Compare commits
No commits in common. "437c97455e7d55255349d02b26071e831b1c2be3" and "b29d567ef034039eaaae5880e086a25afd9f6936" have entirely different histories.
437c97455e
...
b29d567ef0
4 changed files with 16 additions and 585 deletions
|
@ -1050,12 +1050,6 @@ Proof.
|
|||
Qed.
|
||||
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Lemma lored_nsteps_app_cong k (a0 a1 b : PTm) :
|
||||
nsteps LoRed.R k a0 a1 ->
|
||||
ishne a0 ->
|
||||
|
|
|
@ -212,67 +212,6 @@ with algo_dom_r : PTm -> PTm -> Prop :=
|
|||
(* ----------------------- *)
|
||||
algo_dom_r a b.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||
|
||||
|
||||
(* Inductive salgo_dom : PTm -> PTm -> Prop := *)
|
||||
(* | S_UnivCong i j : *)
|
||||
(* (* -------------------------- *) *)
|
||||
(* salgo_dom (PUniv i) (PUniv j) *)
|
||||
|
||||
(* | S_PiCong A0 A1 B0 B1 : *)
|
||||
(* salgo_dom_r A1 A0 -> *)
|
||||
(* salgo_dom_r B0 B1 -> *)
|
||||
(* (* ---------------------------- *) *)
|
||||
(* salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1) *)
|
||||
|
||||
(* | S_SigCong A0 A1 B0 B1 : *)
|
||||
(* salgo_dom_r A0 A1 -> *)
|
||||
(* salgo_dom_r B0 B1 -> *)
|
||||
(* (* ---------------------------- *) *)
|
||||
(* salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1) *)
|
||||
|
||||
(* | S_NatCong : *)
|
||||
(* salgo_dom PNat PNat *)
|
||||
|
||||
(* | S_NeuNeu a b : *)
|
||||
(* ishne a -> *)
|
||||
(* ishne b -> *)
|
||||
(* algo_dom a b -> *)
|
||||
(* (* ------------------- *) *)
|
||||
(* salgo_dom *)
|
||||
|
||||
(* | S_Conf a b : *)
|
||||
(* HRed.nf a -> *)
|
||||
(* HRed.nf b -> *)
|
||||
(* tm_conf a b -> *)
|
||||
(* salgo_dom a b *)
|
||||
|
||||
(* with salgo_dom_r : PTm -> PTm -> Prop := *)
|
||||
(* | S_NfNf a b : *)
|
||||
(* salgo_dom a b -> *)
|
||||
(* salgo_dom_r a b *)
|
||||
|
||||
(* | S_HRedL a a' b : *)
|
||||
(* HRed.R a a' -> *)
|
||||
(* salgo_dom_r a' b -> *)
|
||||
(* (* ----------------------- *) *)
|
||||
(* salgo_dom_r a b *)
|
||||
|
||||
(* | S_HRedR a b b' : *)
|
||||
(* HRed.nf a -> *)
|
||||
(* HRed.R b b' -> *)
|
||||
(* salgo_dom_r a b' -> *)
|
||||
(* (* ----------------------- *) *)
|
||||
(* salgo_dom_r a b. *)
|
||||
|
||||
(* Scheme salgo_ind := Induction for salgo_dom Sort Prop *)
|
||||
(* with algor_ind := Induction for salgo_dom_r Sort Prop. *)
|
||||
|
||||
|
||||
Lemma hf_no_hred (a b : PTm) :
|
||||
ishf a ->
|
||||
HRed.R a b ->
|
||||
|
@ -412,6 +351,7 @@ Ltac solve_check_equal :=
|
|||
| inr b' := check_equal_r a (proj1_sig b') _;
|
||||
| inl h'' := check_equal a b _.
|
||||
|
||||
|
||||
Next Obligation.
|
||||
intros.
|
||||
inversion h; subst => //=.
|
||||
|
@ -546,115 +486,3 @@ Lemma check_equal_conf a b nfa nfb nfab :
|
|||
Proof. destruct a; destruct b => //=. Qed.
