diff --git a/syntax.sig b/syntax.sig index d052897..e2bafac 100644 --- a/syntax.sig +++ b/syntax.sig @@ -9,7 +9,7 @@ Void : Ty PL : PTag PR : PTag -PAbs : Ty -> (bind PTm in PTm) -> PTm +PAbs : (bind PTm in PTm) -> PTm PApp : PTm -> PTm -> PTm PPair : PTm -> PTm -> PTm PProj : PTag -> PTm -> PTm diff --git a/theories/Autosubst2/syntax.v b/theories/Autosubst2/syntax.v index b37b721..b5cbc66 100644 --- a/theories/Autosubst2/syntax.v +++ b/theories/Autosubst2/syntax.v @@ -19,43 +19,17 @@ Proof. exact (eq_refl). Qed. -Inductive Ty : Type := - | Fun : Ty -> Ty -> Ty - | Prod : Ty -> Ty -> Ty - | Void : Ty. - -Lemma congr_Fun {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) - (H1 : s1 = t1) : Fun s0 s1 = Fun t0 t1. -Proof. -exact (eq_trans (eq_trans eq_refl (ap (fun x => Fun x s1) H0)) - (ap (fun x => Fun t0 x) H1)). -Qed. - -Lemma congr_Prod {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) - (H1 : s1 = t1) : Prod s0 s1 = Prod t0 t1. -Proof. -exact (eq_trans (eq_trans eq_refl (ap (fun x => Prod x s1) H0)) - (ap (fun x => Prod t0 x) H1)). -Qed. - -Lemma congr_Void : Void = Void. -Proof. -exact (eq_refl). -Qed. - Inductive PTm (n_PTm : nat) : Type := | VarPTm : fin n_PTm -> PTm n_PTm - | PAbs : Ty -> PTm (S n_PTm) -> PTm n_PTm + | PAbs : PTm (S n_PTm) -> PTm n_PTm | PApp : PTm n_PTm -> PTm n_PTm -> PTm n_PTm | PPair : PTm n_PTm -> PTm n_PTm -> PTm n_PTm | PProj : PTag -> PTm n_PTm -> PTm n_PTm. -Lemma congr_PAbs {m_PTm : nat} {s0 : Ty} {s1 : PTm (S m_PTm)} {t0 : Ty} - {t1 : PTm (S m_PTm)} (H0 : s0 = t0) (H1 : s1 = t1) : - PAbs m_PTm s0 s1 = PAbs m_PTm t0 t1. +Lemma congr_PAbs {m_PTm : nat} {s0 : PTm (S m_PTm)} {t0 : PTm (S m_PTm)} + (H0 : s0 = t0) : PAbs m_PTm s0 = PAbs m_PTm t0. Proof. -exact (eq_trans (eq_trans eq_refl (ap (fun x => PAbs m_PTm x s1) H0)) - (ap (fun x => PAbs m_PTm t0 x) H1)). +exact (eq_trans eq_refl (ap (fun x => PAbs m_PTm x) H0)). Qed. Lemma congr_PApp {m_PTm : nat} {s0 : PTm m_PTm} {s1 : PTm m_PTm} @@ -98,7 +72,7 @@ Fixpoint ren_PTm {m_PTm : nat} {n_PTm : nat} (xi_PTm : fin m_PTm -> fin n_PTm) (s : PTm m_PTm) {struct s} : PTm n_PTm := match s with | VarPTm _ s0 => VarPTm n_PTm (xi_PTm s0) - | PAbs _ s0 s1 => PAbs n_PTm s0 (ren_PTm (upRen_PTm_PTm xi_PTm) s1) + | PAbs _ s0 => PAbs n_PTm (ren_PTm (upRen_PTm_PTm xi_PTm) s0) | PApp _ s0 s1 => PApp n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PPair _ s0 s1 => PPair n_PTm (ren_PTm xi_PTm s0) (ren_PTm xi_PTm s1) | PProj _ s0 s1 => PProj n_PTm s0 (ren_PTm xi_PTm s1) @@ -122,7 +96,7 @@ Fixpoint subst_PTm {m_PTm : nat} {n_PTm : nat} := match s with | VarPTm _ s0 => sigma_PTm s0 - | PAbs _ s0 s1 => PAbs n_PTm s0 (subst_PTm (up_PTm_PTm sigma_PTm) s1) + | PAbs _ s0 => PAbs n_PTm (subst_PTm (up_PTm_PTm sigma_PTm) s0) | PApp _ s0 s1 => PApp n_PTm (subst_PTm sigma_PTm s0) (subst_PTm sigma_PTm s1) | PPair _ s0 s1 => @@ -155,9 +129,9 @@ Fixpoint idSubst_PTm {m_PTm : nat} (sigma_PTm : fin m_PTm -> PTm m_PTm) : subst_PTm sigma_PTm s = s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) - (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s1) + | PAbs _ s0 => + congr_PAbs + (idSubst_PTm (up_PTm_PTm sigma_PTm) (upId_PTm_PTm _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (idSubst_PTm sigma_PTm Eq_PTm s0) (idSubst_PTm sigma_PTm Eq_PTm s1) @@ -194,10 +168,10 @@ Fixpoint extRen_PTm {m_PTm : nat} {n_PTm : nat} ren_PTm xi_PTm s = ren_PTm zeta_PTm s := match s with | VarPTm _ s0 => ap (VarPTm n_PTm) (Eq_PTm s0) - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (extRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) - (upExtRen_PTm_PTm _ _ Eq_PTm) s1) + (upExtRen_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (extRen_PTm xi_PTm zeta_PTm Eq_PTm s0) (extRen_PTm xi_PTm zeta_PTm Eq_PTm s1) @@ -235,10 +209,10 @@ Fixpoint ext_PTm {m_PTm : nat} {n_PTm : nat} subst_PTm sigma_PTm s = subst_PTm