repeat move/[apply]. asimpl. by apply. + sauto lq:on use:substing_wt. - move => n Γ b A B i hΓ ihΓ hP _ hb [i0 ihb]. repeat split => //=; eauto with wt. have {}hb : funcomp (ren_PTm shift) (scons A Γ) ⊢ ren_PTm shift b ∈ ren_PTm shift (PBind PPi A B) @@ -603,6 +819,7 @@ Proof. + apply Cumulativity with (i := i1); eauto. have : Γ ⊢ a1 ∈ A1 by eauto using T_Conv. move : substing_wt ih1';repeat move/[apply]. by asimpl. + Unshelve. all: exact 0. Qed. Lemma Var_Inv n Γ (i : fin n) A : diff --git a/theories/typing.v b/theories/typing.v index 052eab8..818d6b5 100644 --- a/theories/typing.v +++ b/theories/typing.v @@ -42,6 +42,25 @@ Inductive Wt : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> Prop := ⊢ Γ -> Γ ⊢ PUniv i : PTm n ∈ PUniv (S i) +| T_Nat n Γ i : + ⊢ Γ -> + Γ ⊢ PNat : PTm n ∈ PUniv i + +| T_Zero n Γ : + ⊢ Γ -> + Γ ⊢ PZero : PTm n ∈ PNat + +| T_Suc n Γ (a : PTm n) : + Γ ⊢ a ∈ PNat -> + Γ ⊢ PSuc a ∈ PNat + +| T_Ind s Γ P (a : PTm s) b c i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ a ∈ PNat -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P a b c ∈ subst_PTm (scons a VarPTm) P + | T_Conv n Γ (a : PTm n) A B : Γ ⊢ a ∈ A -> Γ ⊢ A ≲ B -> @@ -96,6 +115,18 @@ with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop := Γ ⊢ a ≡ b ∈ PBind PSig A B -> Γ ⊢ PProj PR a ≡ PProj PR b ∈ subst_PTm (scons (PProj PL a) VarPTm) B +| E_IndCong n Γ P0 P1 (a0 a1 : PTm n) b0 b1 c0 c1 i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P0 ∈ PUniv i -> + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P0 ≡ P1 ∈ PUniv i -> + Γ ⊢ a0 ≡ a1 ∈ PNat -> + Γ ⊢ b0 ≡ b1 ∈ subst_PTm (scons PZero VarPTm) P0 -> + funcomp (ren_PTm shift) (scons P0 (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c0 ≡ c1 ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P0) -> + Γ ⊢ PInd P0 a0 b0 c0 ≡ PInd P1 a1 b1 c1 ∈ subst_PTm (scons a0 VarPTm) P0 + +| E_SucCong n Γ (a b : PTm n) : + Γ ⊢ a ≡ b ∈ PNat -> + Γ ⊢ PSuc a ≡ PSuc b ∈ PNat + | E_Conv n Γ (a b : PTm n) A B : Γ ⊢ a ≡ b ∈ A -> Γ ⊢ A ≲ B -> @@ -120,6 +151,19 @@ with Eq : forall {n}, (fin n -> PTm n) -> PTm n -> PTm n -> PTm n -> Prop := Γ ⊢ b ∈ subst_PTm (scons a VarPTm) B -> Γ ⊢ PProj PR (PPair a b) ≡ b ∈ subst_PTm (scons a VarPTm) B +| E_IndZero n Γ P i (b : PTm n) c : + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P PZero b c ≡ b ∈ subst_PTm (scons PZero VarPTm) P + +| E_IndSuc s Γ P (a : PTm s) b c i : + funcomp (ren_PTm shift) (scons PNat Γ) ⊢ P ∈ PUniv i -> + Γ ⊢ a ∈ PNat -> + Γ ⊢ b ∈ subst_PTm (scons PZero VarPTm) P -> + funcomp (ren_PTm shift)(scons P (funcomp (ren_PTm shift) (scons PNat Γ))) ⊢ c ∈ ren_PTm shift (subst_PTm (scons (PSuc (VarPTm var_zero)) (funcomp VarPTm shift) ) P) -> + Γ ⊢ PInd P (PSuc a) b c ≡ (subst_PTm (scons (PInd P a b c) (scons a VarPTm)) c) ∈ subst_PTm (scons (PSuc a) VarPTm) P + (* Eta *) | E_AppEta n Γ (b : PTm n) A B i : ⊢ Γ ->