|
||||
|
||||
#[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop.
|
||||
|
||||
Obligation Tactic := try solve [check_equal_triv | sfirstorder].
|
||||
|
||||
Program Fixpoint check_sub (q : bool) (a b : PTm) (h : algo_dom a b) {struct h} :=
|
||||
match a, b with
|
||||
| PBind PPi A0 B0, PBind PPi A1 B1 =>
|
||||
check_sub_r (negb q) A0 A1 _ && check_sub_r q B0 B1 _
|
||||
| PBind PSig A0 B0, PBind PSig A1 B1 =>
|
||||
check_sub_r q A0 A1 _ && check_sub_r q B0 B1 _
|
||||
| PUniv i, PUniv j =>
|
||||
if q then PeanoNat.Nat.leb i j else PeanoNat.Nat.leb j i
|
||||
| PNat, PNat => true
|
||||
| _ ,_ => ishne a && ishne b && check_equal a b h
|
||||
end
|
||||
with check_sub_r (q : bool) (a b : PTm) (h : algo_dom_r a b) {struct h} :=
|
||||
match fancy_hred a with
|
||||
| inr a' => check_sub_r q (proj1_sig a') b _
|
||||
| inl ha' => match fancy_hred b with
|
||||
| inr b' => check_sub_r q a (proj1_sig b') _
|
||||
| inl hb' => check_sub q a b _
|
||||
end
|
||||
end.
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl.
|
||||
inversion h; subst => //=.
|
||||
exfalso. sfirstorder use:algo_dom_no_hred.
|
||||
assert (a' = a'0) by eauto using hred_deter. by subst.
|
||||
exfalso. sfirstorder.
|
||||
Defined.
|
||||
|
||||
Next Obligation.
|
||||
simpl. intros. clear Heq_anonymous Heq_anonymous0.
|
||||
destruct b' as [b' hb']. simpl.
|
||||
inversion h; subst.
|
||||
- exfalso.
|
||||
sfirstorder use:algo_dom_no_hred.
|
||||
- exfalso.
|
||||
sfirstorder.
|
||||
- assert (b' = b'0) by eauto using hred_deter. by subst.
|
||||
Defined.
|
||||
|
||||
(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *)
|
||||
Next Obligation.
|
||||
move => _ /= a b hdom ha _ hb _.
|
||||
inversion hdom; subst.
|
||||
- assumption.
|
||||
- exfalso; sfirstorder.
|
||||
- exfalso; sfirstorder.
|
||||
Defined.
|
||||
|
||||
Lemma check_sub_pi_pi q A0 B0 A1 B1 h0 h1 :
|
||||
check_sub q (PBind PPi A0 B0) (PBind PPi A1 B1) (A_BindCong PPi PPi A0 A1 B0 B1 h0 h1) =
|
||||
check_sub_r (~~ q) A0 A1 h0 && check_sub_r q B0 B1 h1.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_sig_sig q A0 B0 A1 B1 h0 h1 :
|
||||
check_sub q (PBind PSig A0 B0) (PBind PSig A1 B1) (A_BindCong PSig PSig A0 A1 B0 B1 h0 h1) =
|
||||
check_sub_r q A0 A1 h0 && check_sub_r q B0 B1 h1.
|
||||
reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_univ_univ i j :
|
||||
check_sub true (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb i j.
|
||||
Proof. reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_univ_univ' i j :
|
||||
check_sub false (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb j i.
|
||||
reflexivity. Qed.
|
||||
|
||||
Lemma check_sub_nfnf q a b dom : check_sub_r q a b (A_NfNf a b dom) = check_sub q a b dom.
|
||||
Proof.
|
||||
have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred.
|
||||
have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none.
|
||||
simpl.
|
||||
destruct (fancy_hred b)=>//=.
|
||||
destruct (fancy_hred a) =>//=.
|
||||
destruct s as [a' ha']. simpl.
|
||||
hauto l:on use:hred_complete.
|
||||
destruct s as [b' hb']. simpl.
|
||||
hauto l:on use:hred_complete.