tau_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (ext_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) - (upExt_PTm_PTm _ _ Eq_PTm) s1) + (upExt_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (ext_PTm sigma_PTm tau_PTm Eq_PTm s0) (ext_PTm sigma_PTm tau_PTm Eq_PTm s1) @@ -275,10 +249,10 @@ Fixpoint compRenRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} {struct s} : ren_PTm zeta_PTm (ren_PTm xi_PTm s) = ren_PTm rho_PTm s := match s with | VarPTm _ s0 => ap (VarPTm l_PTm) (Eq_PTm s0) - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (compRenRen_PTm (upRen_PTm_PTm xi_PTm) (upRen_PTm_PTm zeta_PTm) - (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s1) + (upRen_PTm_PTm rho_PTm) (up_ren_ren _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s0) (compRenRen_PTm xi_PTm zeta_PTm rho_PTm Eq_PTm s1) @@ -325,10 +299,10 @@ Fixpoint compRenSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} {struct s} : subst_PTm tau_PTm (ren_PTm xi_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (compRenSubst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm tau_PTm) - (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s1) + (up_PTm_PTm theta_PTm) (up_ren_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s0) (compRenSubst_PTm xi_PTm tau_PTm theta_PTm Eq_PTm s1) @@ -395,10 +369,10 @@ Fixpoint compSubstRen_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} ren_PTm zeta_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (compSubstRen_PTm (up_PTm_PTm sigma_PTm) (upRen_PTm_PTm zeta_PTm) - (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s1) + (up_PTm_PTm theta_PTm) (up_subst_ren_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s0) (compSubstRen_PTm sigma_PTm zeta_PTm theta_PTm Eq_PTm s1) @@ -467,10 +441,10 @@ Fixpoint compSubstSubst_PTm {k_PTm : nat} {l_PTm : nat} {m_PTm : nat} subst_PTm tau_PTm (subst_PTm sigma_PTm s) = subst_PTm theta_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (compSubstSubst_PTm (up_PTm_PTm sigma_PTm) (up_PTm_PTm tau_PTm) - (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s1) + (up_PTm_PTm theta_PTm) (up_subst_subst_PTm_PTm _ _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s0) (compSubstSubst_PTm sigma_PTm tau_PTm theta_PTm Eq_PTm s1) @@ -580,10 +554,10 @@ Fixpoint rinst_inst_PTm {m_PTm : nat} {n_PTm : nat} (s : PTm m_PTm) {struct s} : ren_PTm xi_PTm s = subst_PTm sigma_PTm s := match s with | VarPTm _ s0 => Eq_PTm s0 - | PAbs _ s0 s1 => - congr_PAbs (eq_refl s0) + | PAbs _ s0 => + congr_PAbs (rinst_inst_PTm (upRen_PTm_PTm xi_PTm) (up_PTm_PTm sigma_PTm) - (rinstInst_up_PTm_PTm _ _ Eq_PTm) s1) + (rinstInst_up_PTm_PTm _ _ Eq_PTm) s0) | PApp _ s0 s1 => congr_PApp (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s0) (rinst_inst_PTm xi_PTm sigma_PTm Eq_PTm s1) @@ -663,6 +637,30 @@ Proof. exact (fun x => eq_refl). Qed. +Inductive Ty : Type := + | Fun : Ty -> Ty -> Ty + | Prod : Ty -> Ty -> Ty + | Void : Ty. + +Lemma congr_Fun {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) + (H1 : s1 = t1) : Fun s0 s1 = Fun t0 t1. +Proof. +exact (eq_trans (eq_trans eq_refl (ap (fun x => Fun x s1) H0)) + (ap (fun x => Fun t0 x) H1)). +Qed. + +Lemma congr_Prod {s0 : Ty} {s1 : Ty} {t0 : Ty} {t1 : Ty} (H0 : s0 = t0) + (H1 : s1 = t1) : Prod s0 s1 = Prod t0 t1. +Proof. +exact (eq_trans (eq_trans eq_refl (ap (fun x => Prod x s1) H0)) + (ap (fun x => Prod t0 x) H1)). +Qed. + +Lemma congr_Void : Void = Void. +Proof. +exact (eq_refl). +Qed. + Class Up_PTm X Y := up_PTm : X -> Y. diff --git a/theories/fp_red.v b/theories/fp_red.v index babb3c8..a53a692 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1,5 +1,6 @@ From Ltac2 Require Ltac2. Import Ltac2.Notations. + Import Ltac2.Control. Require Import ssreflect ssrbool. Require Import FunInd. @@ -22,16 +23,16 @@ Ltac spec_refl := ltac2:(spec_refl ()). Module ERed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) - | AppEta A a0 a1 : + | AppEta a0 a1 : R a0 a1 -> - R (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 + R (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 | PairEta a0 a1 : R a0 a1 -> R (PPair (PProj PL a0) (PProj PR a0)) a1 (*************** Congruence ********************) - | AbsCong A a0 a1 : + | AbsCong a0 a1 : R a0 a1 -> - R (PAbs A a0) (PAbs A a1) + R (PAbs a0) (PAbs a1) | AppCong a0 a1 b0 b1 : R a0 a1 -> R b0 b1 -> @@ -53,8 +54,8 @@ Module ERed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. - Lemma AppEta' n A a0 a1 (u : PTm n) : - u = (PAbs A (PApp (ren_PTm shift a0) (VarPTm var_zero))) -> + Lemma AppEta' n a0 a1 (u : PTm n) : + u = (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) -> R a0 a1 -> R u a1. Proof. move => ->. apply AppEta. Qed. @@ -65,8 +66,8 @@ Module ERed. move => h. move : m ξ. elim : n a b /h. - move => n A a0 a1 ha iha m ξ /=. - eapply AppEta' with (A := A); eauto. by asimpl. + move => n a0 a1 ha iha m ξ /=. + eapply AppEta'; eauto. by asimpl. all : qauto ctrs:R. Qed. @@ -91,18 +92,11 @@ Module ERed. R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). Proof. move => + h. move : m ρ0 ρ1. elim : n a b / h => n. - move => A a0 a1 ha iha m ρ0 ρ1 hρ /=. - eapply AppEta' with (A := A); eauto. by asimpl. + move => a0 a1 ha iha m ρ0 ρ1 hρ /=. + eapply AppEta'; eauto. by asimpl. all : hauto lq:on ctrs:R use:morphing_up. Qed. - Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : - R a b -> - R (subst_PTm ρ a) (subst_PTm ρ b). - Proof. - hauto l:on use:morphing, refl. - Qed. - End ERed. Inductive SNe {n} : PTm n -> Prop := @@ -120,9 +114,9 @@ with SN {n} : PTm n -> Prop := SN a -> SN b -> SN (PPair a b) -| N_Abs A a : +| N_Abs a : SN a -> - SN (PAbs A a) + SN (PAbs a) | N_SNe a : SNe a -> SN a @@ -131,10 +125,11 @@ with SN {n} : PTm n -> Prop := SN b -> SN a with TRedSN {n} : PTm n -> PTm n -> Prop := -| N_β A a b : +| N_β a b : SN b -> - TRedSN (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a) + TRedSN (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | N_AppL a0 a1 b : + SN b -> TRedSN a0 a1 -> TRedSN (PApp a0 b) (PApp a1 b) | N_ProjPairL a b : @@ -147,12 +142,64 @@ with TRedSN {n} : PTm n -> PTm n -> Prop := TRedSN a b -> TRedSN (PProj p a) (PProj p b). +Derive Dependent Inversion tred_inv with (forall n (a b : PTm n), TRedSN a b) Sort Prop. + +Inductive SNe' {n} : PTm n -> Prop := +| N_Var' i : + SNe' (VarPTm i) +| N_App' a b : + SNe a -> + SNe' (PApp a b) +| N_Proj' p a : + SNe a -> + SNe' (PProj p a). + +Lemma PProjAbs_imp n p (a : PTm (S n)) : + ~ SN (PProj p (PAbs a)). +Proof. + move E : (PProj p (PAbs a)) => u hu. + move : p a E. + elim : n u / hu=>//=. + hauto lq:on inv:SNe. + hauto lq:on inv:TRedSN. +Qed. + +Lemma PProjPair_imp n (a b0 b1 : PTm n ) : + ~ SN (PApp (PPair b0 b1) a). +Proof. + move E : (PApp (PPair b0 b1) a) => u hu. + move : a b0 b1 E. + elim : n u / hu=>//=. + hauto lq:on inv:SNe. + hauto lq:on inv:TRedSN. +Qed. + Scheme sne_ind := Induction for SNe Sort Prop with sn_ind := Induction for SN Sort Prop with sred_ind := Induction for TRedSN Sort Prop. Combined Scheme sn_mutual from sne_ind, sn_ind, sred_ind. +Fixpoint ne {n} (a : PTm n) := + match a with + | VarPTm i => true + | PApp a b => ne a && nf b + | PAbs a => false + | PPair _ _ => false + | PProj _ a => ne a + end +with nf {n} (a : PTm n) := + match a with + | VarPTm i => true + | PApp a b => ne a && nf b + | PAbs a => nf a + | PPair a b => nf a && nf b + | PProj _ a => ne a +end. + +Lemma ne_nf n a : @ne n a -> nf a. +Proof. elim : a => //=. Qed. + Inductive TRedSN' {n} (a : PTm n) : PTm n -> Prop := | T_Refl : TRedSN' a a @@ -168,6 +215,124 @@ Proof. elim : n u / h => n //=; sauto. Qed. +Lemma N_β' n a (b : PTm n) u : + u = (subst_PTm (scons b VarPTm) a) -> + SN b -> + TRedSN (PApp (PAbs a) b) u. +Proof. move => ->. apply N_β. Qed. + +Lemma sn_renaming n : + (forall (a : PTm n) (s : SNe a), forall m (ξ : fin n -> fin m), SNe (ren_PTm ξ a)) /\ + (forall (a : PTm n) (s : SN a), forall m (ξ : fin n -> fin m), SN (ren_PTm ξ a)) /\ + (forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin n -> fin m), TRedSN (ren_PTm ξ a) (ren_PTm ξ b)). +Proof. + move : n. apply sn_mutual => n; try qauto ctrs:SN, SNe, TRedSN depth:1. + move => a b ha iha m ξ /=. + apply N_β'. by asimpl. eauto. +Qed. + +#[export]Hint Constructors SN SNe TRedSN : sn. + +Ltac2 rec solve_anti_ren () := + let x := Fresh.in_goal (Option.get (Ident.of_string "x")) in + intro $x; + lazy_match! Constr.type (Control.hyp x) with + | fin ?x -> _ ?y => (ltac1:(case;qauto depth:2 db:sn)) + | _ => solve_anti_ren () + end. + +Ltac solve_anti_ren := ltac2:(Control.enter solve_anti_ren). + +Lemma sn_antirenaming n : + (forall (a : PTm n) (s : SNe a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SNe b) /\ + (forall (a : PTm n) (s : SN a), forall m (ξ : fin m -> fin n) b, a = ren_PTm ξ b -> SN b) /\ + (forall (a b : PTm n) (_ : TRedSN a b), forall m (ξ : fin m -> fin n) a0, + a = ren_PTm ξ a0 -> exists b0, TRedSN a0 b0 /\ b = ren_PTm ξ b0). +Proof. + move : n. apply sn_mutual => n; try solve_anti_ren. + + move => a b ha iha m ξ []//= u u0 [+ ?]. subst. + case : u => //= => u [*]. subst. + spec_refl. eexists. split. apply N_β=>//. by asimpl. + + move => a b hb ihb m ξ[]//= p p0 [? +]. subst. + case : p0 => //= p p0 [*]. subst. + spec_refl. by eauto with sn. + + move => a b ha iha m ξ[]//= u u0 [? ]. subst. + case : u0 => //=. move => p p0 [*]. subst. + spec_refl. by eauto with sn. +Qed. + +Lemma sn_unmorphing n : + (forall (a : PTm n) (s : SNe a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SNe b) /\ + (forall (a : PTm n) (s : SN a), forall m (ρ : fin m -> PTm n) b, a = subst_PTm ρ b -> SN b) /\ + (forall (a b : PTm n) (_ : TRedSN a b), forall m (ρ : fin m -> PTm n) a0, + a = subst_PTm ρ a0 -> (exists b0, b = subst_PTm ρ b0 /\ TRedSN a0 b0) \/ SNe a0). +Proof. + move : n. apply sn_mutual => n; try solve_anti_ren. + - move => a b ha iha m ξ b0. + case : b0 => //=. + + hauto lq:on rew:off db:sn. + + move => p p0 [+ ?]. subst. + case : p => //=. + hauto lq:on db:sn. + move => p [?]. subst. + asimpl. left. + spec_refl. + eexists. split; last by eauto using N_β. + by asimpl. + - move => a0 a1 b hb ihb ha iha m ρ []//=. + + hauto lq:on rew:off db:sn. + + move => t0 t1 [*]. subst. + spec_refl. + case : iha. + * move => [u [? hu]]. subst. + left. eexists. split; eauto using N_AppL. + reflexivity. + * move => h. + right. + apply N_App => //. + - move => a b hb ihb m ρ []//=. + + hauto l:on ctrs:TRedSN. + + move => p p0 [?]. subst. + case : p0 => //=. + * hauto lq:on rew:off db:sn. + * move => p p0 [*]. subst. + hauto lq:on db:sn. + - move => a b ha iha m ρ []//=; first by hauto l:on db:sn. + hauto q:on inv:PTm db:sn. + - move => p a b ha iha m ρ []//=; first by hauto l:on db:sn. + move => t0 t1 [*]. subst. + spec_refl. + case : iha. + + move => [b0 [? h]]. subst. + left. eexists. split; last by eauto with sn. + reflexivity. + + hauto lq:on db:sn. +Qed. + +Lemma SN_AppInv : forall n (a b : PTm n), SN (PApp a b) -> SN a /\ SN b. +Proof. + move => n a b. move E : (PApp a b) => u hu. move : a b E. + elim : n u /hu=>//=. + hauto lq:on rew:off inv:SNe db:sn. + move => n a b ha hb ihb a0 b0 ?. subst. + inversion ha; subst. + move {ihb}. + hecrush use:sn_unmorphing. + hauto lq:on db:sn. +Qed. + +Lemma SN_ProjInv : forall n p (a : PTm n), SN (PProj p a) -> SN a. +Proof. + move => n p a. move E : (PProj p a) => u hu. + move : p a E. + elim : n u / hu => //=. + hauto lq:on rew:off inv:SNe db:sn. + hauto lq:on rew:off inv:TRedSN db:sn. +Qed. + Lemma ered_sn_preservation n : (forall (a : PTm n) (s : SNe a), forall b, ERed.R a b -> SNe b) /\ (forall (a : PTm n) (s : SN a), forall b, ERed.R a b -> SN b) /\ @@ -182,17 +347,18 @@ Proof. + have /iha : (ERed.R (PProj PL a0) (PProj PL b0)) by sauto lq:on. sfirstorder use:SN_Proj. + sauto lq:on. - - move => A a ha iha b. + - move => a ha iha b. inversion 1; subst. + have : ERed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) (PApp (ren_PTm shift b) (VarPTm var_zero)). apply ERed.AppCong; eauto using ERed.refl. sfirstorder use:ERed.renaming. move /iha. - admit. + move /SN_AppInv => [+ _]. + hauto l:on use:sn_antirenaming. + sauto lq:on. - sauto lq:on. - sauto lq:on. - - move => A a b ha iha c h0. + - move => a b ha iha c h0. inversion h0; subst. inversion H1; subst. + exists (PApp a1 b1). split. sfirstorder. @@ -208,7 +374,7 @@ Proof. elim /ERed.inv => //= _. move => p a0 a1 ha [*]. subst. elim /ERed.inv : ha => //= _. - + move => a0 a2 ha [*]. subst. + + move => a0 a2 ha' [*]. subst. exists (PProj PL a1). split. sauto. sauto lq:on. @@ -217,27 +383,27 @@ Proof. elim /ERed.inv => //=_. move => p a0 a1 + [*]. subst. elim /ERed.inv => //=_. - + move => a0 a2 h [*]. subst. + + move => a0 a2 h1 [*]. subst. exists (PProj PR a1). split. sauto. sauto lq:on. + sauto lq:on. - sauto. -Admitted. +Qed. Module RRed. Inductive R {n} : PTm n -> PTm n -> Prop := (****************** Eta ***********************) - | AppAbs A a b : - R (PApp (PAbs A a) b) (subst_PTm (scons b VarPTm) a) + | AppAbs a b : + R (PApp (PAbs a) b) (subst_PTm (scons b VarPTm) a) | ProjPair p a b : R (PProj p (PPair a b)) (if p is PL then a else b) (*************** Congruence ********************) - | AbsCong A a0 a1 : + | AbsCong a0 a1 : R a0 a1 -> - R (PAbs A a0) (PAbs A a1) + R (PAbs a0) (PAbs a1) | AppCong0 a0 a1 b : R a0 a1 -> R (PApp a0 b) (PApp a1 b) @@ -255,4 +421,693 @@ Module RRed. R (PProj p a0) (PProj p a1). Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. + + Lemma AppAbs' n a (b : PTm n) u : + u = (subst_PTm (scons b VarPTm) a) -> + R (PApp (PAbs a) b) u. + Proof. + move => ->. by apply AppAbs. Qed. + + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : + R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). + Proof. + move => h. move : m ξ. + elim : n a b /h. + + move => n a b m ξ /=. + apply AppAbs'. by asimpl. + all : qauto ctrs:R. + Qed. + + + Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : + R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. + Proof. + move E : (ren_PTm ξ a) => u h. + move : n ξ a E. elim : m u b/h. + - move => n a b m ξ []//=. move => []//= t t0 [*]. subst. + eexists. split. apply AppAbs. by asimpl. + - move => n p a b m ξ []//=. + move => p0 []//=. hauto q:on ctrs:R. + - move => n a0 a1 ha iha m ξ []//=. + move => p [*]. subst. + spec_refl. + move : iha => [t [h0 h1]]. subst. + eexists. split. eauto using AbsCong. + by asimpl. + - move => n a0 a1 b ha iha m ξ []//=. + hauto lq:on ctrs:R. + - move => n a b0 b1 h ih m ξ []//=. + hauto lq:on ctrs:R. + - move => n a0 a1 b ha iha m ξ []//=. + hauto lq:on ctrs:R. + - move => n a b0 b1 h ih m ξ []//=. + hauto lq:on ctrs:R. + - move => n p a0 a1 ha iha m ξ []//=. + hauto lq:on ctrs:R. + Qed. + End RRed. + +Module RPar. + Inductive R {n} : PTm n -> PTm n -> Prop := + (****************** Beta ***********************) + | AppAbs a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (PApp (PAbs a0) b0) (subst_PTm (scons b1 VarPTm) a1) + + | ProjPair p a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (PProj p (PPair a0 b0)) (if p is PL then a1 else b1) + + (*************** Congruence ********************) + | AbsCong a0 a1 : + R a0 a1 -> + R (PAbs a0) (PAbs a1) + | AppCong a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (PApp a0 b0) (PApp a1 b1) + | PairCong a0 a1 b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (PPair a0 b0) (PPair a1 b1) + | ProjCong p a0 a1 : + R a0 a1 -> + R (PProj p a0) (PProj p a1) + | VarTm i : + R (VarPTm i) (VarPTm i). + + Lemma refl n (a : PTm n) : R a a. + Proof. + elim : n / a; hauto lq:on