diff --git a/syntax.sig b/syntax.sig index 6b7e4df..e2bafac 100644 --- a/syntax.sig +++ b/syntax.sig @@ -1,19 +1,15 @@ PTm(VarPTm) : Type PTag : Type -BTag : Type +Ty : Type -nat : Type +Fun : Ty -> Ty -> Ty +Prod : Ty -> Ty -> Ty +Void : Ty PL : PTag PR : PTag -PPi : BTag -PSig : BTag - PAbs : (bind PTm in PTm) -> PTm PApp : PTm -> PTm -> PTm PPair : PTm -> PTm -> PTm PProj : PTag -> PTm -> PTm -PBind : BTag -> PTm -> (bind PTm in PTm) -> PTm -PUniv : nat -> PTm -PBot : PTm \ No newline at end of file diff --git a/theories/Autosubst2/syntax.v b/theories/Autosubst2/syntax.v index ff9ec18..78c4fec 100644 --- a/theories/Autosubst2/syntax.v +++ b/theories/Autosubst2/syntax.v @@ -5,20 +5,6 @@ Require Import Setoid Morphisms Relation_Definitions. Module Core. -Inductive BTag : Type := - | PPi : BTag - | PSig : BTag. - -Lemma congr_PPi : PPi = PPi. -Proof. -exact (eq_refl). -Qed. - -Lemma congr_PSig : PSig = PSig. -Proof. -exact (eq_refl). -Qed. - Inductive PTag : Type := | PL : PTag | PR : PTag. @@ -38,10 +24,7 @@ Inductive PTm (n_PTm : nat) : Type := | PAbs : PTm (S n_PTm) -> PTm n_PTm | PApp : PTm n_PTm -> PTm n_PTm -> PTm n_PTm | PPair : PTm n_PTm -> PTm n_PTm -> PTm n_PTm - | PProj : PTag -> PTm n_PTm -> PTm n_PTm - | PBind : BTag -> PTm n_PTm -> PTm (S n_PTm) -> PTm n_PTm - | PUniv : nat -> PTm n_PTm - | PBot : PTm n_PTm. + | PProj : PTag -> PTm n_PTm -> PTm n_PTm. Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)} (H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0. @@ -73,28 +56,6 @@ exact (eq_trans (eq_trans eq_refl (ap (fun x => PProj m_PTm x s1) H0)) (ap (fun x => PProj m_PTm t0 x) H1)). Qed. -Lemma congr_PBind {m_PTm : nat} {s0 : BTag} {s1 : PTm m_PTm} - {s2 : PTm (S m_PTm)} {t0 : BTag} {t1 : PTm m_PTm} {t2 : PTm (S m_PTm)} - (H0 : s0 = t0) (H1 : s1 = t1) (H2 : s2 = t2) : - PBind m_PTm s0 s1 s2 = PBind m_PTm t0 t1 t2. -Proof. -exact (eq_trans - (eq_trans (eq_trans eq_refl (ap (fun x => PBind m_PTm x s1 s2) H0)) - (ap (fun x => PBind m_PTm t0 x s2) H1)) - (ap (fun x => PBind m_PTm t0 t1 x) H2)). -Qed. - -Lemma congr_PUniv {m_PTm : nat} {s0 : nat} {t0 : nat} (H0 : s0 = t0) : - PUniv m_PTm s0 = PUniv m_PTm t0. -Proof. -exact (eq_trans eq_refl (ap (fun x => PUniv m_PTm x) H0)). -Qed. - -Lemma congr_PBot {m_PTm : nat} : PBot m_PTm = PBot m_PTm. -Proof. -exact (eq_refl). -Qed. - Lemma upRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) : fin (S m) -> fin (S n). Proof. @@ -115,10 +76,6 @@ Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat} | PApp _ s0 s1 => PApp n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PPair _ s0 s1 => PPair n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PProj _ s0 s1 => PProj n_PTm s0 (ren_PTm xi_PTm s1) - | PBind _ s0 s1 s2 => - PBind n_PTm s0 (ren_PTm xi_PTm s1) (ren_PTm (upRen_PTm_PTm xi_PTm) s2) - | PUniv _ s0 => PUniv n_PTm s0 - | PBot _ => PBot n_PTm end. Lemma up_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) : @@ -145,11 +102,6 @@ Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat} | PPair _ s0 s1 => PPair n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PProj _ s0 s1 => PProj n_PTm s0 (subst_PTm sigma_PTm s1) - | PBind _ s0 s1 s2 => - PBind n_PTm s0 (subst_PTm sigma_PTm s1) - (subst_PTm (up_PTm_PTm sigma_PTm) s2) - | PUniv _ s0 => PUniv n_PTm s0 - | PBot _ => PBot n_PTm end. Lemma upId_PTm_PTm {m_PTm : nat} (sigma : fin m_PTm -> PTm m_PTm) @@ -188,11 +140,6 @@ Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm) (idSubst_PTm sigma_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) (idSubst_PTm sigma_PTm Eq_PTm s1) - (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma upExtRen_PTm_PTm {m : nat} {n : nat} (xi : fin m -> fin n) @@ -233,12 +180,6 @@ ren_PTm xi_PTm s = ren_PTm zeta_PTm s := (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) - (extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) - (upExtRen_PTm_PTm _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma upExt_PTm_PTm {m : nat} {n_PTm : nat} (sigma : fin m -> PTm n_PTm) @@ -280,12 +221,6 @@ subst_PTm sigma_PTm s = subst_PTm tau_PTm s := (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) - (ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) - (upExt_PTm_PTm _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma up_ren_ren_PTm_PTm {k : nat} {l : nat} {m : nat} (xi : fin k -> fin l) @@ -327,13 +262,6 @@ Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) - (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) - (compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) - (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma up_ren_subst_PTm_PTm {k : nat} {l : nat} {m_PTm : nat} @@ -384,13 +312,6 @@ Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) - (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) - (compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm) - (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma up_subst_ren_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} @@ -461,13 +382,6 @@ ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) - (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) - (compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm) - (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma up_subst_subst_PTm_PTm {k : nat} {l_PTm : nat} {m_PTm : nat} @@ -540,13 +454,6 @@ subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := | PProj _ s0 s1 => congr_PProj (eq_refl s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) - (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) - (compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) - (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma renRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} @@ -659,12 +566,6 @@ Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat} (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) | PProj _ s0 s1 => congr_PProj (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) - | PBind _ s0 s1 s2 => - congr_PBind (eq_refl s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) - (rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm) - (rinstInst_up_PTm_PTm _ _ Eq_PTm) s2) - | PUniv _ s0 => congr_PUniv (eq_refl s0) - | PBot _ => congr_PBot end. Lemma rinstInst'_PTm {m_PTm : nat} {n_PTm : nat} @@ -736,6 +637,30 @@ Proof. exact (fun x => eq_refl). Qed. +Inductive Ty : Type := + | Fun : Ty -> Ty -> Ty + | Prod : Ty -> Ty -> Ty + | Void : Ty. + +Lemma congr_Fun {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) + (H1 : s1 = t1) : Fun s0 s1 = Fun t0 t1. +Proof. +exact (eq_trans (eq_trans eq_refl (ap (fun x => Fun x s1) H0)) + (ap (fun x => Fun t0 x) H1)). +Qed. + +Lemma congr_Prod {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) + (H1 : s1 = t1) : Prod s0 s1 = Prod t0 t1. +Proof. +exact (eq_trans (eq_trans eq_refl (ap (fun x => Prod x s1) H0)) + (ap (fun x => Prod t0 x) H1)). +Qed. + +Lemma congr_Void : Void = Void. +Proof. +exact (eq_refl). +Qed. + Class Up_PTm X Y := up_PTm : X -> Y. @@ -871,12 +796,6 @@ Core. Arguments VarPTm {n_PTm}. -Arguments PBot {n_PTm}. - -Arguments PUniv {n_PTm}. - -Arguments PBind {n_PTm}. - Arguments PProj {n_PTm}. Arguments PPair {n_PTm}. diff --git a/theories/fp_red.v b/theories/fp_red.v index e22e759..062f9a6 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -47,15 +47,7 @@ Module EPar. R a0 a1 -> R (PProj p a0) (PProj p a1) | VarTm i : - R (VarPTm i) (VarPTm i) - | Univ i : - R (PUniv i) (PUniv i) - | BindCong p A0 A1 B0 B1 : - R A0 A1 -> - R B0 B1 -> - R (PBind p A0 B0) (PBind p A1 B1) - | BotCong : - R PBot PBot. + R (VarPTm i) (VarPTm i). Lemma refl n (a : PTm n) : R a a. Proof. @@ -107,10 +99,6 @@ Module EPar. all : hauto lq:on ctrs:R use:morphing_up. Qed. - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. hauto l:on use:morphing, refl. Qed. - End EPar. Inductive SNe {n} : PTm n -> Prop := @@ -123,8 +111,6 @@ Inductive SNe {n} : PTm n -> Prop := | N_Proj p a : SNe a -> SNe (PProj p a) -| N_Bot : - SNe PBot with SN {n} : PTm n -> Prop := | N_Pair a b : SN a -> @@ -140,12 +126,6 @@ with SN {n} : PTm n -> Prop := TRedSN a b -> SN b -> SN a -| N_Bind p A B : - SN A -> - SN B -> - SN (PBind p A B) -| N_Univ i : - SN (PUniv i) with TRedSN {n} : PTm n -> PTm n -> Prop := | N_β a b : SN b -> @@ -166,65 +146,6 @@ with TRedSN {n} : PTm n -> PTm n -> Prop := Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop. -Definition ishf {n} (a : PTm n) := - match a with - | PPair _ _ => true - | PAbs _ => true - | PUniv _ => true - | PBind _ _ _ => true - | _ => false - end. -Definition isbind {n} (a : PTm n) := if a is PBind _ _ _ then true else false. - -Definition isuniv {n} (a : PTm n) := if a is PUniv _ then true else false. - -Definition ispair {n} (a : PTm n) := - match a with - | PPair _ _ => true - | _ => false - end. - -Definition isabs {n} (a : PTm n) := - match a with - | PAbs _ => true - | _ => false - end. - -Definition ishf_ren n m (a : PTm n) (ξ : fin n -> fin m) : - ishf (ren_PTm ξ a) = ishf a. -Proof. case : a => //=. Qed. - -Definition isabs_ren n m (a : PTm n) (ξ : fin n -> fin m) : - isabs (ren_PTm ξ a) = isabs a. -Proof. case : a => //=. Qed. - -Definition ispair_ren n m (a : PTm n) (ξ : fin n -> fin m) : - ispair (ren_PTm ξ a) = ispair a. -Proof. case : a => //=. Qed. - -Lemma PProj_imp n p a : - @ishf n a -> - ~~ ispair a -> - ~ SN (PProj p a). -Proof. - move => + + h. move E : (PProj p a) h => u h. - move : p a E. - elim : n u / h => //=. - hauto lq:on inv:SNe,PTm. - hauto lq:on inv:TRedSN. -Qed. - -Lemma PAbs_imp n a b : - @ishf n a -> - ~~ isabs a -> - ~ SN (PApp a b). -Proof. - move => + + h. move E : (PApp a b) h => u h. - move : a b E. elim : n u /h=>//=. - hauto lq:on inv:SNe,PTm. - hauto lq:on inv:TRedSN. -Qed. - Lemma PProjAbs_imp n p (a : PTm (S n)) : ~ SN (PProj p (PAbs a)). Proof. @@ -235,7 +156,7 @@ Proof. hauto lq:on inv:TRedSN. Qed. -Lemma PAppPair_imp n (a b0 b1 : PTm n ) : +Lemma PProjPair_imp n (a b0 b1 : PTm n ) : ~ SN (PApp (PPair b0 b1) a). Proof. move E : (PApp (PPair b0 b1) a) => u hu. @@ -245,26 +166,6 @@ Proof. hauto lq:on inv:TRedSN. Qed. -Lemma PAppBind_imp n p (A : PTm n) B b : - ~ SN (PApp (PBind p A B) b). -Proof. - move E :(PApp (PBind p A B) b) => u hu. - move : p A B b E. - elim : n u /hu=> //=. - hauto lq:on inv:SNe. - hauto lq:on inv:TRedSN. -Qed. - -Lemma PProjBind_imp n p p' (A : PTm n) B : - ~ SN (PProj p (PBind p' A B)). -Proof. - move E :(PProj p (PBind p' A B)) => u hu. - move : p p' A B E. - elim : n u /hu=>//=. - hauto lq:on inv:SNe. - hauto lq:on inv:TRedSN. -Qed. - Scheme sne_ind := Induction for SNe Sort Prop with sn_ind := Induction for SN Sort Prop with sred_ind := Induction for TRedSN Sort Prop. @@ -278,9 +179,6 @@ Fixpoint ne {n} (a : PTm n) := | PAbs a => false | PPair _ _ => false | PProj _ a => ne a - | PUniv _ => false - | PBind _ _ _ => false - | PBot => true end with nf {n} (a : PTm n) := match a with @@ -289,9 +187,6 @@ with nf {n} (a : PTm n) := | PAbs a => nf a | PPair a b => nf a && nf b | PProj _ a => ne a - | PUniv _ => true - | PBind _ A B => nf A && nf B - | PBot => true end. Lemma ne_nf n a : @ne n a -> nf a. @@ -439,7 +334,6 @@ Proof. - sauto lq:on. - sauto lq:on. - sauto lq:on. - - sauto lq:on. - move => a b ha iha hb ihb b0. inversion 1; subst. + have /iha : (EPar.R (PProj PL a0) (PProj PL b0)) by sauto lq:on. @@ -456,8 +350,6 @@ Proof. + sauto lq:on. - sauto lq:on. - sauto lq:on. - - sauto lq:on. - - sauto lq:on. - move => a b ha iha c h0. inversion h0; subst. inversion H1; subst. @@ -518,13 +410,7 @@ Module RRed. R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> - R (PProj p a0) (PProj p a1) - | BindCong0 p A0 A1 B : - R A0 A1 -> - R (PBind p A0 B) (PBind p A1 B) - | BindCong1 p A B0 B1 : - R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PProj p a0) (PProj p a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. @@ -571,20 +457,6 @@ Module RRed. R a b -> False. Proof. move/[swap]. induction 1; hauto qb:on inv:PTm. Qed. - Lemma FromRedSN n (a b : PTm n) : - TRedSN a b -> - RRed.R a b. - Proof. induction 1; hauto lq:on ctrs:RRed.R. Qed. - - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - move => h. move : m ρ. elim : n a b / h => n. - move => a b m ρ /=. - eapply AppAbs'; eauto; cycle 1. by asimpl. - all : hauto lq:on ctrs:R. - Qed. - End RRed. Module RPar. @@ -616,15 +488,7 @@ Module RPar. R a0 a1 -> R (PProj p a0) (PProj p a1) | VarTm i : - R (VarPTm i) (VarPTm i) - | Univ i : - R (PUniv i) (PUniv i) - | BindCong p A0 A1 B0 B1 : - R A0 A1 -> - R B0 B1 -> - R (PBind p A0 B0) (PBind p A1 B1) - | BotCong : - R PBot PBot. + R (VarPTm i) (VarPTm i). Lemma refl n (a : PTm n) : R a a. Proof. @@ -717,9 +581,6 @@ Module RPar. | PPair a b => PPair (tstar a) (tstar b) | PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b) | PProj p a => PProj p (tstar a) - | PUniv i => PUniv i - | PBind p A B => PBind p (tstar A) (tstar B) - | PBot => PBot end. Lemma triangle n (a b : PTm n) : @@ -748,9 +609,6 @@ Module RPar. elim /inv : ha => //=_ > ? ? [*]. subst. apply : ProjPair'; eauto using refl. - hauto lq:on ctrs:R inv:R. - - hauto lq:on ctrs:R inv:R. - - hauto lq:on ctrs:R inv:R. - - hauto lq:on ctrs:R inv:R. Qed. Lemma diamond n (a b c : PTm n) : @@ -767,13 +625,10 @@ Proof. - hauto l:on inv:RPar.R. - qauto l:on inv:RPar.R,SNe,SN ctrs:SNe. - hauto lq:on inv:RPar.R, SNe ctrs:SNe. - - hauto lq:on inv:RPar.R, SNe ctrs:SNe. - qauto l:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN inv:RPar.R. - hauto lq:on ctrs:SN. - hauto q:on ctrs:SN inv:SN, TRedSN'. - - hauto lq:on ctrs:SN inv:RPar.R. - - hauto lq:on ctrs:SN inv:RPar.R. - move => a b ha iha hb ihb. elim /RPar.inv : ihb => //=_. + move => a0 a1 b0 b1 ha0 hb0 [*]. subst. @@ -795,6 +650,91 @@ Proof. - sauto. Qed. +Module EPar'. + Inductive R {n} : PTm n -> PTm n -> Prop := + (****************** Eta ***********************) + | AppEta a : + R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a + | PairEta a : + R (PPair (PProj PL a) (PProj PR a)) a + (*************** Congruence ********************) + | AbsCong a0 a1 : + R a0 a1 -> + R (PAbs a0) (PAbs a1) + | AppCong0 a0 a1 b : + R a0 a1 -> + R (PApp a0 b) (PApp a1 b) + | AppCong1 a b0 b1 : + R b0 b1 -> + R (PApp a b0) (PApp a b1) + | PairCong0 a0 a1 b : + R a0 a1 -> + R (PPair a0 b) (PPair a1 b) + | PairCong1 a b0 b1 : + R b0 b1 -> + R (PPair a b0) (PPair a b1) + | ProjCong p a0 a1 : + R a0 a1 -> + R (PProj p a0) (PProj p a1). + + Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. + + Lemma AppEta' n a (u : PTm n) : + u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) -> + R u a. + Proof. move => ->. apply AppEta. Qed. + + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : + R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). + Proof. + move => h. move : m ξ. + elim : n a b /h. + + move => n a m ξ /=. + eapply AppEta'; eauto. by asimpl. + all : qauto ctrs:R. + Qed. + + Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). + Proof. eauto using renaming. Qed. + +End EPar'. + +Module EPars. + + #[local]Ltac solve_s_rec := + move => *; eapply rtc_l; eauto; + hauto lq:on ctrs:EPar'.R. + + #[local]Ltac solve_s := + repeat (induction 1; last by solve_s_rec); apply rtc_refl. + + Lemma AbsCong n (a b : PTm (S n)) : + rtc EPar'.R a b -> + rtc EPar'.R (PAbs a) (PAbs b). + Proof. solve_s. Qed. + + Lemma AppCong n (a0 a1 b0 b1 : PTm n) : + rtc EPar'.R a0 a1 -> + rtc EPar'.R b0 b1 -> + rtc EPar'.R (PApp a0 b0) (PApp a1 b1). + Proof. solve_s. Qed. + + Lemma PairCong n (a0 a1 b0 b1 : PTm n) : + rtc EPar'.R a0 a1 -> + rtc EPar'.R b0 b1 -> + rtc EPar'.R (PPair a0 b0) (PPair a1 b1). + Proof. solve_s. Qed. + + Lemma ProjCong n p (a0 a1 : PTm n) : + rtc EPar'.R a0 a1 -> + rtc EPar'.R (PProj p a0) (PProj p a1). + Proof. solve_s. Qed. + +End EPars. + Module RReds. #[local]Ltac solve_s_rec := @@ -826,12 +766,6 @@ Module RReds. rtc RRed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. - Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : - rtc RRed.R A0 A1 -> - rtc RRed.R B0 B1 -> - rtc RRed.R (PBind p A0 B0) (PBind p A1 B1). - Proof. solve_s. Qed. - Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. @@ -841,7 +775,7 @@ Module RReds. Lemma FromRPar n (a b : PTm n) (h : RPar.R a b) : rtc RRed.R a b. Proof. - elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. + elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl. move => n a0 a1 b0 b1 ha iha hb ihb. apply : rtc_r; last by apply RRed.AppAbs. by eauto using AppCong, AbsCong. @@ -863,11 +797,6 @@ Module RReds. rtc RRed.R a b -> nf a -> a = b. Proof. induction 1; sfirstorder use:RRed.nf_imp. Qed. - Lemma FromRedSNs n (a b : PTm n) : - rtc TRedSN a b -> - rtc RRed.R a b. - Proof. induction 1; hauto lq:on ctrs:rtc use:RRed.FromRedSN. Qed. - End RReds. @@ -877,6 +806,19 @@ Proof. move : m ξ. elim : n / a => //=; solve [hauto b:on]. Qed. +Lemma ne_epar n (a b : PTm n) (h : EPar'.R a b ) : + (ne a -> ne b) /\ (nf a -> nf b). +Proof. + elim : n a b /h=>//=; hauto qb:on use:ne_nf_ren, ne_nf. +Qed. + +Definition ishf {n} (a : PTm n) := + match a with + | PPair _ _ => true + | PAbs _ => true + | _ => false + end. + Module NeEPar. Inductive R_nonelim {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) @@ -905,14 +847,6 @@ Module NeEPar. R_nonelim (PProj p a0) (PProj p a1) | VarTm i : R_nonelim (VarPTm i) (VarPTm i) - | Univ i : - R_nonelim (PUniv i) (PUniv i) - | BindCong p A0 A1 B0 B1 : - R_nonelim A0 A1 -> - R_nonelim B0 B1 -> - R_nonelim (PBind p A0 B0) (PBind p A1 B1) - | BotCong : - R_nonelim PBot PBot with R_elim {n} : PTm n -> PTm n -> Prop := | NAbsCong a0 a1 : R_nonelim a0 a1 -> @@ -929,15 +863,7 @@ Module NeEPar. R_elim a0 a1 -> R_elim (PProj p a0) (PProj p a1) | NVarTm i : - R_elim (VarPTm i) (VarPTm i) - | NUniv i : - R_elim (PUniv i) (PUniv i) - | NBindCong p A0 A1 B0 B1 : - R_nonelim A0 A1 -> - R_nonelim B0 B1 -> - R_elim (PBind p A0 B0) (PBind p A1 B1) - | NBotCong : - R_elim PBot PBot. + R_elim (VarPTm i) (VarPTm i). Scheme epar_elim_ind := Induction for R_elim Sort Prop with epar_nonelim_ind := Induction for R_nonelim Sort Prop. @@ -952,10 +878,9 @@ Module NeEPar. - move => a0 a1 b0 b1 h ih h' ih' /andP [h0 h1]. have hb0 : nf b0 by eauto. suff : ne a0 by qauto b:on. - hauto q:on inv:R_elim. + qauto l:on inv:R_elim. - hauto lb:on. - hauto lq:on inv:R_elim. - - hauto b:on. - move => a0 a1 /negP ha' ha ih ha1. have {ih} := ih ha1. move => ha0. @@ -972,7 +897,6 @@ Module NeEPar. move : ha h0. hauto lq:on inv:R_elim. - hauto lb: on drew: off. - hauto lq:on rew:off inv:R_elim. - - sfirstorder b:on. Qed. Lemma R_nonelim_nothf n (a b : PTm n) : @@ -1003,17 +927,11 @@ Module Type NoForbid. Axiom P_EPar : forall n (a b : PTm n), EPar.R a b -> P a -> P b. Axiom P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. - (* Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). *) - (* Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). *) - (* Axiom P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). *) - (* Axiom P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). *) - Axiom PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). - Axiom PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). + Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). + Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. - Axiom P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B. - Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. @@ -1052,10 +970,11 @@ Module SN_NoForbid <: NoForbid. Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed. - Lemma PAbs_imp : forall n a b, @ishf n a -> ~~ isabs a -> ~ P (PApp a b). - sfirstorder use:fp_red.PAbs_imp. Qed. - Lemma PProj_imp : forall n p a, @ishf n a -> ~~ ispair a -> ~ P (PProj p a). - sfirstorder use:fp_red.PProj_imp. Qed. + Lemma P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). + Proof. sfirstorder use:PProjPair_imp. Qed. + + Lemma P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). + Proof. sfirstorder use:PProjAbs_imp. Qed. Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Proof. sfirstorder use:SN_AppInv. Qed. @@ -1067,13 +986,6 @@ Module SN_NoForbid <: NoForbid. Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. Proof. sfirstorder use:SN_ProjInv. Qed. - Lemma P_BindInv : forall n p (A : PTm n) B, P (PBind p A B) -> P A /\ P B. - Proof. - move => n p A B. - move E : (PBind p A B) => u hu. - move : p A B E. elim : n u /hu=>//=;sauto lq:on rew:off. - Qed. - Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Proof. move => n a. move E : (PAbs a) => u h. @@ -1084,19 +996,13 @@ Module SN_NoForbid <: NoForbid. Lemma P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. Proof. hauto lq:on use:sn_antirenaming, sn_renaming. Qed. - Lemma P_ProjBind : forall n p p' (A : PTm n) B, ~ P (PProj p (PBind p' A B)). - Proof. sfirstorder use:PProjBind_imp. Qed. - - Lemma P_AppBind : forall n p (A : PTm n) B b, ~ P (PApp (PBind p A B) b). - Proof. sfirstorder use:PAppBind_imp. Qed. - End SN_NoForbid. Module NoForbid_FactSN := NoForbid_Fact SN_NoForbid. Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). Import M MFacts. - #[local]Hint Resolve P_EPar P_RRed PAbs_imp PProj_imp : forbid. + #[local]Hint Resolve P_EPar P_RRed P_AppPair P_ProjAbs : forbid. Lemma η_split n (a0 a1 : PTm n) : EPar.R a0 a1 -> @@ -1114,8 +1020,9 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). by eauto using RReds.renaming. apply NeEPar.AppEta=>//. sfirstorder use:NeEPar.R_nonelim_nothf. - case /orP : (orbN (isabs b)). - + case : b ih0 ih1 => //= p ih0 ih1 _ _. + + case : b ih0 ih1 => //=. + + move => p ih0 ih1 _. set q := PAbs _. suff : rtc RRed.R q (PAbs p) by sfirstorder. subst q. @@ -1126,14 +1033,16 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). apply : RRed.AbsCong => /=. apply RRed.AppAbs'. by asimpl. (* violates SN *) - + move /P_AbsInv in hP. - have {}hP : P (PApp (ren_PTm shift b) (VarPTm var_zero)) - by sfirstorder use:P_RReds, RReds.AppCong, @rtc_refl, RReds.renaming. - move => ? ?. - have ? : ~~ isabs (ren_PTm shift b) by scongruence use:isabs_ren. - have ? : ishf (ren_PTm shift b) by scongruence use:ishf_ren. - exfalso. - sfirstorder use:PAbs_imp. + + move => p p0 h. exfalso. + have : P (PApp (ren_PTm shift a0) (VarPTm var_zero)) + by sfirstorder use:P_AbsInv. + + have : rtc RRed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) + (PApp (ren_PTm shift (PPair p p0)) (VarPTm var_zero)) + by hauto lq:on use:RReds.AppCong, RReds.renaming, rtc_refl. + + move : P_RReds. repeat move/[apply] => /=. + hauto l:on use:P_AppPair. - move => n a0 a1 h ih /[dup] hP. move /P_PairInv => [/P_ProjInv + _]. move : ih => /[apply]. @@ -1142,9 +1051,16 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). exists (PPair (PProj PL b) (PProj PR b)). split. sfirstorder use:RReds.PairCong,RReds.ProjCong. hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf. - case /orP : (orbN (ispair b)). - + case : b ih0 ih1 => //=. - move => t0 t1 ih0 h1 _ _. + + case : b ih0 ih1 => //=. + (* violates SN *) + + move => p ?. exfalso. + have {}hP : P (PProj PL a0) by sfirstorder use:P_PairInv. + have : rtc RRed.R (PProj PL a0) (PProj PL (PAbs p)) + by eauto using RReds.ProjCong. + move : P_RReds hP. repeat move/[apply] => /=. + sfirstorder use:P_ProjAbs. + + move => t0 t1 ih0 h1 _. exists (PPair t0 t1). split => //=. apply RReds.PairCong. @@ -1152,12 +1068,6 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). apply RRed.ProjPair. apply : rtc_r; eauto using RReds.ProjCong. apply RRed.ProjPair. - + move => ? ?. exfalso. - move/P_PairInv : hP=>[hP _]. - have : rtc RRed.R (PProj PL a0) (PProj PL b) - by eauto using RReds.ProjCong. - move : P_RReds hP. repeat move/[apply] => /=. - sfirstorder use:PProj_imp. - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.AbsCong, P_AbsInv. - move => n a0 a1 b0 b1 ha iha hb ihb. move => /[dup] hP /P_AppInv [hP0 hP1]. @@ -1166,9 +1076,8 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). case /orP : (orNb (ishf a2)) => [h|]. + exists (PApp a2 b2). split; first by eauto using RReds.AppCong. hauto lq:on ctrs:NeEPar.R_nonelim use:NeEPar.R_nonelim_nothf. - + case /orP : (orbN (isabs a2)). - (* case : a2 iha0 iha1 => //=. *) - * case : a2 iha0 iha1 => //= p h0 h1 _ _. + + case : a2 iha0 iha1 => //=. + * move => p h0 h1 _. inversion h1; subst. ** exists (PApp a2 b2). split. @@ -1178,9 +1087,11 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). hauto lq:on ctrs:NeEPar.R_nonelim. ** hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.AppCong. (* Impossible *) - * move =>*. exfalso. - have : P (PApp a2 b0) by sfirstorder use:RReds.AppCong, @rtc_refl, P_RReds. - sfirstorder use:PAbs_imp. + * move => u0 u1 h. exfalso. + have : rtc RRed.R (PApp a0 b0) (PApp (PPair u0 u1) b0) + by hauto lq:on ctrs:rtc use:RReds.AppCong. + move : P_RReds hP; repeat move/[apply]. + sfirstorder use:P_AppPair. - hauto lq:on ctrs:NeEPar.R_nonelim use:RReds.PairCong, P_PairInv. - move => n p a0 a1 ha ih /[dup] hP /P_ProjInv. move : ih => /[apply]. move => [a2 [iha0 iha1]]. @@ -1189,13 +1100,13 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). split. eauto using RReds.ProjCong. qauto l:on ctrs:NeEPar.R_nonelim, NeEPar.R_elim use:NeEPar.R_nonelim_nothf. - case /orP : (orNb (ispair a2)). - + move => *. exfalso. - have : rtc RRed.R (PProj p a0) (PProj p a2) + case : a2 iha0 iha1 => //=. + + move => u iha0. exfalso. + have : rtc RRed.R (PProj p a0) (PProj p (PAbs u)) by sfirstorder use:RReds.ProjCong ctrs:rtc. move : P_RReds hP. repeat move/[apply]. - sfirstorder use:PProj_imp. - + case : a2 iha0 iha1 => //= u0 u1 iha0 iha1 _ _. + sfirstorder use:P_ProjAbs. + + move => u0 u1 iha0 iha1 _. inversion iha1; subst. * exists (PProj p a2). split. apply : rtc_r. @@ -1204,9 +1115,6 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). hauto lq:on ctrs:NeEPar.R_nonelim. * hauto lq:on ctrs:NeEPar.R_nonelim,NeEPar.R_elim use:RReds.ProjCong. - hauto lq:on ctrs:rtc, NeEPar.R_nonelim. - - hauto l:on. - - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. - - hauto lq:on ctrs:NeEPar.R_nonelim, rtc use:RReds.BindCong, P_BindInv. Qed. @@ -1260,7 +1168,7 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). have : rtc RRed.R (PApp a0 b0) (PApp (PPair (PProj PL a1) (PProj PR a1)) b0) by qauto l:on ctrs:rtc use:RReds.AppCong. move : P_RReds hP. repeat move/[apply]. - sfirstorder use:PAbs_imp. + sfirstorder use:P_AppPair. * exists (subst_PTm (scons b0 VarPTm) a1). split. apply : rtc_r; last by apply RRed.AppAbs. @@ -1287,7 +1195,7 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). move : η_split hP' ha; repeat move/[apply]. move => [a1 [h0 h1]]. inversion h1; subst. - * sauto q:on ctrs:rtc use:RReds.ProjCong, PProj_imp, P_RReds. + * qauto l:on ctrs:rtc use:RReds.ProjCong, P_ProjAbs, P_RReds. * inversion H0; subst. exists (if p is PL then a1 else b1). split; last by scongruence use:NeEPar.ToEPar. @@ -1312,9 +1220,6 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). move : iha hP' h0;repeat move/[apply]. hauto lq:on ctrs:rtc, EPar.R use:RReds.ProjCong. - hauto lq:on inv:RRed.R. - - hauto lq:on inv:RRed.R ctrs:rtc. - - sauto lq:on ctrs:EPar.R, rtc use:RReds.BindCong, P_BindInv, @relations.rtc_transitive. - - hauto lq:on inv:RRed.R ctrs:rtc. Qed. Lemma η_postponement_star n a b c : @@ -1351,6 +1256,7 @@ End UniqueNF. Module SN_UniqueNF := UniqueNF SN_NoForbid NoForbid_FactSN. + Module ERed. Inductive R {n} : PTm n -> PTm n -> Prop := @@ -1378,13 +1284,7 @@ Module ERed. R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> - R (PProj p a0) (PProj p a1) - | BindCong0 p A0 A1 B : - R A0 A1 -> - R (PBind p A0 B) (PBind p A1 B) - | BindCong1 p A B0 B1 : - R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PProj p a0) (PProj p a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. @@ -1428,13 +1328,6 @@ Module ERed. apply iha in h. by subst. destruct i, j=>//=. hauto l:on. - - move => n p A ihA B ihB m ξ []//=. - move => b A0 B0 hξ [?]. subst. - move => ?. have ? : A0 = A by firstorder. subst. - move => ?. have : B = B0. apply : ihB; eauto. - sauto. - congruence. Qed. Lemma AppEta' n a u : @@ -1487,22 +1380,8 @@ Module ERed. hauto l:on. - move => n a0 a1 ha iha m ξ []//= p hξ [?]. subst. sauto lq:on use:up_injective. - - move => n p A B0 B1 hB ihB m ξ + hξ. - case => //= p' A2 B2 [*]. subst. - have : (forall i j, (upRen_PTm_PTm ξ) i = (upRen_PTm_PTm ξ) j -> i = j) by sauto. - move => {}/ihB => ihB. - spec_refl. - sauto lq:on. Admitted. - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - move => h. move : m ρ. elim : n a b /h => n. - move => a m ρ /=. - eapply AppEta'; eauto. by asimpl. - all : hauto lq:on ctrs:R. - Qed. End ERed. @@ -1537,13 +1416,6 @@ Module EReds. rtc ERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. - Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : - rtc ERed.R A0 A1 -> - rtc ERed.R B0 B1 -> - rtc ERed.R (PBind p A0 B0) (PBind p A1 B1). - Proof. solve_s. Qed. - - Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : rtc ERed.R a b -> rtc ERed.R (ren_PTm ξ a) (ren_PTm ξ b). Proof. induction 1; hauto l:on use:ERed.renaming ctrs:rtc. Qed. @@ -1552,7 +1424,7 @@ Module EReds. EPar.R a b -> rtc ERed.R a b. Proof. - move => h. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl, BindCong. + move => h. elim : n a b /h; eauto using AbsCong, AppCong, PairCong, ProjCong, rtc_refl. - move => n a0 a1 _ h. have {}h : rtc ERed.R (ren_PTm shift a0) (ren_PTm shift a1) by apply renaming. apply : rtc_r. apply AbsCong. apply AppCong; eauto. apply rtc_refl. @@ -1563,17 +1435,6 @@ Module EReds. apply ERed.PairEta. Qed. - Lemma FromEPars n (a b : PTm n) : - rtc EPar.R a b -> - rtc ERed.R a b. - Proof. induction 1; hauto l:on use:FromEPar, @relations.rtc_transitive. Qed. - - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - rtc ERed.R a b -> rtc ERed.R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - induction 1; hauto lq:on ctrs:rtc use:ERed.substing. - Qed. - End EReds. #[export]Hint Constructors ERed.R RRed.R EPar.R : red. @@ -1612,13 +1473,7 @@ Module RERed. R (PPair a b0) (PPair a b1) | ProjCong p a0 a1 : R a0 a1 -> - R (PProj p a0) (PProj p a1) - | BindCong0 p A0 A1 B : - R A0 A1 -> - R (PBind p A0 B) (PBind p A1 B) - | BindCong1 p A B0 B1 : - R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PProj p a0) (PProj p a1). Lemma ToBetaEta n (a b : PTm n) : R a b -> @@ -1646,26 +1501,6 @@ Module RERed. SN b. Proof. hauto q:on use:ToBetaEtaPar, epar_sn_preservation, red_sn_preservation, RPar.FromRRed. Qed. - Lemma bind_preservation n (a b : PTm n) : - R a b -> isbind a -> isbind b. - Proof. hauto q:on inv:R. Qed. - - Lemma univ_preservation n (a b : PTm n) : - R a b -> isuniv a -> isuniv b. - Proof. hauto q:on inv:R. Qed. - - Lemma sne_preservation n (a b : PTm n) : - R a b -> SNe a -> SNe b. - Proof. - hauto q:on use:ToBetaEtaPar, RPar.FromRRed use:red_sn_preservation, epar_sn_preservation. - Qed. - - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - RERed.R a b -> RERed.R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - hauto q:on use:ToBetaEta, FromBeta, FromEta, RRed.substing, ERed.substing. - Qed. - End RERed. Module REReds. @@ -1714,48 +1549,6 @@ Module REReds. rtc RERed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. - Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : - rtc RERed.R A0 A1 -> - rtc RERed.R B0 B1 -> - rtc RERed.R (PBind p A0 B0) (PBind p A1 B1). - Proof. solve_s. Qed. - - Lemma bind_preservation n (a b : PTm n) : - rtc RERed.R a b -> isbind a -> isbind b. - Proof. induction 1; qauto l:on ctrs:rtc use:RERed.bind_preservation. Qed. - - Lemma univ_preservation n (a b : PTm n) : - rtc RERed.R a b -> isuniv a -> isuniv b. - Proof. induction 1; qauto l:on ctrs:rtc use:RERed.univ_preservation. Qed. - - Lemma sne_preservation n (a b : PTm n) : - rtc RERed.R a b -> SNe a -> SNe b. - Proof. induction 1; qauto l:on ctrs:rtc use:RERed.sne_preservation. Qed. - - Lemma bind_inv n p A B C : - rtc (@RERed.R n) (PBind p A B) C -> - exists A0 B0, C = PBind p A0 B0 /\ rtc RERed.R A A0 /\ rtc RERed.R B B0. - Proof. - move E : (PBind p A B) => u hu. - move : p A B E. - elim : u C / hu; sauto lq:on rew:off. - Qed. - - Lemma univ_inv n i C : - rtc (@RERed.R n) (PUniv i) C -> - C = PUniv i. - Proof. - move E : (PUniv i) => u hu. - move : i E. elim : u C / hu=>//=. - hauto lq:on rew:off ctrs:rtc inv:RERed.R. - Qed. - - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - rtc RERed.R a b -> rtc RERed.R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - induction 1; hauto lq:on ctrs:rtc use:RERed.substing. - Qed. - End REReds. Module LoRed. @@ -1789,14 +1582,7 @@ Module LoRed. | ProjCong p a0 a1 : ~~ ishf a0 -> R a0 a1 -> - R (PProj p a0) (PProj p a1) - | BindCong0 p A0 A1 B : - R A0 A1 -> - R (PBind p A0 B) (PBind p A1 B) - | BindCong1 p A B0 B1 : - nf A -> - R B0 B1 -> - R (PBind p A B0) (PBind p A B1). + R (PProj p a0) (PProj p a1). Lemma hf_preservation n (a b : PTm n) : LoRed.R a b -> @@ -1863,13 +1649,6 @@ Module LoReds. rtc LoRed.R (PProj p a0) (PProj p a1). Proof. solve_s. Qed. - Lemma BindCong n p (A0 A1 : PTm n) B0 B1 : - rtc LoRed.R A0 A1 -> - rtc LoRed.R B0 B1 -> - nf A1 -> - rtc LoRed.R (PBind p A0 B0) (PBind p A1 B1). - Proof. solve_s. Qed. - Local Ltac triv := simpl in *; itauto. Lemma FromSN_mutual : forall n, @@ -1881,13 +1660,10 @@ Module LoReds. - hauto lq:on ctrs:rtc. - hauto lq:on rew:off use:LoReds.AppCong solve+:triv. - hauto l:on use:LoReds.ProjCong solve+:triv. - - hauto lq:on ctrs:rtc. - hauto q:on use:LoReds.PairCong solve+:triv. - hauto q:on use:LoReds.AbsCong solve+:triv. - sfirstorder use:ne_nf. - hauto lq:on ctrs:rtc. - - hauto lq:on use:LoReds.BindCong solve+:triv. - - hauto lq:on ctrs:rtc. - qauto ctrs:LoRed.R. - move => n a0 a1 b hb ihb h. have : ~~ ishf a0 by inversion h. @@ -1911,13 +1687,10 @@ End LoReds. Fixpoint size_PTm {n} (a : PTm n) := match a with | VarPTm _ => 1 - | PAbs a => 3 + size_PTm a + | PAbs a => 1 + size_PTm a | PApp a b => 1 + Nat.add (size_PTm a) (size_PTm b) | PProj p a => 1 + size_PTm a - | PPair a b => 3 + Nat.add (size_PTm a) (size_PTm b) - | PUniv _ => 3 - | PBind p A B => 3 + Nat.add (size_PTm A) (size_PTm B) - | PBot => 1 + | PPair a b => 1 + Nat.add (size_PTm a) (size_PTm b) end. Lemma size_PTm_ren n m (ξ : fin n -> fin m) a : size_PTm (ren_PTm ξ a) = size_PTm a. @@ -2002,12 +1775,6 @@ Proof. + hauto lq:on ctrs:ERed.R use:@relations.rtc_once. + hauto lq:on ctrs:rtc use:EReds.PairCong. - qauto l:on inv:ERed.R use:EReds.ProjCong. - - move => p A0 A1 B hA ihA u. - elim /ERed.inv => //=_; - hauto lq:on ctrs:rtc use:EReds.BindCong. - - move => p A B0 B1 hB ihB u. - elim /ERed.inv => //=_; - hauto lq:on ctrs:rtc use:EReds.BindCong. Qed. Lemma ered_confluence n (a b c : PTm n) : @@ -2106,36 +1873,7 @@ Proof. move /REReds.FromRReds : hc0. move /REReds.FromEReds : hv'. eauto using relations.rtc_transitive. Qed. -(* Beta joinability *) -Module BJoin. - Definition R {n} (a b : PTm n) := exists c, rtc RRed.R a c /\ rtc RRed.R b c. - Lemma refl n (a : PTm n) : R a a. - Proof. sfirstorder use:@rtc_refl unfold:R. Qed. - - Lemma symmetric n (a b : PTm n) : R a b -> R b a. - Proof. sfirstorder unfold:R. Qed. - - Lemma transitive n (a b c : PTm n) : R a b -> R b c -> R a c. - Proof. - rewrite /R. - move => [ab [ha +]] [bc [+ hc]]. - move : red_confluence; repeat move/[apply]. - move => [v [h0 h1]]. - exists v. sfirstorder use:@relations.rtc_transitive. - Qed. - - Lemma AbsCong n (a b : PTm (S n)) : - R a b -> - R (PAbs a) (PAbs b). - Proof. hauto lq:on use:RReds.AbsCong unfold:R. Qed. - - Lemma AppCong n (a0 a1 b0 b1 : PTm n) : - R a0 a1 -> - R b0 b1 -> - R (PApp a0 b0) (PApp a1 b1). - Proof. hauto lq:on use:RReds.AppCong unfold:R. Qed. -End BJoin. - +(* "Declarative" Joinability *) Module DJoin. Definition R {n} (a b : PTm n) := exists c, rtc RERed.R a c /\ rtc RERed.R b c. @@ -2176,81 +1914,4 @@ Module DJoin. R (PProj p a0) (PProj p a1). Proof. hauto q:on use:REReds.ProjCong. Qed. - Lemma FromRedSNs n (a b : PTm n) : - rtc TRedSN a b -> - R a b. - Proof. - move /RReds.FromRedSNs /REReds.FromRReds. - sfirstorder use:@rtc_refl unfold:R. - Qed. - - Lemma sne_bind_noconf n (a b : PTm n) : - R a b -> SNe a -> isbind b -> False. - Proof. - move => [c [? ?]] *. - have : SNe c /\ isbind c by sfirstorder use:REReds.sne_preservation, REReds.bind_preservation. - qauto l:on inv:SNe. - Qed. - - Lemma sne_univ_noconf n (a b : PTm n) : - R a b -> SNe a -> isuniv b -> False. - Proof. - hauto q:on use:REReds.sne_preservation, - REReds.univ_preservation inv:SNe. - Qed. - - Lemma bind_univ_noconf n (a b : PTm n) : - R a b -> isbind a -> isuniv b -> False. - Proof. - move => [c [h0 h1]] h2 h3. - have {h0 h1 h2 h3} : isbind c /\ isuniv c by - hauto l:on use:REReds.bind_preservation, - REReds.univ_preservation. - case : c => //=; itauto. - Qed. - - Lemma bind_inj n p0 p1 (A0 A1 : PTm n) B0 B1 : - DJoin.R (PBind p0 A0 B0) (PBind p1 A1 B1) -> - p0 = p1 /\ DJoin.R A0 A1 /\ DJoin.R B0 B1. - Proof. - rewrite /R. - hauto lq:on rew:off use:REReds.bind_inv. - Qed. - - Lemma univ_inj n i j : - @R n (PUniv i) (PUniv j) -> i = j. - Proof. - sauto lq:on rew:off use:REReds.univ_inv. - Qed. - - Lemma FromRRed0 n (a b : PTm n) : - RRed.R a b -> R a b. - Proof. - hauto lq:on ctrs:rtc use:RERed.FromBeta unfold:R. - Qed. - - Lemma FromRRed1 n (a b : PTm n) : - RRed.R b a -> R a b. - Proof. - hauto lq:on ctrs:rtc use:RERed.FromBeta unfold:R. - Qed. - - Lemma FromRReds n (a b : PTm n) : - rtc RRed.R b a -> R a b. - Proof. - hauto lq:on ctrs:rtc use:REReds.FromRReds unfold:R. - Qed. - - Lemma FromBJoin n (a b : PTm n) : - BJoin.R a b -> R a b. - Proof. - hauto lq:on ctrs:rtc use:REReds.FromRReds unfold:R. - Qed. - - Lemma substing n m (a b : PTm n) (ρ : fin n -> PTm m) : - R a b -> R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - hauto lq:on rew:off ctrs:rtc unfold:R use:REReds.substing. - Qed. - End DJoin. diff --git a/theories/logrel.v b/theories/logrel.v deleted file mode 100644 index 5377dfb..0000000 --- a/theories/logrel.v +++ /dev/null @@ -1,752 +0,0 @@ -Require Import Autosubst2.core Autosubst2.fintype Autosubst2.syntax. -Require Import fp_red. -From Hammer Require Import Tactics. -From Equations Require Import Equations. -Require Import ssreflect ssrbool. -Require Import Logic.PropExtensionality (propositional_extensionality). -From stdpp Require Import relations (rtc(..), rtc_subrel). -Import Psatz. -Require Import Cdcl.Itauto. - -Definition ProdSpace {n} (PA : PTm n -> Prop) - (PF : PTm n -> (PTm n -> Prop) -> Prop) b : Prop := - forall a PB, PA a -> PF a PB -> PB (PApp b a). - -Definition SumSpace {n} (PA : PTm n -> Prop) - (PF : PTm n -> (PTm n -> Prop) -> Prop) t : Prop := - (exists v, rtc TRedSN t v /\ SNe v) \/ exists a b, rtc TRedSN t (PPair a b) /\ PA a /\ (forall PB, PF a PB -> PB b). - -Definition BindSpace {n} p := if p is PPi then @ProdSpace n else SumSpace. - -Reserved Notation "⟦ A ⟧ i ;; I ↘ S" (at level 70). - -Inductive InterpExt {n} i (I : nat -> PTm n -> Prop) : PTm n -> (PTm n -> Prop) -> Prop := -| InterpExt_Ne A : - SNe A -> - ⟦ A ⟧ i ;; I ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v) -| InterpExt_Bind p A B PA PF : - ⟦ A ⟧ i ;; I ↘ PA -> - (forall a, PA a -> exists PB, PF a PB) -> - (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ;; I ↘ PB) -> - ⟦ PBind p A B ⟧ i ;; I ↘ BindSpace p PA PF - -| InterpExt_Univ j : - j < i -> - ⟦ PUniv j ⟧ i ;; I ↘ (I j) - -| InterpExt_Step A A0 PA : - TRedSN A A0 -> - ⟦ A0 ⟧ i ;; I ↘ PA -> - ⟦ A ⟧ i ;; I ↘ PA -where "⟦ A ⟧ i ;; I ↘ S" := (InterpExt i I A S). - - -Lemma InterpExt_Univ' n i I j (PF : PTm n -> Prop) : - PF = I j -> - j < i -> - ⟦ PUniv j ⟧ i ;; I ↘ PF. -Proof. hauto lq:on ctrs:InterpExt. Qed. - -Infix " (PTm n -> Prop) -> Prop by wf i lt := - InterpUnivN n i := @InterpExt n i - (fun j A => - match j exists PA, InterpUnivN n j A PA - | right _ => False - end). -Arguments InterpUnivN {n}. - -Lemma InterpExt_lt_impl n i I I' A (PA : PTm n -> Prop) : - (forall j, j < i -> I j = I' j) -> - ⟦ A ⟧ i ;; I ↘ PA -> - ⟦ A ⟧ i ;; I' ↘ PA. -Proof. - move => hI h. - elim : A PA /h. - - hauto q:on ctrs:InterpExt. - - hauto lq:on rew:off ctrs:InterpExt. - - hauto q:on ctrs:InterpExt. - - hauto lq:on ctrs:InterpExt. -Qed. - -Lemma InterpExt_lt_eq n i I I' A (PA : PTm n -> Prop) : - (forall j, j < i -> I j = I' j) -> - ⟦ A ⟧ i ;; I ↘ PA = - ⟦ A ⟧ i ;; I' ↘ PA. -Proof. - move => hI. apply propositional_extensionality. - have : forall j, j < i -> I' j = I j by sfirstorder. - firstorder using InterpExt_lt_impl. -Qed. - -Notation "⟦ A ⟧ i ↘ S" := (InterpUnivN i A S) (at level 70). - -Lemma InterpUnivN_nolt n i : - @InterpUnivN n i = @InterpExt n i (fun j (A : PTm n) => exists PA, ⟦ A ⟧ j ↘ PA). -Proof. - simp InterpUnivN. - extensionality A. extensionality PA. - set I0 := (fun _ => _). - set I1 := (fun _ => _). - apply InterpExt_lt_eq. - hauto q:on. -Qed. - -#[export]Hint Rewrite @InterpUnivN_nolt : InterpUniv. - -Lemma InterpUniv_ind - : forall n (P : nat -> PTm n -> (PTm n -> Prop) -> Prop), - (forall i (A : PTm n), SNe A -> P i A (fun a : PTm n => exists v : PTm n, rtc TRedSN a v /\ SNe v)) -> - (forall i (p : BTag) (A : PTm n) (B : PTm (S n)) (PA : PTm n -> Prop) - (PF : PTm n -> (PTm n -> Prop) -> Prop), - ⟦ A ⟧ i ↘ PA -> - P i A PA -> - (forall a : PTm n, PA a -> exists PB : PTm n -> Prop, PF a PB) -> - (forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> - (forall (a : PTm n) (PB : PTm n -> Prop), PF a PB -> P i (subst_PTm (scons a VarPTm) B) PB) -> - P i (PBind p A B) (BindSpace p PA PF)) -> - (forall i j : nat, j < i -> (forall A PA, ⟦ A ⟧ j ↘ PA -> P j A PA) -> P i (PUniv j) (fun A => exists PA, ⟦ A ⟧ j ↘ PA)) -> - (forall i (A A0 : PTm n) (PA : PTm n -> Prop), TRedSN A A0 -> ⟦ A0 ⟧ i ↘ PA -> P i A0 PA -> P i A PA) -> - forall i (p : PTm n) (P0 : PTm n -> Prop), ⟦ p ⟧ i ↘ P0 -> P i p P0. -Proof. - move => n P hSN hBind hUniv hRed. - elim /Wf_nat.lt_wf_ind => i ih . simp InterpUniv. - move => A PA. move => h. set I := fun _ => _ in h. - elim : A PA / h; rewrite -?InterpUnivN_nolt; eauto. -Qed. - -Derive Dependent Inversion iinv with (forall n i I (A : PTm n) PA, InterpExt i I A PA) Sort Prop. - -Lemma InterpUniv_Ne n i (A : PTm n) : - SNe A -> - ⟦ A ⟧ i ↘ (fun a => exists v, rtc TRedSN a v /\ SNe v). -Proof. simp InterpUniv. apply InterpExt_Ne. Qed. - -Lemma InterpUniv_Bind n i p A B PA PF : - ⟦ A : PTm n ⟧ i ↘ PA -> - (forall a, PA a -> exists PB, PF a PB) -> - (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> - ⟦ PBind p A B ⟧ i ↘ BindSpace p PA PF. -Proof. simp InterpUniv. apply InterpExt_Bind. Qed. - -Lemma InterpUniv_Univ n i j : - j < i -> ⟦ PUniv j : PTm n ⟧ i ↘ (fun A => exists PA, ⟦ A ⟧ j ↘ PA). -Proof. - simp InterpUniv. simpl. - apply InterpExt_Univ'. by simp InterpUniv. -Qed. - -Lemma InterpUniv_Step i n A A0 PA : - TRedSN A A0 -> - ⟦ A0 : PTm n ⟧ i ↘ PA -> - ⟦ A ⟧ i ↘ PA. -Proof. simp InterpUniv. apply InterpExt_Step. Qed. - - -#[export]Hint Resolve InterpUniv_Bind InterpUniv_Step InterpUniv_Ne InterpUniv_Univ : InterpUniv. - -Lemma InterpExt_cumulative n i j I (A : PTm n) PA : - i <= j -> - ⟦ A ⟧ i ;; I ↘ PA -> - ⟦ A ⟧ j ;; I ↘ PA. -Proof. - move => h h0. - elim : A PA /h0; - hauto l:on ctrs:InterpExt solve+:(by lia). -Qed. - -Lemma InterpUniv_cumulative n i (A : PTm n) PA : - ⟦ A ⟧ i ↘ PA -> forall j, i <= j -> - ⟦ A ⟧ j ↘ PA. -Proof. - hauto l:on rew:db:InterpUniv use:InterpExt_cumulative. -Qed. - -Definition CR {n} (P : PTm n -> Prop) := - (forall a, P a -> SN a) /\ - (forall a, SNe a -> P a). - -Lemma N_Exps n (a b : PTm n) : - rtc TRedSN a b -> - SN b -> - SN a. -Proof. - induction 1; eauto using N_Exp. -Qed. - -Lemma adequacy : forall i n A PA, - ⟦ A : PTm n ⟧ i ↘ PA -> - CR PA /\ SN A. -Proof. - move => + n. apply : InterpUniv_ind. - - hauto l:on use:N_Exps ctrs:SN,SNe. - - move => i p A B PA PF hPA [ihA0 ihA1] hTot hRes ihPF. - have hb : PA PBot by hauto q:on ctrs:SNe. - have hb' : SN PBot by hauto q:on ctrs:SN, SNe. - rewrite /CR. - repeat split. - + case : p =>//=. - * rewrite /ProdSpace. - qauto use:SN_AppInv unfold:CR. - * hauto q:on unfold:SumSpace use:N_SNe, N_Pair,N_Exps. - + move => a ha. - case : p=>/=. - * rewrite /ProdSpace => a0 *. - suff : SNe (PApp a a0) by sfirstorder. - hauto q:on use:N_App. - * sfirstorder. - + apply N_Bind=>//=. - have : SN (PApp (PAbs B) PBot). - apply : N_Exp; eauto using N_β. - hauto lq:on. - qauto l:on use:SN_AppInv, SN_NoForbid.P_AbsInv. - - hauto l:on ctrs:InterpExt rew:db:InterpUniv. - - hauto l:on ctrs:SN unfold:CR. -Qed. - -Lemma InterpUniv_Steps i n A A0 PA : - rtc TRedSN A A0 -> - ⟦ A0 : PTm n ⟧ i ↘ PA -> - ⟦ A ⟧ i ↘ PA. -Proof. induction 1; hauto l:on use:InterpUniv_Step. Qed. - -Lemma InterpUniv_back_clos n i (A : PTm n) PA : - ⟦ A ⟧ i ↘ PA -> - forall a b, TRedSN a b -> - PA b -> PA a. -Proof. - move : i A PA . apply : InterpUniv_ind; eauto. - - hauto q:on ctrs:rtc. - - move => i p A B PA PF hPA ihPA hTot hRes ihPF a b hr. - case : p => //=. - + rewrite /ProdSpace. - move => hba a0 PB ha hPB. - suff : TRedSN (PApp a a0) (PApp b a0) by hauto lq:on. - apply N_AppL => //=. - hauto q:on use:adequacy. - + hauto lq:on ctrs:rtc unfold:SumSpace. - - hauto l:on use:InterpUniv_Step. -Qed. - -Lemma InterpUniv_back_closs n i (A : PTm n) PA : - ⟦ A ⟧ i ↘ PA -> - forall a b, rtc TRedSN a b -> - PA b -> PA a. -Proof. - induction 2; hauto lq:on ctrs:rtc use:InterpUniv_back_clos. -Qed. - - -Lemma InterpUniv_case n i (A : PTm n) PA : - ⟦ A ⟧ i ↘ PA -> - exists H, rtc TRedSN A H /\ ⟦ H ⟧ i ↘ PA /\ (SNe H \/ isbind H \/ isuniv H). -Proof. - move : i A PA. apply InterpUniv_ind => //=. - hauto lq:on ctrs:rtc use:InterpUniv_Ne. - hauto l:on use:InterpUniv_Bind. - hauto l:on use:InterpUniv_Univ. - hauto lq:on ctrs:rtc. -Qed. - -Lemma redsn_preservation_mutual n : - (forall (a : PTm n) (s : SNe a), forall b, TRedSN a b -> False) /\ - (forall (a : PTm n) (s : SN a), forall b, TRedSN a b -> SN b) /\ - (forall (a b : PTm n) (_ : TRedSN a b), forall c, TRedSN a c -> b = c). -Proof. - move : n. apply sn_mutual; sauto lq:on rew:off. -Qed. - -Lemma redsns_preservation : forall n a b, @SN n a -> rtc TRedSN a b -> SN b. -Proof. induction 2; sfirstorder use:redsn_preservation_mutual ctrs:rtc. Qed. - -#[export]Hint Resolve DJoin.sne_bind_noconf DJoin.sne_univ_noconf DJoin.bind_univ_noconf : noconf. - -Lemma InterpUniv_SNe_inv n i (A : PTm n) PA : - SNe A -> - ⟦ A ⟧ i ↘ PA -> - PA = (fun a => exists v, rtc TRedSN a v /\ SNe v). -Proof. - simp InterpUniv. - hauto lq:on rew:off inv:InterpExt,SNe use:redsn_preservation_mutual. -Qed. - -Lemma InterpUniv_Bind_inv n i p A B S : - ⟦ PBind p A B ⟧ i ↘ S -> exists PA PF, - ⟦ A : PTm n ⟧ i ↘ PA /\ - (forall a, PA a -> exists PB, PF a PB) /\ - (forall a PB, PF a PB -> ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\ - S = BindSpace p PA PF. -Proof. simp InterpUniv. - inversion 1; try hauto inv:SNe q:on use:redsn_preservation_mutual. - rewrite -!InterpUnivN_nolt. - sauto lq:on. -Qed. - -Lemma InterpUniv_Univ_inv n i j S : - ⟦ PUniv j : PTm n ⟧ i ↘ S -> - S = (fun A => exists PA, ⟦ A ⟧ j ↘ PA) /\ j < i. -Proof. - simp InterpUniv. inversion 1; - try hauto inv:SNe use:redsn_preservation_mutual. - rewrite -!InterpUnivN_nolt. sfirstorder. - subst. hauto lq:on inv:TRedSN. -Qed. - -Lemma bindspace_iff n p (PA : PTm n -> Prop) PF PF0 b : - (forall (a : PTm n) (PB PB0 : PTm n -> Prop), PA a -> PF a PB -> PF0 a PB0 -> PB = PB0) -> - (forall a, PA a -> exists PB, PF a PB) -> - (forall a, PA a -> exists PB0, PF0 a PB0) -> - (BindSpace p PA PF b <-> BindSpace p PA PF0 b). -Proof. - rewrite /BindSpace => h hPF hPF0. - case : p => /=. - - rewrite /ProdSpace. - split. - move => h1 a PB ha hPF'. - specialize hPF with (1 := ha). - specialize hPF0 with (1 := ha). - sblast. - move => ? a PB ha. - specialize hPF with (1 := ha). - specialize hPF0 with (1 := ha). - sblast. - - rewrite /SumSpace. - hauto lq:on rew:off. -Qed. - -Lemma InterpUniv_Join n i (A B : PTm n) PA PB : - ⟦ A ⟧ i ↘ PA -> - ⟦ B ⟧ i ↘ PB -> - DJoin.R A B -> - PA = PB. -Proof. - move => hA. - move : i A PA hA B PB. - apply : InterpUniv_ind. - - move => i A hA B PB hPB hAB. - have [*] : SN B /\ SN A by hauto l:on use:adequacy. - move /InterpUniv_case : hPB. - move => [H [/DJoin.FromRedSNs h [h1 h0]]]. - have {hAB} {}h : DJoin.R A H by eauto using DJoin.transitive. - have {}h0 : SNe H. - suff : ~ isbind H /\ ~ isuniv H by itauto. - move : h hA. clear. hauto lq:on db:noconf. - hauto lq:on use:InterpUniv_SNe_inv. - - move => i p A B PA PF hPA ihPA hTot hRes ihPF U PU hU. - have hU' : SN U by hauto l:on use:adequacy. - move /InterpUniv_case : hU => [H [/DJoin.FromRedSNs h [h1 h0]]] hU. - have {hU} {}h : DJoin.R (PBind p A B) H by eauto using DJoin.transitive. - have{h0} : isbind H. - suff : ~ SNe H /\ ~ isuniv H by itauto. - have : isbind (PBind p A B) by scongruence. - hauto l:on use: DJoin.sne_bind_noconf, DJoin.bind_univ_noconf, DJoin.symmetric. - case : H h1 h => //=. - move => p0 A0 B0 h0 /DJoin.bind_inj. - move => [? [hA hB]] _. subst. - move /InterpUniv_Bind_inv : h0. - move => [PA0][PF0][hPA0][hTot0][hRes0 ?]. subst. - have ? : PA0 = PA by qauto l:on. subst. - have : forall a PB PB', PA a -> PF a PB -> PF0 a PB' -> PB = PB'. - move => a PB PB' ha hPB hPB'. apply : ihPF; eauto. - have hj0 : DJoin.R (PAbs B) (PAbs B0) by eauto using DJoin.AbsCong. - have {}hj0 : DJoin.R (PApp (PAbs B) a) (PApp (PAbs B0) a) by eauto using DJoin.AppCong, DJoin.refl. - have [? ?] : SN (PApp (PAbs B) a) /\ SN (PApp (PAbs B0) a) by - hauto lq:on rew:off use:N_Exp, N_β, adequacy. - have [? ?] : DJoin.R (PApp (PAbs B0) a) (subst_PTm (scons a VarPTm) B0) /\ - DJoin.R (subst_PTm (scons a VarPTm) B) (PApp (PAbs B) a) - by hauto lq:on ctrs:RRed.R use:DJoin.FromRRed0, DJoin.FromRRed1. - eauto using DJoin.transitive. - move => h. extensionality b. apply propositional_extensionality. - hauto l:on use:bindspace_iff. - - move => i j jlti ih B PB hPB. - have ? : SN B by hauto l:on use:adequacy. - move /InterpUniv_case : hPB => [H [/DJoin.FromRedSNs h [h1 h0]]]. - move => hj. - have {hj}{}h : DJoin.R (PUniv j) H by eauto using DJoin.transitive. - have {h0} : isuniv H. - suff : ~ SNe H /\ ~ isbind H by tauto. - hauto l:on use: DJoin.sne_univ_noconf, DJoin.bind_univ_noconf, DJoin.symmetric. - case : H h1 h => //=. - move => j' hPB h _. - have {}h : j' = j by hauto lq:on use: DJoin.univ_inj. subst. - hauto lq:on use:InterpUniv_Univ_inv. - - move => i A A0 PA hr hPA ihPA B PB hPB hAB. - have /DJoin.symmetric ? : DJoin.R A A0 by hauto lq:on rew:off ctrs:rtc use:DJoin.FromRedSNs. - have ? : SN A0 by hauto l:on use:adequacy. - have ? : SN A by eauto using N_Exp. - have : DJoin.R A0 B by eauto using DJoin.transitive. - eauto. -Qed. - -Lemma InterpUniv_Functional n i (A : PTm n) PA PB : - ⟦ A ⟧ i ↘ PA -> - ⟦ A ⟧ i ↘ PB -> - PA = PB. -Proof. hauto use:InterpUniv_Join, DJoin.refl. Qed. - -Lemma InterpUniv_Join' n i j (A B : PTm n) PA PB : - ⟦ A ⟧ i ↘ PA -> - ⟦ B ⟧ j ↘ PB -> - DJoin.R A B -> - PA = PB. -Proof. - have [? ?] : i <= max i j /\ j <= max i j by lia. - move => hPA hPB. - have : ⟦ A ⟧ (max i j) ↘ PA by eauto using InterpUniv_cumulative. - have : ⟦ B ⟧ (max i j) ↘ PB by eauto using InterpUniv_cumulative. - eauto using InterpUniv_Join. -Qed. - -Lemma InterpUniv_Functional' n i j A PA PB : - ⟦ A : PTm n ⟧ i ↘ PA -> - ⟦ A ⟧ j ↘ PB -> - PA = PB. -Proof. - hauto l:on use:InterpUniv_Join', DJoin.refl. -Qed. - -Lemma InterpUniv_Bind_inv_nopf n i p A B P (h : ⟦PBind p A B ⟧ i ↘ P) : - exists (PA : PTm n -> Prop), - ⟦ A ⟧ i ↘ PA /\ - (forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) /\ - P = BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB). -Proof. - move /InterpUniv_Bind_inv : h. - move => [PA][PF][hPA][hPF][hPF']?. subst. - exists PA. repeat split => //. - - sfirstorder. - - extensionality b. - case : p => /=. - + extensionality a. - extensionality PB. - extensionality ha. - apply propositional_extensionality. - split. - * move => h hPB. apply h. - have {}/hPF := ha. - move => [PB0 hPB0]. - have {}/hPF' := hPB0 => ?. - have : PB = PB0 by hauto l:on use:InterpUniv_Functional. - congruence. - * sfirstorder. - + rewrite /SumSpace. apply propositional_extensionality. - split; hauto q:on use:InterpUniv_Functional. -Qed. - -Definition ρ_ok {n} (Γ : fin n -> PTm n) (ρ : fin n -> PTm 0) := forall i k PA, - ⟦ subst_PTm ρ (Γ i) ⟧ k ↘ PA -> PA (ρ i). - -Definition SemWt {n} Γ (a A : PTm n) := forall ρ, ρ_ok Γ ρ -> exists k PA, ⟦ subst_PTm ρ A ⟧ k ↘ PA /\ PA (subst_PTm ρ a). -Notation "Γ ⊨ a ∈ A" := (SemWt Γ a A) (at level 70). - -(* Semantic context wellformedness *) -Definition SemWff {n} Γ := forall (i : fin n), exists j, Γ ⊨ Γ i ∈ PUniv j. -Notation "⊨ Γ" := (SemWff Γ) (at level 70). - -Lemma ρ_ok_bot n (Γ : fin n -> PTm n) : - ρ_ok Γ (fun _ => PBot). -Proof. - rewrite /ρ_ok. - hauto q:on use:adequacy ctrs:SNe. -Qed. - -Lemma ρ_ok_cons n i (Γ : fin n -> PTm n) ρ a PA A : - ⟦ subst_PTm ρ A ⟧ i ↘ PA -> PA a -> - ρ_ok Γ ρ -> - ρ_ok (funcomp (ren_PTm shift) (scons A Γ)) (scons a ρ). -Proof. - move => h0 h1 h2. - rewrite /ρ_ok. - move => j. - destruct j as [j|]. - - move => m PA0. asimpl => ?. - asimpl. - firstorder. - - move => m PA0. asimpl => h3. - have ? : PA0 = PA by eauto using InterpUniv_Functional'. - by subst. -Qed. - -Definition renaming_ok {n m} (Γ : fin n -> PTm n) (Δ : fin m -> PTm m) (ξ : fin m -> fin n) := - forall (i : fin m), ren_PTm ξ (Δ i) = Γ (ξ i). - -Lemma ρ_ok_renaming n m (Γ : fin n -> PTm n) ρ : - forall (Δ : fin m -> PTm m) ξ, - renaming_ok Γ Δ ξ -> - ρ_ok Γ ρ -> - ρ_ok Δ (funcomp ρ ξ). -Proof. - move => Δ ξ hξ hρ. - rewrite /ρ_ok => i m' PA. - rewrite /renaming_ok in hξ. - rewrite /ρ_ok in hρ. - move => h. - rewrite /funcomp. - apply hρ with (k := m'). - move : h. rewrite -hξ. - by asimpl. -Qed. - -Lemma renaming_SemWt {n} Γ a A : - Γ ⊨ a ∈ A -> - forall {m} Δ (ξ : fin n -> fin m), - renaming_ok Δ Γ ξ -> - Δ ⊨ ren_PTm ξ a ∈ ren_PTm ξ A. -Proof. - rewrite /SemWt => h m Δ ξ hξ ρ hρ. - have /h hρ' : (ρ_ok Γ (funcomp ρ ξ)) by eauto using ρ_ok_renaming. - hauto q:on solve+:(by asimpl). -Qed. - -Lemma weakening_Sem n Γ (a : PTm n) A B i - (h0 : Γ ⊨ B ∈ PUniv i) - (h1 : Γ ⊨ a ∈ A) : - funcomp (ren_PTm shift) (scons B Γ) ⊨ ren_PTm shift a ∈ ren_PTm shift A. -Proof. - apply : renaming_SemWt; eauto. - hauto lq:on inv:option unfold:renaming_ok. -Qed. - -Lemma SemWt_SN n Γ (a : PTm n) A : - Γ ⊨ a ∈ A -> - SN a /\ SN A. -Proof. - move => h. - have {}/h := ρ_ok_bot _ Γ => h. - have h0 : SN (subst_PTm (fun _ : fin n => (PBot : PTm 0)) A) by hauto l:on use:adequacy. - have h1 : SN (subst_PTm (fun _ : fin n => (PBot : PTm 0)) a)by hauto l:on use:adequacy. - move {h}. hauto l:on use:sn_unmorphing. -Qed. - -Lemma SemWt_Univ n Γ (A : PTm n) i : - Γ ⊨ A ∈ PUniv i <-> - forall ρ, ρ_ok Γ ρ -> exists S, ⟦ subst_PTm ρ A ⟧ i ↘ S. -Proof. - rewrite /SemWt. - split. - - hauto lq:on rew:off use:InterpUniv_Univ_inv. - - move => /[swap] ρ /[apply]. - move => [PA hPA]. - exists (S i). eexists. - split. - + simp InterpUniv. apply InterpExt_Univ. lia. - + simpl. eauto. -Qed. - -(* Structural laws for Semantic context wellformedness *) -Lemma SemWff_nil : SemWff null. -Proof. case. Qed. - -Lemma SemWff_cons n Γ (A : PTm n) i : - ⊨ Γ -> - Γ ⊨ A ∈ PUniv i -> - (* -------------- *) - ⊨ funcomp (ren_PTm shift) (scons A Γ). -Proof. - move => h h0. - move => j. destruct j as [j|]. - - move /(_ j) : h => [k hk]. - exists k. change (PUniv k) with (ren_PTm shift (PUniv k : PTm n)). - eauto using weakening_Sem. - - hauto q:on use:weakening_Sem. -Qed. - -(* Semantic typing rules *) -Lemma ST_Var n Γ (i : fin n) : - ⊨ Γ -> - Γ ⊨ VarPTm i ∈ Γ i. -Proof. - move /(_ i) => [j /SemWt_Univ h]. - rewrite /SemWt => ρ /[dup] hρ {}/h [S hS]. - exists j, S. - asimpl. firstorder. -Qed. - -Lemma InterpUniv_Bind_nopf n p i (A : PTm n) B PA : - ⟦ A ⟧ i ↘ PA -> - (forall a, PA a -> exists PB, ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB) -> - ⟦ PBind p A B ⟧ i ↘ (BindSpace p PA (fun a PB => ⟦ subst_PTm (scons a VarPTm) B ⟧ i ↘ PB)). -Proof. - move => h0 h1. apply InterpUniv_Bind => //=. -Qed. - - -Lemma ST_Bind n Γ i j p (A : PTm n) (B : PTm (S n)) : - Γ ⊨ A ∈ PUniv i -> - funcomp (ren_PTm shift) (scons A Γ) ⊨ B ∈ PUniv j -> - Γ ⊨ PBind p A B ∈ PUniv (max i j). -Proof. - move => /SemWt_Univ h0 /SemWt_Univ h1. - apply SemWt_Univ => ρ hρ. - move /h0 : (hρ){h0} => [S hS]. - eexists => /=. - have ? : i <= Nat.max i j by lia. - apply InterpUniv_Bind_nopf; eauto. - - eauto using InterpUniv_cumulative. - - move => *. asimpl. hauto l:on use:InterpUniv_cumulative, ρ_ok_cons. -Qed. - -Lemma ST_Abs n Γ (a : PTm (S n)) A B i : - Γ ⊨ PBind PPi A B ∈ (PUniv i) -> - funcomp (ren_PTm shift) (scons A Γ) ⊨ a ∈ B -> - Γ ⊨ PAbs a ∈ PBind PPi A B. -Proof. - rename a into b. - move /SemWt_Univ => + hb ρ hρ. - move /(_ _ hρ) => [PPi hPPi]. - exists i, PPi. split => //. - simpl in hPPi. - move /InterpUniv_Bind_inv_nopf : hPPi. - move => [PA [hPA [hTot ?]]]. subst=>/=. - move => a PB ha. asimpl => hPB. - move : ρ_ok_cons (hPA) (hρ) (ha). repeat move/[apply]. - move /hb. - intros (m & PB0 & hPB0 & hPB0'). - replace PB0 with PB in * by hauto l:on use:InterpUniv_Functional'. - apply : InterpUniv_back_clos; eauto. - apply N_β'. by asimpl. - move : ha hPA. clear. hauto q:on use:adequacy. -Qed. - -Lemma ST_App n Γ (b a : PTm n) A B : - Γ ⊨ b ∈ PBind PPi A B -> - Γ ⊨ a ∈ A -> - Γ ⊨ PApp b a ∈ subst_PTm (scons a VarPTm) B. -Proof. - move => hf hb ρ hρ. - move /(_ ρ hρ) : hf; intros (i & PPi & hPi & hf). - move /(_ ρ hρ) : hb; intros (j & PA & hPA & hb). - simpl in hPi. - move /InterpUniv_Bind_inv_nopf : hPi. intros (PA0 & hPA0 & hTot & ?). subst. - have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. - move : hf (hb). move/[apply]. - move : hTot hb. move/[apply]. - asimpl. hauto lq:on. -Qed. - -Lemma ST_Pair n Γ (a b : PTm n) A B i : - Γ ⊨ PBind PSig A B ∈ (PUniv i) -> - Γ ⊨ a ∈ A -> - Γ ⊨ b ∈ subst_PTm (scons a VarPTm) B -> - Γ ⊨ PPair a b ∈ PBind PSig A B. -Proof. - move /SemWt_Univ => + ha hb ρ hρ. - move /(_ _ hρ) => [PPi hPPi]. - exists i, PPi. split => //. - simpl in hPPi. - move /InterpUniv_Bind_inv_nopf : hPPi. - move => [PA [hPA [hTot ?]]]. subst=>/=. - rewrite /SumSpace. right. - exists (subst_PTm ρ a), (subst_PTm ρ b). - split. - - apply rtc_refl. - - move /ha : (hρ){ha}. - move => [m][PA0][h0]h1. - move /hb : (hρ){hb}. - move => [k][PB][h2]h3. - have ? : PA0 = PA by eauto using InterpUniv_Functional'. subst. - split => // PB0. - move : h2. asimpl => *. - have ? : PB0 = PB by eauto using InterpUniv_Functional'. by subst. -Qed. - -Lemma N_Projs n p (a b : PTm n) : - rtc TRedSN a b -> - rtc TRedSN (PProj p a) (PProj p b). -Proof. induction 1; hauto lq:on ctrs:rtc, TRedSN. Qed. - -Lemma ST_Proj1 n Γ (a : PTm n) A B : - Γ ⊨ a ∈ PBind PSig A B -> - Γ ⊨ PProj PL a ∈ A. -Proof. - move => h ρ /[dup]hρ {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. - move : h0 => [S][h2][h3]?. subst. - move : h1 => /=. - rewrite /SumSpace. - case. - - move => [v [h0 h1]]. - have {}h0 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL v) by hauto lq:on use:N_Projs. - have {}h1 : SNe (PProj PL v) by hauto lq:on ctrs:SNe. - hauto q:on use:InterpUniv_back_closs,adequacy. - - move => [a0 [b0 [h4 [h5 h6]]]]. - exists m, S. split => //=. - have {}h4 : rtc TRedSN (PProj PL (subst_PTm ρ a)) (PProj PL (PPair a0 b0)) by eauto using N_Projs. - have ? : rtc TRedSN (PProj PL (PPair a0 b0)) a0 by hauto q:on ctrs:rtc, TRedSN use:adequacy. - have : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto q:on ctrs:rtc use:@relations.rtc_r. - move => h. - apply : InterpUniv_back_closs; eauto. -Qed. - -Lemma ST_Proj2 n Γ (a : PTm n) A B : - Γ ⊨ a ∈ PBind PSig A B -> - Γ ⊨ PProj PR a ∈ subst_PTm (scons (PProj PL a) VarPTm) B. -Proof. - move => h ρ hρ. - move : (hρ) => {}/h [m][PA][/= /InterpUniv_Bind_inv_nopf h0]h1. - move : h0 => [S][h2][h3]?. subst. - move : h1 => /=. - rewrite /SumSpace. - case. - - move => h. - move : h => [v [h0 h1]]. - have hp : forall p, SNe (PProj p v) by hauto lq:on ctrs:SNe. - have hp' : forall p, rtc TRedSN (PProj p(subst_PTm ρ a)) (PProj p v) by eauto using N_Projs. - have hp0 := hp PL. have hp1 := hp PR => {hp}. - have hp0' := hp' PL. have hp1' := hp' PR => {hp'}. - have : S (PProj PL (subst_PTm ρ a)). apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy. - move /h3 => [PB]. asimpl => hPB. - do 2 eexists. split; eauto. - apply : InterpUniv_back_closs; eauto. hauto q:on use:adequacy. - - move => [a0 [b0 [h4 [h5 h6]]]]. - have h3_dup := h3. - specialize h3 with (1 := h5). - move : h3 => [PB hPB]. - have hr : forall p, rtc TRedSN (PProj p (subst_PTm ρ a)) (PProj p (PPair a0 b0)) by hauto l:on use: N_Projs. - have hSN : SN a0 by move : h5 h2; clear; hauto q:on use:adequacy. - have hSN' : SN b0 by hauto q:on use:adequacy. - have hrl : TRedSN (PProj PL (PPair a0 b0)) a0 by hauto lq:on ctrs:TRedSN. - have hrr : TRedSN (PProj PR (PPair a0 b0)) b0 by hauto lq:on ctrs:TRedSN. - exists m, PB. - asimpl. split. - + have hr' : rtc TRedSN (PProj PL (subst_PTm ρ a)) a0 by hauto l:on use:@relations.rtc_r. - have : S (PProj PL (subst_PTm ρ a)) by hauto lq:on use:InterpUniv_back_closs. - move => {}/h3_dup. - move => [PB0]. asimpl => hPB0. - suff : PB = PB0 by congruence. - move : hPB. asimpl => hPB. - suff : DJoin.R (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B) (subst_PTm (scons a0 ρ) B). - move : InterpUniv_Join hPB0 hPB; repeat move/[apply]. done. - suff : BJoin.R (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B) (subst_PTm (scons a0 ρ) B) - by hauto q:on use:DJoin.FromBJoin. - have : BJoin.R (PApp (PAbs (subst_PTm (up_PTm_PTm ρ) B)) (PProj PL (subst_PTm ρ a))) - (subst_PTm (scons (PProj PL (subst_PTm ρ a)) ρ) B). - eexists. split. apply relations.rtc_once. apply RRed.AppAbs. - asimpl. apply rtc_refl. - have /BJoin.symmetric : BJoin.R (PApp (PAbs (subst_PTm (up_PTm_PTm ρ)B)) a0) - (subst_PTm (scons a0 ρ) B). - eexists. split. apply relations.rtc_once. apply RRed.AppAbs. - asimpl. apply rtc_refl. - suff : BJoin.R (PApp (PAbs (subst_PTm (up_PTm_PTm ρ) B)) (PProj PL (subst_PTm ρ a))) - (PApp (PAbs (subst_PTm (up_PTm_PTm ρ)B)) a0) by eauto using BJoin.transitive, BJoin.symmetric. - apply BJoin.AppCong. apply BJoin.refl. - move /RReds.FromRedSNs : hr'. - hauto lq:on ctrs:rtc unfold:BJoin.R. - + hauto lq:on use:@relations.rtc_r, InterpUniv_back_closs. -Qed. - -Lemma ST_Conv n Γ (a : PTm n) A B i : - Γ ⊨ a ∈ A -> - Γ ⊨ B ∈ PUniv i -> - DJoin.R A B -> - Γ ⊨ a ∈ B. -Proof. - move => ha /SemWt_Univ h h0. - move => ρ hρ. - have {}h0 : DJoin.R (subst_PTm ρ A) (subst_PTm ρ B) by eauto using DJoin.substing. - move /ha : (hρ){ha} => [m [PA [h1 h2]]]. - move /h : (hρ){h} => [S hS]. - have ? : PA = S by eauto using InterpUniv_Join'. subst. - eauto. -Qed.