|
||||
Qed.
|
||||
|
||||
Lemma check_sub_hredl q a b a' ha doma :
|
||||
check_sub_r q a b (A_HRedL a a' b ha doma) = check_sub_r q a' b doma.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- hauto q:on unfold:HRed.nf.
|
||||
- destruct s as [x ?].
|
||||
have ? : x = a' by eauto using hred_deter. subst.
|
||||
simpl.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
Qed.
|
||||
|
||||
Lemma check_sub_hredr q a b b' hu r a0 :
|
||||
check_sub_r q a b (A_HRedR a b b' hu r a0) =
|
||||
check_sub_r q a b' a0.
|
||||
Proof.
|
||||
simpl.
|
||||
destruct (fancy_hred a).
|
||||
- simpl.
|
||||
destruct (fancy_hred b) as [|[b'' hb']].
|
||||
+ hauto lq:on unfold:HRed.nf.
|
||||
+ simpl.
|
||||
have ? : (b'' = b') by eauto using hred_deter. subst.
|
||||
f_equal.
|
||||
apply PropExtensionality.proof_irrelevance.
|
||||
- exfalso.
|
||||
sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
Qed.
|
||||
|
||||
#[export]Hint Rewrite check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ' check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop.
|
||||
|
|
|
@ -4,6 +4,12 @@ Require Import ssreflect ssrbool.
|
|||
From stdpp Require Import relations (rtc(..)).
|
||||
From Hammer Require Import Tactics.
|
||||
|
||||
Scheme algo_ind := Induction for algo_dom Sort Prop
|
||||
with algor_ind := Induction for algo_dom_r Sort Prop.
|
||||
|
||||
Combined Scheme algo_dom_mutual from algo_ind, algor_ind.
|
||||
|
||||
|
||||
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||||
|
||||
|
@ -12,10 +18,6 @@ Proof. induction 1;
|
|||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof.
|
||||
induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma coqeq_neuneu u0 u1 :
|
||||
ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1.
|
||||
|
@ -86,6 +88,12 @@ Proof.
|
|||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||
|
||||
Lemma check_equal_complete :
|
||||
|
@ -169,134 +177,3 @@ Proof.
|
|||
sfirstorder unfold:HRed.nf.
|
||||
+ sauto lq:on use:hred_deter.
|
||||
Qed.
|
||||
|
||||
Ltac simp_sub := with_strategy opaque [check_equal] simpl in *.
|
||||
|
||||
(* Reusing algo_dom results in an inefficient proof, but i'll brute force it so i can get the result more quickly *)
|
||||
Lemma check_sub_sound :
|
||||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h -> if q then a ⋖ b else b ⋖ a) /\
|
||||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h -> if q then a ≪ b else b ≪ a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try done.
|
||||
- move => a [] //=; hauto qb:on.
|
||||
- move => a0 a1 []//=; hauto qb:on.
|
||||
- simpl. move => i j [];
|
||||
sauto lq:on use:Reflect.Nat_leb_le.
|
||||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb q.
|
||||
case : p0; case : p1; try done; simp ce_prop.
|
||||
sauto lqb:on.
|
||||
sauto lqb:on.
|
||||
- hauto l:on.
|
||||
- move => i j q h.
|
||||
have {}h : nat_eqdec i j by sfirstorder.
|
||||
case : nat_eqdec h => //=; sauto lq:on.
|
||||
- simp_sub.
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- simp_sub.
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- simp_sub.
|
||||
sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound.
|
||||
- move => a b n n0 i q h.
|
||||
exfalso.
|
||||
destruct a, b; try done; simp_sub; hauto lb:on use:check_equal_conf.
|
||||
- move => a b doma ihdom q.
|
||||
simp ce_prop. sauto lq:on.
|
||||
- move => a a' b hr doma ihdom q.
|
||||
simp ce_prop. move : ihdom => /[apply]. move {doma}.
|
||||
sauto lq:on.
|
||||
- move => a b b' n r dom ihdom q.
|
||||
simp ce_prop.
|
||||
move : ihdom => /[apply].
|
||||
move {dom}.
|
||||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma check_sub_complete :
|
||||
(forall a b (h : algo_dom a b), forall q, check_sub q a b h = false -> if q then ~ a ⋖ b else ~ b ⋖ a) /\
|
||||
(forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h = false -> if q then ~ a ≪ b else ~ b ≪ a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu].
|
||||
- move => i j q /=.
|
||||
sauto lq:on rew:off use:PeanoNat.Nat.leb_le.
|
||||
- move => p0 p1 A0 A1 B0 B1 a iha b ihb [].
|
||||
+ move => + h. inversion h; subst; simp ce_prop.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* inversion H.
|
||||
+ move => + h. inversion h; subst; simp ce_prop.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* move /nandP.
|
||||
case.
|
||||
by move => /negbTE {}/iha.
|
||||
by move => /negbTE {}/ihb.
|
||||
* inversion H.
|
||||
- simp_sub.
|
||||
sauto lq:on use:check_equal_complete.
|
||||
- simp_sub.
|
||||
move => p0 p1 u0 u1 i i0 a iha q.
|
||||
move /nandP.
|
||||
case.
|
||||
move /nandP.
|
||||
case => //.
|
||||
by move /negP.
|
||||
by move /negP.
|
||||
move /negP.
|
||||
move => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => u0 u1 a0 a1 i i0 a hdom ihdom hdom' ihdom'.
|
||||
simp_sub.
|
||||
move /nandP.
|
||||
case.
|
||||
move/nandP.
|
||||
case.
|
||||
by move/negP.
|
||||
by move/negP.
|
||||
move /negP.
|
||||
move => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => P0 P1 u0 u1 b0 b1 c0 c1 i i0 dom ihdom dom' ihdom' dom'' ihdom'' dom''' ihdom''' q.
|
||||
move /nandP.
|
||||
case.
|
||||
move /nandP.
|
||||
case => //=.
|
||||
by move/negP.
|
||||
by move/negP.
|
||||
move /negP => h. eapply check_equal_complete in h.
|
||||
sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on.
|
||||
- move => a b h ih q. simp ce_prop => {}/ih.
|
||||
case : q => h0;
|
||||
inversion 1; subst; hauto l:on use:algo_dom_no_hred, hreds_nf_refl.
|
||||
- move => a a' b r dom ihdom q.
|
||||
simp ce_prop => {}/ihdom.
|
||||
case : q => h0.
|
||||
inversion 1; subst.
|
||||
inversion H0; subst. sfirstorder use:coqleq_no_hred.
|
||||
have ? : a' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
inversion 1; subst.
|
||||
inversion H1; subst. sfirstorder use:coqleq_no_hred.
|
||||
have ? : a' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
- move => a b b' n r hr ih q.
|
||||
simp ce_prop => {}/ih.
|
||||
case : q.
|
||||
+ move => h. inversion 1; subst.
|
||||
inversion H1; subst.
|
||||
sfirstorder use:coqleq_no_hred.
|
||||
have ? : b' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
+ move => h. inversion 1; subst.
|
||||
inversion H0; subst.
|
||||
sfirstorder use:coqleq_no_hred.
|
||||
have ? : b' = y by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
Qed.
|
||||
|
|
|
@ -1,282 +1,14 @@
|
|||
Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable.
|
||||
From Hammer Require Import Tactics.
|
||||
Require Import ssreflect ssrbool.
|
||||
From stdpp Require Import relations (nsteps (..), rtc(..)).
|
||||
Import Psatz.
|
||||
|
||||
Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a.
|
||||
Proof. case : a; case : b => //=. Qed.
|
||||
|
||||
#[export]Hint Constructors algo_dom algo_dom_r : adom.
|
||||
|
||||
Lemma algo_dom_r_inv a b :
|
||||
algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0.
|
||||
Proof.
|
||||
induction 1; hauto lq:on ctrs:rtc.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsL a a' b :
|
||||
rtc HRed.R a a' ->
|
||||
algo_dom_r a' b ->
|
||||
algo_dom_r a b.
|
||||
induction 1; sfirstorder use:A_HRedL.
|
||||
Qed.
|
||||
|
||||
Lemma A_HRedsR a b b' :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R b b' ->
|
||||
algo_dom a b' ->
|
||||
algo_dom_r a b.
|
||||
Proof. induction 2; sauto. Qed.
|
||||
|
||||
Lemma algo_dom_sym :
|
||||
(forall a b (h : algo_dom a b), algo_dom b a) /\
|
||||
(forall a b (h : algo_dom_r a b), algo_dom_r b a).
|
||||
Proof.
|
||||
apply algo_dom_mutual; try qauto use:tm_conf_sym db:adom.
|
||||
move => a a' b hr h ih.
|
||||
move /algo_dom_r_inv : ih => [a0][b0][ih0][ih1]ih2.
|
||||
have nfa0 : HRed.nf a0 by sfirstorder use:algo_dom_no_hred.
|
||||
sauto use:A_HRedsL, A_HRedsR.
|
||||
Qed.
|
||||
From stdpp Require Import relations (nsteps (..)).
|
||||
|
||||
Definition term_metric k (a b : PTm) :=
|
||||
exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k.
|
||||
|
||||
Lemma term_metric_sym k (a b : PTm) :
|
||||
term_metric k a b -> term_metric k b a.
|
||||
Proof. hauto lq:on unfold:term_metric solve+:lia. Qed.
|
||||
|
||||
Lemma term_metric_case k (a b : PTm) :
|
||||
term_metric k a b ->
|
||||
(ishf a \/ ishne a) \/ exists k' a', HRed.R a a' /\ term_metric k' a' b /\ k' < k.
|
||||
Proof.
|
||||
move=>[i][j][va][vb][h0] [h1][h2][h3]h4.
|
||||
case : a h0 => //=; try firstorder.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.AppAbs unfold:term_metric solve+:lia.
|
||||
+ hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder qb:on use:ne_hne.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.ProjPair unfold:term_metric solve+:lia.
|
||||
+ hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia.
|
||||
- inversion h0 as [|A B C D E F]; subst.
|
||||
hauto qb:on use:ne_hne.
|
||||
inversion E; subst => /=.
|
||||
+ hauto lq:on use:HRed.IndZero unfold:term_metric solve+:lia.
|
||||
+ hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder use:ne_hne.
|
||||
+ hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia.
|
||||
+ sfirstorder use:ne_hne.
|
||||
+ sfirstorder use:ne_hne.
|
||||
Qed.
|
||||
|
||||
Lemma A_Conf' a b :
|
||||
ishf a \/ ishne a ->
|
||||
ishf b \/ ishne b ->
|
||||
tm_conf a b ->
|
||||
algo_dom_r a b.
|
||||
Proof.
|
||||
move => ha hb.
|
||||
have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
have {}hb : HRed.nf b by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
move => ?.
|
||||
apply A_NfNf.
|
||||
by apply A_Conf.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_abs : forall k a b,
|
||||
term_metric k (PAbs a) (PAbs b) ->
|
||||
exists k', k' < k /\ term_metric k' a b.
|
||||
Proof.
|
||||
move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_abs_inv in hva, hvb.
|
||||
move : hva => [a'][hva]?. subst.
|
||||
move : hvb => [b'][hvb]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lq:on unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_pair : forall k a0 b0 a1 b1,
|
||||
term_metric k (PPair a0 b0) (PPair a1 b1) ->
|
||||
exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1.
|
||||
Proof.
|
||||
move => k a0 b0 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_pair_inv in hva, hvb.
|
||||
decompose record hva => {hva}.
|
||||
decompose record hvb => {hvb}. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lqb:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_bind : forall k p0 a0 b0 p1 a1 b1,
|
||||
term_metric k (PBind p0 a0 b0) (PBind p1 a1 b1) ->
|
||||
exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1.
|
||||
Proof.
|
||||
move => k p0 a0 b0 p1 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_bind_inv in hva, hvb.
|
||||
decompose record hva => {hva}.
|
||||
decompose record hvb => {hvb}. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lqb:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_suc : forall k a b,
|
||||
term_metric k (PSuc a) (PSuc b) ->
|
||||
exists k', k' < k /\ term_metric k' a b.
|
||||
Proof.
|
||||
move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h.
|
||||
apply lored_nsteps_suc_inv in hva, hvb.
|
||||
move : hva => [a'][hva]?. subst.
|
||||
move : hvb => [b'][hvb]?. subst.
|
||||
simpl in *. exists (k - 1).
|
||||
hauto lq:on unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_abs_neu k (a0 : PTm) u :
|
||||
term_metric k (PAbs a0) u ->
|
||||
ishne u ->
|
||||
exists j, j < k /\ term_metric j a0 (PApp (ren_PTm shift u) (VarPTm var_zero)).
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 neu.
|
||||
have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps.
|
||||
move /lored_nsteps_abs_inv : h0 => [a1][h01]?. subst.
|
||||
exists (k - 1).
|
||||
simpl in *. split. lia.
|
||||
exists i,j,a1,(PApp (ren_PTm shift vb) (VarPTm var_zero)).
|
||||
repeat split => //=.
|
||||
apply lored_nsteps_app_cong.
|
||||
by apply lored_nsteps_renaming.
|
||||
by rewrite ishne_ren.
|
||||
rewrite Bool.andb_true_r.
|
||||
sfirstorder use:ne_nf_ren.
|
||||
rewrite size_PTm_ren. lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_pair_neu k (a0 b0 : PTm) u :
|
||||
term_metric k (PPair a0 b0) u ->
|
||||
ishne u ->
|
||||
exists j, j < k /\ term_metric j (PProj PL u) a0 /\ term_metric j (PProj PR u) b0.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 neu.
|
||||
have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps.
|
||||
move /lored_nsteps_pair_inv : h0 => [i0][j0][a1][b1][?][?][?][?]?. subst.
|
||||
exists (k-1). sauto qb:on use:lored_nsteps_proj_cong unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_app k (a0 b0 a1 b1 : PTm) :
|
||||
term_metric k (PApp a0 b0) (PApp a1 b1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j a0 a1 /\ term_metric j b0 b1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4.
|
||||
move => hne0 hne1.
|
||||
move : lored_nsteps_app_inv h0 (hne0);repeat move/[apply].
|
||||
move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst.
|
||||
move : lored_nsteps_app_inv h1 (hne1);repeat move/[apply].
|
||||
move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst.
|
||||
simpl in *. exists (k - 1). hauto lqb:on use:lored_nsteps_app_cong, ne_nf unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_proj k p0 p1 (a0 a1 : PTm) :
|
||||
term_metric k (PProj p0 a0) (PProj p1 a1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j a0 a1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1.
|
||||
move : lored_nsteps_proj_inv h0 (hne0);repeat move/[apply].
|
||||
move => [i0][a2][hi][?]ha02. subst.
|
||||
move : lored_nsteps_proj_inv h1 (hne1);repeat move/[apply].
|
||||
move => [i1][a3][hj][?]ha13. subst.
|
||||
exists (k- 1). hauto q:on use:ne_nf solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma term_metric_ind k P0 (a0 : PTm ) b0 c0 P1 a1 b1 c1 :
|
||||
term_metric k (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) ->
|
||||
ishne a0 ->
|
||||
ishne a1 ->
|
||||
exists j, j < k /\ term_metric j P0 P1 /\ term_metric j a0 a1 /\
|
||||
term_metric j b0 b1 /\ term_metric j c0 c1.
|
||||
Proof.
|
||||
move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1.
|
||||
move /lored_nsteps_ind_inv /(_ hne0) : h0.
|
||||
move =>[iP][ia][ib][ic][P2][a2][b2][c2][?][?][?][?][?][?][?][?]?. subst.
|
||||
move /lored_nsteps_ind_inv /(_ hne1) : h1.