ctrs:R. + Qed. + + Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. + + Lemma AppAbs' n a0 a1 (b0 b1 : PTm n) u : + u = (subst_PTm (scons b1 VarPTm) a1) -> + R a0 a1 -> + R b0 b1 -> + R (PApp (PAbs a0) b0) u. + Proof. move => ->. apply AppAbs. Qed. + + Lemma ProjPair' n p u (a0 a1 b0 b1 : PTm n) : + u = (if p is PL then a1 else b1) -> + R a0 a1 -> + R b0 b1 -> + R (PProj p (PPair a0 b0)) u. + Proof. move => ->. apply ProjPair. Qed. + + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : + R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). + Proof. + move => h. move : m ξ. + elim : n a b /h. + + move => n a0 a1 b0 b1 ha iha hb ihb m ξ /=. + eapply AppAbs'; eauto. by asimpl. + all : qauto ctrs:R use:ProjPair'. + Qed. + + Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). + Proof. eauto using renaming. Qed. + + Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : + R a b -> + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). + Proof. hauto q:on inv:option. Qed. + + Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). + Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. + + Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : + (forall i, R (ρ0 i) (ρ1 i)) -> + R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). + Proof. + move => + h. move : m ρ0 ρ1. elim : n a b / h => n. + move => a0 a1 b0 b1 ha iha hb ihb m ρ0 ρ1 hρ /=. + eapply AppAbs'; eauto; cycle 1. sfirstorder use:morphing_up. + by asimpl. + all : hauto lq:on ctrs:R use:morphing_up, ProjPair'. + Qed. + + Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : + R a b -> + R (subst_PTm ρ a) (subst_PTm ρ b). + Proof. + hauto l:on use:morphing, refl. + Qed. + + + Lemma cong n (a0 a1 : PTm (S n)) b0 b1 : + R a0 a1 -> + R b0 b1 -> + R (subst_PTm (scons b0 VarPTm) a0) (subst_PTm (scons b1 VarPTm) a1). + Proof. + move => h0 h1. apply morphing=>//. + hauto q:on inv:option ctrs:R. + Qed. + + Lemma FromRRed n (a b : PTm n) : + RRed.R a b -> RPar.R a b. + Proof. + induction 1; qauto l:on use:RPar.refl ctrs:RPar.R. + Qed. + +End RPar. + +Lemma red_sn_preservation n : + (forall (a : PTm n) (s : SNe a), forall b, RPar.R a b -> SNe b) /\ + (forall (a : PTm n) (s : SN a), forall b, RPar.R a b -> SN b) /\ + (forall (a b : PTm n) (_ : TRedSN a b), forall c, RPar.R a c -> exists d, TRedSN' c d /\ RPar.R b d). +Proof. + move : n. apply sn_mutual => n. + - hauto l:on inv:RPar.R. + - qauto l:on inv:RPar.R,SNe,SN ctrs:SNe. + - hauto lq:on inv:RPar.R, SNe ctrs:SNe. + - qauto l:on ctrs:SN inv:RPar.R. + - hauto lq:on ctrs:SN inv:RPar.R. + - hauto lq:on ctrs:SN. + - hauto q:on ctrs:SN inv:SN, TRedSN'. + - move => a b ha iha hb ihb. + elim /RPar.inv : ihb => //=_. + + move => a0 a1 b0 b1 ha0 hb0 [*]. subst. + eauto using RPar.cong, T_Refl. + + move => a0 a1 b0 b1 h0 h1 [*]. subst. + elim /RPar.inv : h0 => //=_. + move => a0 a2 h [*]. subst. + eexists. split. apply T_Once. hauto lq:on ctrs:TRedSN. + eauto using RPar.cong. + - move => a0 a1 b hb ihb ha iha c. + elim /RPar.inv => //=_. + + qauto l:on inv:TRedSN. + + move => a2 a3 b0 b1 h0 h1 [*]. subst. + have {}/iha := h0. + move => [d [iha0 iha1]]. + hauto lq:on rew:off inv:TRedSN' ctrs:TRedSN, RPar.R, TRedSN'. + - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. + - hauto lq:on inv:RPar.R ctrs:RPar.R, TRedSN', TRedSN. + - sauto. +Qed. + +Function tstar {n} (a : PTm n) := + match a with + | VarPTm i => a + | PAbs a => PAbs (tstar a) + | PApp (PAbs a) b => subst_PTm (scons (tstar b) VarPTm) (tstar a) + | PApp a b => PApp (tstar a) (tstar b) + | PPair a b => PPair (tstar a) (tstar b) + | PProj p (PPair a b) => if p is PL then (tstar a) else (tstar b) + | PProj p a => PProj p (tstar a) + end. + +Module TStar. + Lemma renaming n m (ξ : fin n -> fin m) (a : PTm n) : + tstar (ren_PTm ξ a) = ren_PTm ξ (tstar a). + Proof. + move : m ξ. + apply tstar_ind => {}n {}a => //=. + - hauto lq:on. + - scongruence. + - move => a0 b ? h ih m ξ. + rewrite ih. + asimpl; congruence. + - qauto l:on. + - scongruence. + - hauto q:on. + - qauto l:on. + Qed. + + Lemma pair n (a b : PTm n) : + tstar (PPair a b) = PPair (tstar a) (tstar b). + reflexivity. Qed. +End TStar. + +Definition isPair {n} (a : PTm n) := if a is PPair _ _ then true else false. + +Lemma tstar_proj n (a : PTm n) : + ((~~ isPair a) /\ forall p, tstar (PProj p a) = PProj p (tstar a)) \/ + exists a0 b0, a = PPair a0 b0 /\ forall p, tstar (PProj p a) = (if p is PL then (tstar a0) else (tstar b0)). +Proof. sauto lq:on. Qed. + +Module ERed'. + Inductive R {n} : PTm n -> PTm n -> Prop := + (****************** Eta ***********************) + | AppEta a : + R (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) a + | PairEta a : + R (PPair (PProj PL a) (PProj PR a)) a + (*************** Congruence ********************) + | AbsCong a0 a1 : + R a0 a1 -> + R (PAbs a0) (PAbs a1) + | AppCong0 a0 a1 b : + R a0 a1 -> + R (PApp a0 b) (PApp a1 b) + | AppCong1 a b0 b1 : + R b0 b1 -> + R (PApp a b0) (PApp a b1) + | PairCong0 a0 a1 b : + R a0 a1 -> + R (PPair a0 b) (PPair a1 b) + | PairCong1 a b0 b1 : + R b0 b1 -> + R (PPair a b0) (PPair a b1) + | ProjCong p a0 a1 : + R a0 a1 -> + R (PProj p a0) (PProj p a1). + + Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. + + Lemma AppEta' n a (u : PTm n) : + u = (PAbs (PApp (ren_PTm shift a) (VarPTm var_zero))) -> + R u a. + Proof. move => ->. apply AppEta. Qed. + + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : + R a b -> R (ren_PTm ξ a) (ren_PTm ξ b). + Proof. + move => h. move : m ξ. + elim : n a b /h. + + move => n a m ξ /=. + eapply AppEta'; eauto. by asimpl. + all : qauto ctrs:R. + Qed. + + Lemma morphing_ren n m p (ρ0 ρ1 : fin n -> PTm m) (ξ : fin m -> fin p) : + (forall i, R (ρ0 i) (ρ1 i)) -> + (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). + Proof. eauto using renaming. Qed. + +End ERed'. + +Module EReds. + + #[local]Ltac solve_s_rec := + move => *; eapply rtc_l; eauto; + hauto lq:on ctrs:ERed'.R. + + #[local]Ltac solve_s := + repeat (induction 1; last by solve_s_rec); apply rtc_refl. + + Lemma AbsCong n (a b : PTm (S n)) : + rtc ERed'.R a b -> + rtc ERed'.R (PAbs a) (PAbs b). + Proof. solve_s. Qed. + + Lemma AppCong n (a0 a1 b0 b1 : PTm n) : + rtc ERed'.R a0 a1 -> + rtc ERed'.R b0 b1 -> + rtc ERed'.R (PApp a0 b0) (PApp a1 b1). + Proof. solve_s. Qed. + + Lemma PairCong n (a0 a1 b0 b1 : PTm n) : + rtc ERed'.R a0 a1 -> + rtc ERed'.R b0 b1 -> + rtc ERed'.R (PPair a0 b0) (PPair a1 b1). + Proof. solve_s. Qed. + + Lemma ProjCong n p (a0 a1 : PTm n) : + rtc ERed'.R a0 a1 -> + rtc ERed'.R (PProj p a0) (PProj p a1). + Proof. solve_s. Qed. +End EReds. + +Module RReds. + + #[local]Ltac solve_s_rec := + move => *; eapply rtc_l; eauto; + hauto lq:on ctrs:RRed.R. + + #[local]Ltac solve_s := + repeat (induction 1; last by solve_s_rec); apply rtc_refl. + + Lemma AbsCong n (a b : PTm (S n)) : + rtc RRed.R a b -> + rtc RRed.R (PAbs a) (PAbs b). + Proof. solve_s. Qed. + + Lemma AppCong n (a0 a1 b0 b1 : PTm n) : + rtc RRed.R a0 a1 -> + rtc RRed.R b0 b1 -> + rtc RRed.R (PApp a0 b0) (PApp a1 b1). + Proof. solve_s. Qed. + + Lemma PairCong n (a0 a1 b0 b1 : PTm n) : + rtc RRed.R a0 a1 -> + rtc RRed.R b0 b1 -> + rtc RRed.R (PPair a0 b0) (PPair a1 b1). + Proof. solve_s. Qed. + + Lemma ProjCong n p (a0 a1 : PTm n) : + rtc RRed.R a0 a1 -> + rtc RRed.R (PProj p a0) (PProj p a1). + Proof. solve_s. Qed. + + Lemma renaming n m (a b : PTm n) (ξ : fin n -> fin m) : + rtc RRed.R a b -> rtc RRed.R (ren_PTm ξ a) (ren_PTm ξ b). + Proof. + move => h. move : m ξ. elim : a b /h; hauto lq:on ctrs:rtc use:RRed.renaming. + Qed. + +End RReds. + + +Lemma ne_nf_ren n m (a : PTm n) (ξ : fin n -> fin m) : + (ne a <-> ne (ren_PTm ξ a)) /\ (nf a <-> nf (ren_PTm ξ a)). +Proof. + move : m ξ. elim : n / a => //=; solve [hauto b:on]. +Qed. + +Lemma ne_ered n (a b : PTm n) (h : ERed'.R a b ) : + (ne a -> ne b) /\ (nf a -> nf b). +Proof. + elim : n a b /h=>//=; hauto qb:on use:ne_nf_ren, ne_nf. +Qed. + +Definition ishf {n} (a : PTm n) := + match a with + | PPair _ _ => true + | PAbs _ => true + | _ => false + end. + +Module NeERed. + Inductive R_nonelim {n} : PTm n -> PTm n -> Prop := + (****************** Eta ***********************) + | AppEta a0 a1 : + ~~ ishf a0 -> + R_elim a0 a1 -> + R_nonelim (PAbs (PApp (ren_PTm shift a0) (VarPTm var_zero))) a1 + | PairEta a0 a1 : + ~~ ishf a0 -> + R_elim a0 a1 -> + R_nonelim (PPair (PProj PL a0) (PProj PR a0)) a1 + (*************** Congruence ********************) + | AbsCong a0 a1 : + R_nonelim a0 a1 -> + R_nonelim (PAbs a0) (PAbs a1) + | AppCong a0 a1 b0 b1 : + R_elim a0 a1 -> + R_nonelim b0 b1 -> + R_nonelim (PApp a0 b0) (PApp a1 b1) + | PairCong a0 a1 b0 b1 : + R_nonelim a0 a1 -> + R_nonelim b0 b1 -> + R_nonelim (PPair a0 b0) (PPair a1 b1) + | ProjCong p a0 a1 : + R_elim a0 a1 -> + R_nonelim (PProj p a0) (PProj p a1) + | VarTm i : + R_nonelim (VarPTm i) (VarPTm i) + with R_elim {n} : PTm n -> PTm n -> Prop := + | NAbsCong a0 a1 : + R_nonelim a0 a1 -> + R_elim (PAbs a0) (PAbs a1) + | NAppCong a0 a1 b0 b1 : + R_elim a0 a1 -> + R_nonelim b0 b1 -> + R_elim (PApp a0 b0) (PApp a1 b1) + | NPairCong a0 a1 b0 b1 : + R_nonelim a0 a1 -> + R_nonelim b0 b1 -> + R_elim (PPair a0 b0) (PPair a1 b1) + | NProjCong p a0 a1 : + R_elim a0 a1 -> + R_elim (PProj p a0) (PProj p a1) + | NVarTm i : + R_elim (VarPTm i) (VarPTm i). + + Scheme ered_elim_ind := Induction for R_elim Sort Prop + with ered_nonelim_ind := Induction for R_nonelim Sort Prop. + + Combined Scheme ered_mutual from ered_elim_ind, ered_nonelim_ind. + + Lemma R_elim_nf n : + (forall (a b : PTm n), R_elim a b -> nf b -> nf a) /\ + (forall (a b : PTm n), R_nonelim a b -> nf b -> nf a). + Proof. + move : n. apply ered_mutual => n //=. + - move => a0 a1 b0 b1 h ih h' ih' /andP [h0 h1]. + have hb0 : nf b0 by eauto. + suff : ne a0 by qauto b:on. + qauto l:on inv:R_elim. + - hauto lb:on. + - hauto lq:on inv:R_elim. + - move => a0 a1 /negP ha' ha ih ha1. + have {ih} := ih ha1. + move => ha0. + suff : ne a0 by hauto lb:on drew:off use:ne_nf_ren. + inversion ha; subst => //=. + - move => a0 a1 /negP ha' ha ih ha1. + have {}ih := ih ha1. + have : ne a0 by hauto lq:on inv:PTm. + qauto lb:on. + - move => a0 a1 b0 b1 ha iha hb ihb /andP [h0 h1]. + have {}ihb := ihb h1. + have {}iha := iha ltac:(eauto using ne_nf). + suff : ne a0 by hauto lb:on. + move : ha h0. hauto lq:on inv:R_elim. + - hauto lb: on drew: off. + - hauto lq:on rew:off inv:R_elim. + Qed. + + Lemma R_nonelim_nothf n (a b : PTm n) : + R_nonelim a b -> + ~~ ishf a -> + R_elim a b. + Proof. + move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_elim. + Qed. + + Lemma R_elim_nonelim n (a b : PTm n) : + R_elim a b -> + R_nonelim a b. + move => h. elim : n a b /h=>//=; hauto lq:on ctrs:R_nonelim. + Qed. + +End NeERed. + +Module Type NoForbid. + Parameter P : forall n, PTm n -> Prop. + Arguments P {n}. + + Axiom P_ERed : forall n (a b : PTm n), ERed.R a b -> P a -> P b. + Axiom P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. + Axiom P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). + Axiom P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). + + Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. + Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. + Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. + Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. + Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. + +End NoForbid. + +Module Type NoForbid_FactSig (M : NoForbid). + + Axiom P_EReds : forall n (a b : PTm n), rtc ERed.R a b -> M.P a -> M.P b. + + Axiom P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> M.P a -> M.P b. + +End NoForbid_FactSig. + +Module NoForbid_Fact (M : NoForbid) : NoForbid_FactSig M. + