diff --git a/theories/algorithmic.v b/theories/algorithmic.v index ab8fe97..8a9146a 100644 --- a/theories/algorithmic.v +++ b/theories/algorithmic.v @@ -1050,12 +1050,6 @@ Proof. Qed. -Lemma hreds_nf_refl a b : - HRed.nf a -> - rtc HRed.R a b -> - a = b. -Proof. inversion 2; sfirstorder. Qed. - Lemma lored_nsteps_app_cong k (a0 a1 b : PTm) : nsteps LoRed.R k a0 a1 -> ishne a0 -> diff --git a/theories/executable.v b/theories/executable.v index 44557f9..0586a41 100644 --- a/theories/executable.v +++ b/theories/executable.v @@ -212,67 +212,6 @@ with algo_dom_r : PTm -> PTm -> Prop := (* ----------------------- *) algo_dom_r a b. -Scheme algo_ind := Induction for algo_dom Sort Prop - with algor_ind := Induction for algo_dom_r Sort Prop. - -Combined Scheme algo_dom_mutual from algo_ind, algor_ind. - - -(* Inductive salgo_dom : PTm -> PTm -> Prop := *) -(* | S_UnivCong i j : *) -(* (* -------------------------- *) *) -(* salgo_dom (PUniv i) (PUniv j) *) - -(* | S_PiCong A0 A1 B0 B1 : *) -(* salgo_dom_r A1 A0 -> *) -(* salgo_dom_r B0 B1 -> *) -(* (* ---------------------------- *) *) -(* salgo_dom (PBind PPi A0 B0) (PBind PPi A1 B1) *) - -(* | S_SigCong A0 A1 B0 B1 : *) -(* salgo_dom_r A0 A1 -> *) -(* salgo_dom_r B0 B1 -> *) -(* (* ---------------------------- *) *) -(* salgo_dom (PBind PSig A0 B0) (PBind PSig A1 B1) *) - -(* | S_NatCong : *) -(* salgo_dom PNat PNat *) - -(* | S_NeuNeu a b : *) -(* ishne a -> *) -(* ishne b -> *) -(* algo_dom a b -> *) -(* (* ------------------- *) *) -(* salgo_dom *) - -(* | S_Conf a b : *) -(* HRed.nf a -> *) -(* HRed.nf b -> *) -(* tm_conf a b -> *) -(* salgo_dom a b *) - -(* with salgo_dom_r : PTm -> PTm -> Prop := *) -(* | S_NfNf a b : *) -(* salgo_dom a b -> *) -(* salgo_dom_r a b *) - -(* | S_HRedL a a' b : *) -(* HRed.R a a' -> *) -(* salgo_dom_r a' b -> *) -(* (* ----------------------- *) *) -(* salgo_dom_r a b *) - -(* | S_HRedR a b b' : *) -(* HRed.nf a -> *) -(* HRed.R b b' -> *) -(* salgo_dom_r a b' -> *) -(* (* ----------------------- *) *) -(* salgo_dom_r a b. *) - -(* Scheme salgo_ind := Induction for salgo_dom Sort Prop *) -(* with algor_ind := Induction for salgo_dom_r Sort Prop. *) - - Lemma hf_no_hred (a b : PTm) : ishf a -> HRed.R a b -> @@ -412,6 +351,7 @@ Ltac solve_check_equal := | inr b' := check_equal_r a (proj1_sig b') _; | inl h'' := check_equal a b _. + Next Obligation. intros. inversion h; subst => //=. @@ -546,115 +486,3 @@ Lemma check_equal_conf a b nfa nfb nfab : Proof. destruct a; destruct b => //=. Qed. #[export]Hint Rewrite check_equal_abs_abs check_equal_abs_neu check_equal_neu_abs check_equal_pair_pair check_equal_pair_neu check_equal_neu_pair check_equal_bind_bind check_equal_hredl check_equal_hredr check_equal_nfnf check_equal_conf : ce_prop. - -Obligation Tactic := try solve [check_equal_triv | sfirstorder]. - -Program Fixpoint check_sub (q : bool) (a b : PTm) (h : algo_dom a b) {struct h} := - match a, b with - | PBind PPi A0 B0, PBind PPi A1 B1 => - check_sub_r (negb q) A0 A1 _ && check_sub_r q B0 B1 _ - | PBind PSig A0 B0, PBind PSig A1 B1 => - check_sub_r q A0 A1 _ && check_sub_r q B0 B1 _ - | PUniv i, PUniv j => - if q then PeanoNat.Nat.leb i j else PeanoNat.Nat.leb j i - | PNat, PNat => true - | _ ,_ => ishne a && ishne b && check_equal a b h - end -with check_sub_r (q : bool) (a b : PTm) (h : algo_dom_r a b) {struct h} := - match fancy_hred a with - | inr a' => check_sub_r q (proj1_sig a') b _ - | inl ha' => match fancy_hred b with - | inr b' => check_sub_r q a (proj1_sig b') _ - | inl hb' => check_sub q a b _ - end - end. -Next Obligation. - simpl. intros. clear Heq_anonymous. destruct a' as [a' ha']. simpl. - inversion h; subst => //=. - exfalso. sfirstorder use:algo_dom_no_hred. - assert (a' = a'0) by eauto using hred_deter. by subst. - exfalso. sfirstorder. -Defined. - -Next Obligation. - simpl. intros. clear Heq_anonymous Heq_anonymous0. - destruct b' as [b' hb']. simpl. - inversion h; subst. - - exfalso. - sfirstorder use:algo_dom_no_hred. - - exfalso. - sfirstorder. - - assert (b' = b'0) by eauto using hred_deter. by subst. -Defined. - -(* Need to avoid ssreflect tactics since they generate terms that make the termination checker upset *) -Next Obligation. - move => _ /= a b hdom ha _ hb _. - inversion hdom; subst. - - assumption. - - exfalso; sfirstorder. - - exfalso; sfirstorder. -Defined. - -Lemma check_sub_pi_pi q A0 B0 A1 B1 h0 h1 : - check_sub q (PBind PPi A0 B0) (PBind PPi A1 B1) (A_BindCong PPi PPi A0 A1 B0 B1 h0 h1) = - check_sub_r (~~ q) A0 A1 h0 && check_sub_r q B0 B1 h1. -Proof. reflexivity. Qed. - -Lemma check_sub_sig_sig q A0 B0 A1 B1 h0 h1 : - check_sub q (PBind PSig A0 B0) (PBind PSig A1 B1) (A_BindCong PSig PSig A0 A1 B0 B1 h0 h1) = - check_sub_r q A0 A1 h0 && check_sub_r q B0 B1 h1. - reflexivity. Qed. - -Lemma check_sub_univ_univ i j : - check_sub true (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb i j. -Proof. reflexivity. Qed. - -Lemma check_sub_univ_univ' i j : - check_sub false (PUniv i) (PUniv j) (A_UnivCong i j) = PeanoNat.Nat.leb j i. - reflexivity. Qed. - -Lemma check_sub_nfnf q a b dom : check_sub_r q a b (A_NfNf a b dom) = check_sub q a b dom. -Proof. - have [h0 h1] : HRed.nf a /\ HRed.nf b by hauto l:on use:algo_dom_no_hred. - have [h3 h4] : hred a = None /\ hred b = None by sfirstorder use:hf_no_hred, hne_no_hred, hred_none. - simpl. - destruct (fancy_hred b)=>//=. - destruct (fancy_hred a) =>//=. - destruct s as [a' ha']. simpl. - hauto l:on use:hred_complete. - destruct s as [b' hb']. simpl. - hauto l:on use:hred_complete. -Qed. - -Lemma check_sub_hredl q a b a' ha doma : - check_sub_r q a b (A_HRedL a a' b ha doma) = check_sub_r q a' b doma. -Proof. - simpl. - destruct (fancy_hred a). - - hauto q:on unfold:HRed.nf. - - destruct s as [x ?]. - have ? : x = a' by eauto using hred_deter. subst. - simpl. - f_equal. - apply PropExtensionality.proof_irrelevance. -Qed. - -Lemma check_sub_hredr q a b b' hu r a0 : - check_sub_r q a b (A_HRedR a b b' hu r a0) = - check_sub_r q a b' a0. -Proof. - simpl. - destruct (fancy_hred a). - - simpl. - destruct (fancy_hred b) as [|[b'' hb']]. - + hauto lq:on unfold:HRed.nf. - + simpl. - have ? : (b'' = b') by eauto using hred_deter. subst. - f_equal. - apply PropExtensionality.proof_irrelevance. - - exfalso. - sfirstorder use:hne_no_hred, hf_no_hred. -Qed. - -#[export]Hint Rewrite check_sub_hredl check_sub_hredr check_sub_nfnf check_sub_univ_univ' check_sub_univ_univ check_sub_pi_pi check_sub_sig_sig : ce_prop. diff --git a/theories/executable_correct.v b/theories/executable_correct.v index 6ccee46..0720d03 100644 --- a/theories/executable_correct.v +++ b/theories/executable_correct.v @@ -4,6 +4,12 @@ Require Import ssreflect ssrbool. From stdpp Require Import relations (rtc(..)). From Hammer Require Import Tactics. +Scheme algo_ind := Induction for algo_dom Sort Prop + with algor_ind := Induction for algo_dom_r Sort Prop. + +Combined Scheme algo_dom_mutual from algo_ind, algor_ind. + + Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b. Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed. @@ -12,10 +18,6 @@ Proof. induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf. Qed. -Lemma coqleq_no_hred a b : a ⋖ b -> HRed.nf a /\ HRed.nf b. -Proof. - induction 1; qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred, coqeqr_no_hred unfold:HRed.nf. -Qed. Lemma coqeq_neuneu u0 u1 : ishne u0 -> ishne u1 -> u0 ↔ u1 -> u0 ∼ u1. @@ -86,6 +88,12 @@ Proof. sauto lq:on rew:off. Qed. +Lemma hreds_nf_refl a b : + HRed.nf a -> + rtc HRed.R a b -> + a = b. +Proof. inversion 2; sfirstorder. Qed. + Ltac ce_solv := move => *; simp ce_prop in *; hauto qb:on rew:off inv:CoqEq, CoqEq_Neu. Lemma check_equal_complete : @@ -169,134 +177,3 @@ Proof. sfirstorder unfold:HRed.nf. + sauto lq:on use:hred_deter. Qed. - -Ltac simp_sub := with_strategy opaque [check_equal] simpl in *. - -(* Reusing algo_dom results in an inefficient proof, but i'll brute force it so i can get the result more quickly *) -Lemma check_sub_sound : - (forall a b (h : algo_dom a b), forall q, check_sub q a b h -> if q then a ⋖ b else b ⋖ a) /\ - (forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h -> if q then a ≪ b else b ≪ a). -Proof. - apply algo_dom_mutual; try done. - - move => a [] //=; hauto qb:on. - - move => a0 a1 []//=; hauto qb:on. - - simpl. move => i j []; - sauto lq:on use:Reflect.Nat_leb_le. - - move => p0 p1 A0 A1 B0 B1 a iha b ihb q. - case : p0; case : p1; try done; simp ce_prop. - sauto lqb:on. - sauto lqb:on. - - hauto l:on. - - move => i j q h. - have {}h : nat_eqdec i j by sfirstorder. - case : nat_eqdec h => //=; sauto lq:on. - - simp_sub. - sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound. - - simp_sub. - sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound. - - simp_sub. - sauto lqb:on use:coqeq_symmetric_mutual, coqeq_neuneu, check_equal_sound. - - move => a b n n0 i q h. - exfalso. - destruct a, b; try done; simp_sub; hauto lb:on use:check_equal_conf. - - move => a b doma ihdom q. - simp ce_prop. sauto lq:on. - - move => a a' b hr doma ihdom q. - simp ce_prop. move : ihdom => /[apply]. move {doma}. - sauto lq:on. - - move => a b b' n r dom ihdom q. - simp ce_prop. - move : ihdom => /[apply]. - move {dom}. - sauto lq:on rew:off. -Qed. - -Lemma check_sub_complete : - (forall a b (h : algo_dom a b), forall q, check_sub q a b h = false -> if q then ~ a ⋖ b else ~ b ⋖ a) /\ - (forall a b (h : algo_dom_r a b), forall q, check_sub_r q a b h = false -> if q then ~ a ≪ b else ~ b ≪ a). -Proof. - apply algo_dom_mutual; try first [done | hauto depth:4 lq:on inv:CoqLEq, CoqEq_Neu]. - - move => i j q /=. - sauto lq:on rew:off use:PeanoNat.Nat.leb_le. - - move => p0 p1 A0 A1 B0 B1 a iha b ihb []. - + move => + h. inversion h; subst; simp ce_prop. - * move /nandP. - case. - by move => /negbTE {}/iha. - by move => /negbTE {}/ihb. - * move /nandP. - case. - by move => /negbTE {}/iha. - by move => /negbTE {}/ihb. - * inversion H. - + move => + h. inversion h; subst; simp ce_prop. - * move /nandP. - case. - by move => /negbTE {}/iha. - by move => /negbTE {}/ihb. - * move /nandP. - case. - by move => /negbTE {}/iha. - by move => /negbTE {}/ihb. - * inversion H. - - simp_sub. - sauto lq:on use:check_equal_complete. - - simp_sub. - move => p0 p1 u0 u1 i i0 a iha q. - move /nandP. - case. - move /nandP. - case => //. - by move /negP. - by move /negP. - move /negP. - move => h. eapply check_equal_complete in h. - sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on. - - move => u0 u1 a0 a1 i i0 a hdom ihdom hdom' ihdom'. - simp_sub. - move /nandP. - case. - move/nandP. - case. - by move/negP. - by move/negP. - move /negP. - move => h. eapply check_equal_complete in h. - sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on. - - move => P0 P1 u0 u1 b0 b1 c0 c1 i i0 dom ihdom dom' ihdom' dom'' ihdom'' dom''' ihdom''' q. - move /nandP. - case. - move /nandP. - case => //=. - by move/negP. - by move/negP. - move /negP => h. eapply check_equal_complete in h. - sauto use:coqeq_symmetric_mutual inv:CoqLEq lq:on. - - move => a b h ih q. simp ce_prop => {}/ih. - case : q => h0; - inversion 1; subst; hauto l:on use:algo_dom_no_hred, hreds_nf_refl. - - move => a a' b r dom ihdom q. - simp ce_prop => {}/ihdom. - case : q => h0. - inversion 1; subst. - inversion H0; subst. sfirstorder use:coqleq_no_hred. - have ? : a' = y by eauto using hred_deter. subst. - sauto lq:on. - inversion 1; subst. - inversion H1; subst. sfirstorder use:coqleq_no_hred. - have ? : a' = y by eauto using hred_deter. subst. - sauto lq:on. - - move => a b b' n r hr ih q. - simp ce_prop => {}/ih. - case : q. - + move => h. inversion 1; subst. - inversion H1; subst. - sfirstorder use:coqleq_no_hred. - have ? : b' = y by eauto using hred_deter. subst. - sauto lq:on. - + move => h. inversion 1; subst. - inversion H0; subst. - sfirstorder use:coqleq_no_hred. - have ? : b' = y by eauto using hred_deter. subst. - sauto lq:on. -Qed. diff --git a/theories/termination.v b/theories/termination.v index 8afe24e..61f1e1d 100644 --- a/theories/termination.v +++ b/theories/termination.v @@ -1,282 +1,14 @@ Require Import common Autosubst2.core Autosubst2.unscoped Autosubst2.syntax algorithmic fp_red executable. From Hammer Require Import Tactics. Require Import ssreflect ssrbool. -From stdpp Require Import relations (nsteps (..), rtc(..)). -Import Psatz. - -Lemma tm_conf_sym a b : tm_conf a b = tm_conf b a. -Proof. case : a; case : b => //=. Qed. - -#[export]Hint Constructors algo_dom algo_dom_r : adom. - -Lemma algo_dom_r_inv a b : - algo_dom_r a b -> exists a0 b0, algo_dom a0 b0 /\ rtc HRed.R a a0 /\ rtc HRed.R b b0. -Proof. - induction 1; hauto lq:on ctrs:rtc. -Qed. - -Lemma A_HRedsL a a' b : - rtc HRed.R a a' -> - algo_dom_r a' b -> - algo_dom_r a b. - induction 1; sfirstorder use:A_HRedL. -Qed. - -Lemma A_HRedsR a b b' : - HRed.nf a -> - rtc HRed.R b b' -> - algo_dom a b' -> - algo_dom_r a b. -Proof. induction 2; sauto. Qed. - -Lemma algo_dom_sym : - (forall a b (h : algo_dom a b), algo_dom b a) /\ - (forall a b (h : algo_dom_r a b), algo_dom_r b a). -Proof. - apply algo_dom_mutual; try qauto use:tm_conf_sym db:adom. - move => a a' b hr h ih. - move /algo_dom_r_inv : ih => [a0][b0][ih0][ih1]ih2. - have nfa0 : HRed.nf a0 by sfirstorder use:algo_dom_no_hred. - sauto use:A_HRedsL, A_HRedsR. -Qed. +From stdpp Require Import relations (nsteps (..)). Definition term_metric k (a b : PTm) := exists i j va vb, nsteps LoRed.R i a va /\ nsteps LoRed.R j b vb /\ nf va /\ nf vb /\ size_PTm va + size_PTm vb + i + j <= k. -Lemma term_metric_sym k (a b : PTm) : - term_metric k a b -> term_metric k b a. -Proof. hauto lq:on unfold:term_metric solve+:lia. Qed. - -Lemma term_metric_case k (a b : PTm) : - term_metric k a b -> - (ishf a \/ ishne a) \/ exists k' a', HRed.R a a' /\ term_metric k' a' b /\ k' < k. -Proof. - move=>[i][j][va][vb][h0] [h1][h2][h3]h4. - case : a h0 => //=; try firstorder. - - inversion h0 as [|A B C D E F]; subst. - hauto qb:on use:ne_hne. - inversion E; subst => /=. - + hauto lq:on use:HRed.AppAbs unfold:term_metric solve+:lia. - + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia. - + sfirstorder qb:on use:ne_hne. - - inversion h0 as [|A B C D E F]; subst. - hauto qb:on use:ne_hne. - inversion E; subst => /=. - + hauto lq:on use:HRed.ProjPair unfold:term_metric solve+:lia. - + hauto q:on ctrs:HRed.R use: hf_hred_lored unfold:term_metric solve+:lia. - - inversion h0 as [|A B C D E F]; subst. - hauto qb:on use:ne_hne. - inversion E; subst => /=. - + hauto lq:on use:HRed.IndZero unfold:term_metric solve+:lia. - + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia. - + sfirstorder use:ne_hne. - + hauto lq:on ctrs:HRed.R use:hf_hred_lored unfold:term_metric solve+:lia. - + sfirstorder use:ne_hne. - + sfirstorder use:ne_hne. -Qed. - -Lemma A_Conf' a b : - ishf a \/ ishne a -> - ishf b \/ ishne b -> - tm_conf a b -> - algo_dom_r a b. -Proof. - move => ha hb. - have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred. - have {}hb : HRed.nf b by sfirstorder use:hf_no_hred, hne_no_hred. - move => ?. - apply A_NfNf. - by apply A_Conf. -Qed. - -Lemma term_metric_abs : forall k a b, - term_metric k (PAbs a) (PAbs b) -> - exists k', k' < k /\ term_metric k' a b. -Proof. - move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h. - apply lored_nsteps_abs_inv in hva, hvb. - move : hva => [a'][hva]?. subst. - move : hvb => [b'][hvb]?. subst. - simpl in *. exists (k - 1). - hauto lq:on unfold:term_metric solve+:lia. -Qed. - -Lemma term_metric_pair : forall k a0 b0 a1 b1, - term_metric k (PPair a0 b0) (PPair a1 b1) -> - exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1. -Proof. - move => k a0 b0 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h. - apply lored_nsteps_pair_inv in hva, hvb. - decompose record hva => {hva}. - decompose record hvb => {hvb}. subst. - simpl in *. exists (k - 1). - hauto lqb:on solve+:lia. -Qed. - -Lemma term_metric_bind : forall k p0 a0 b0 p1 a1 b1, - term_metric k (PBind p0 a0 b0) (PBind p1 a1 b1) -> - exists k', k' < k /\ term_metric k' a0 a1 /\ term_metric k' b0 b1. -Proof. - move => k p0 a0 b0 p1 a1 b1 [i][j][va][vb][hva][hvb][nfa][nfb]h. - apply lored_nsteps_bind_inv in hva, hvb. - decompose record hva => {hva}. - decompose record hvb => {hvb}. subst. - simpl in *. exists (k - 1). - hauto lqb:on solve+:lia. -Qed. - -Lemma term_metric_suc : forall k a b, - term_metric k (PSuc a) (PSuc b) -> - exists k', k' < k /\ term_metric k' a b. -Proof. - move => k a b [i][j][va][vb][hva][hvb][nfa][nfb]h. - apply lored_nsteps_suc_inv in hva, hvb. - move : hva => [a'][hva]?. subst. - move : hvb => [b'][hvb]?. subst. - simpl in *. exists (k - 1). - hauto lq:on unfold:term_metric solve+:lia. -Qed. - -Lemma term_metric_abs_neu k (a0 : PTm) u : - term_metric k (PAbs a0) u -> - ishne u -> - exists j, j < k /\ term_metric j a0 (PApp (ren_PTm shift u) (VarPTm var_zero)). -Proof. - move => [i][j][va][vb][h0][h1][h2][h3]h4 neu. - have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps. - move /lored_nsteps_abs_inv : h0 => [a1][h01]?. subst. - exists (k - 1). - simpl in *. split. lia. - exists i,j,a1,(PApp (ren_PTm shift vb) (VarPTm var_zero)). - repeat split => //=. - apply lored_nsteps_app_cong. - by apply lored_nsteps_renaming. - by rewrite ishne_ren. - rewrite Bool.andb_true_r. - sfirstorder use:ne_nf_ren. - rewrite size_PTm_ren. lia. -Qed. - -Lemma term_metric_pair_neu k (a0 b0 : PTm) u : - term_metric k (PPair a0 b0) u -> - ishne u -> - exists j, j < k /\ term_metric j (PProj PL u) a0 /\ term_metric j (PProj PR u) b0. -Proof. - move => [i][j][va][vb][h0][h1][h2][h3]h4 neu. - have neva : ne vb by hauto lq:on use:hne_nf_ne, loreds_hne_preservation, @relations.rtc_nsteps. - move /lored_nsteps_pair_inv : h0 => [i0][j0][a1][b1][?][?][?][?]?. subst. - exists (k-1). sauto qb:on use:lored_nsteps_proj_cong unfold:term_metric solve+:lia. -Qed. - -Lemma term_metric_app k (a0 b0 a1 b1 : PTm) : - term_metric k (PApp a0 b0) (PApp a1 b1) -> - ishne a0 -> - ishne a1 -> - exists j, j < k /\ term_metric j a0 a1 /\ term_metric j b0 b1. -Proof. - move => [i][j][va][vb][h0][h1][h2][h3]h4. - move => hne0 hne1. - move : lored_nsteps_app_inv h0 (hne0);repeat move/[apply]. - move => [i0][i1][a2][b2][?][?][?][ha02]hb02. subst. - move : lored_nsteps_app_inv h1 (hne1);repeat move/[apply]. - move => [j0][j1][a3][b3][?][?][?][ha13]hb13. subst. - simpl in *. exists (k - 1). hauto lqb:on use:lored_nsteps_app_cong, ne_nf unfold:term_metric solve+:lia. -Qed. - -Lemma term_metric_proj k p0 p1 (a0 a1 : PTm) : - term_metric k (PProj p0 a0) (PProj p1 a1) -> - ishne a0 -> - ishne a1 -> - exists j, j < k /\ term_metric j a0 a1. -Proof. - move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1. - move : lored_nsteps_proj_inv h0 (hne0);repeat move/[apply]. - move => [i0][a2][hi][?]ha02. subst. - move : lored_nsteps_proj_inv h1 (hne1);repeat move/[apply]. - move => [i1][a3][hj][?]ha13. subst. - exists (k- 1). hauto q:on use:ne_nf solve+:lia. -Qed. - -Lemma term_metric_ind k P0 (a0 : PTm ) b0 c0 P1 a1 b1 c1 : - term_metric k (PInd P0 a0 b0 c0) (PInd P1 a1 b1 c1) -> - ishne a0 -> - ishne a1 -> - exists j, j < k /\ term_metric j P0 P1 /\ term_metric j a0 a1 /\ - term_metric j b0 b1 /\ term_metric j c0 c1. -Proof. - move => [i][j][va][vb][h0][h1][h2][h3]h4 hne0 hne1. - move /lored_nsteps_ind_inv /(_ hne0) : h0. - move =>[iP][ia][ib][ic][P2][a2][b2][c2][?][?][?][?][?][?][?][?]?. subst. - move /lored_nsteps_ind_inv /(_ hne1) : h1. - move =>[iP0][ia0][ib0][ic0][P3][a3][b3][c3][?][?][?][?][?][?][?][?]?. subst. - exists (k -1). simpl in *. - hauto lq:on rew:off use:ne_nf b:on solve+:lia. -Qed. - - -Lemma algo_dom_r_algo_dom : forall a b, HRed.nf a -> HRed.nf b -> algo_dom_r a b -> algo_dom a b. -Proof. hauto l:on use:algo_dom_r_inv, hreds_nf_refl. Qed. - Lemma term_metric_algo_dom : forall k a b, term_metric k a b -> algo_dom_r a b. Proof. - move => [:hneL]. elim /Wf_nat.lt_wf_ind. move => n ih a b h. - case /term_metric_case : (h); cycle 1. - move => [k'][a'][h0][h1]h2. - by apply : A_HRedL; eauto. - case /term_metric_sym /term_metric_case : (h); cycle 1. - move => [k'][b'][hb][/term_metric_sym h0]h1. - move => ha. have {}ha : HRed.nf a by sfirstorder use:hf_no_hred, hne_no_hred. - by apply : A_HRedR; eauto. - move => /[swap]. - case => hfa; case => hfb. - - move : hfa hfb h. - case : a; case : b => //=; eauto 5 using A_Conf' with adom. - + hauto lq:on use:term_metric_abs db:adom. - + hauto lq:on use:term_metric_pair db:adom. - + hauto lq:on use:term_metric_bind db:adom. - + hauto lq:on use:term_metric_suc db:adom. - - abstract : hneL n ih a b h hfa hfb. - case : a hfa h => //=. - + hauto lq:on use:term_metric_abs_neu db:adom. - + scrush use:term_metric_pair_neu db:adom. - + case : b hfb => //=; eauto 5 using A_Conf' with adom. - + case : b hfb => //=; eauto 5 using A_Conf' with adom. - + case : b hfb => //=; eauto 5 using A_Conf' with adom. - + case : b hfb => //=; eauto 5 using A_Conf' with adom. - + case : b hfb => //=; eauto 5 using A_Conf' with adom. - - hauto q:on use:algo_dom_sym, term_metric_sym. - - move {hneL}. - case : b hfa hfb h => //=; case a => //=; eauto 5 using A_Conf' with adom. - + move => a0 b0 a1 b1 nfa0 nfa1. - move /term_metric_app /(_ nfa0 nfa1) => [j][hj][ha]hb. - apply A_NfNf. apply A_AppCong => //; eauto. - have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred. - have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred. - eauto using algo_dom_r_algo_dom. - + move => p0 A0 p1 A1 neA0 neA1. - have {}nfa0 : HRed.nf A0 by sfirstorder use:hne_no_hred. - have {}nfb0 : HRed.nf A1 by sfirstorder use:hne_no_hred. - hauto lq:on use:term_metric_proj, algo_dom_r_algo_dom db:adom. - + move => P0 a0 b0 c0 P1 a1 b1 c1 nea0 nea1. - have {}nfa0 : HRed.nf a0 by sfirstorder use:hne_no_hred. - have {}nfb0 : HRed.nf a1 by sfirstorder use:hne_no_hred. - hauto lq:on use:term_metric_ind, algo_dom_r_algo_dom db:adom. -Qed. - -Lemma sn_term_metric (a b : PTm) : SN a -> SN b -> exists k, term_metric k a b. -Proof. - move /LoReds.FromSN => [va [ha0 ha1]]. - move /LoReds.FromSN => [vb [hb0 hb1]]. - eapply relations.rtc_nsteps in ha0. - eapply relations.rtc_nsteps in hb0. - hauto lq:on unfold:term_metric solve+:lia. -Qed. - -Lemma sn_algo_dom a b : SN a -> SN b -> algo_dom_r a b. -Proof. - move : sn_term_metric; repeat move/[apply]. - move => [k]+. - eauto using term_metric_algo_dom. -Qed. + case : (fancy_hred a); cycle 1. + move => [a' ha']. apply : A_HRedL; eauto.