|
||||
move =>[iP0][ia0][ib0][ic0][P3][a3][b3][c3][?][?][?][?][?][?][?][?]?. subst.
|
||||
exists (k -1). simpl in *.
|
||||
hauto lq:on rew:off use:ne_nf b:on solve+:lia.
|
||||
Qed.
|
||||
|
||||
|
||||
Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b.
|
||||
Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed.
|
||||
|
||||
Lemma term_metric_algo_dom : forall k a b, term_metric k a b -> algo_dom_r a b.
|
||||
Proof.
|
||||
move => [:hneL].
|
||||
elim /Wf_nat.lt_wf_ind.
|
||||
move => n ih a b h.
|
||||
case /term_metric_case : (h); cycle 1.
|
||||
move => [k'][a'][h0][h1]h2.
|
||||
by apply : A_HRedL; eauto.
|
||||
case /term_metric_sym /term_metric_case : (h); cycle 1.
|
||||
move => [k'][b'][hb][/term_metric_sym h0]h1.
|
||||
move => ha. have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
by apply : A_HRedR; eauto.
|
||||
move => /[swap].
|
||||
case => hfa; case => hfb.
|
||||
- move : hfa hfb h.
|
||||
case : a; case : b => //=; eauto 5 using A_Conf' with adom.
|
||||
+ hauto lq:on use:term_metric_abs db:adom.
|
||||
+ hauto lq:on use:term_metric_pair db:adom.
|
||||
+ hauto lq:on use:term_metric_bind db:adom.
|
||||
+ hauto lq:on use:term_metric_suc db:adom.
|
||||
- abstract : hneL n ih a b h hfa hfb.
|
||||
case : a hfa h => //=.
|
||||
+ hauto lq:on use:term_metric_abs_neu db:adom.
|
||||
+ scrush use:term_metric_pair_neu db:adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
+ case : b hfb => //=; eauto 5 using A_Conf' with adom.
|
||||
- hauto q:on use:algo_dom_sym, term_metric_sym.
|
||||
- move {hneL}.
|
||||
case : b hfa hfb h => //=; case a => //=; eauto 5 using A_Conf' with adom.
|
||||
+ move => a0 b0 a1 b1 nfa0 nfa1.
|
||||
move /term_metric_app /(_ nfa0 nfa1) => [j][hj][ha]hb.
|
||||
apply A_NfNf. apply A_AppCong => //; eauto.
|
||||
have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred.
|
||||
eauto using algo_dom_r_algo_dom.
|
||||
+ move => p0 A0 p1 A1 neA0 neA1.
|
||||
have {}nfa0 : HRed.nf A0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf A1 by sfirstorder use:hne_no_hred.
|
||||
hauto lq:on use:term_metric_proj, algo_dom_r_algo_dom db:adom.
|
||||
+ move => P0 a0 b0 c0 P1 a1 b1 c1 nea0 nea1.
|
||||
have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred.
|
||||
have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred.
|
||||
hauto lq:on use:term_metric_ind, algo_dom_r_algo_dom db:adom.
|
||||
Qed.
|
||||
|
||||
Lemma sn_term_metric (a b : PTm) : SN a -> SN b -> exists k, term_metric k a b.
|
||||
Proof.
|
||||
move /LoReds.FromSN => [va [ha0 ha1]].
|
||||
move /LoReds.FromSN => [vb [hb0 hb1]].
|
||||
eapply relations.rtc_nsteps in ha0.
|
||||
eapply relations.rtc_nsteps in hb0.
|
||||
hauto lq:on unfold:term_metric solve+:lia.
|
||||
Qed.
|
||||
|
||||
Lemma sn_algo_dom a b : SN a -> SN b -> algo_dom_r a b.
|
||||
Proof.
|
||||
move : sn_term_metric; repeat move/[apply].
|
||||
move => [k]+.
|
||||
eauto using term_metric_algo_dom.
|
||||
Qed.
|
||||
case : (fancy_hred a); cycle 1.
|
||||
move => [a' ha']. apply : A_HRedL; eauto.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue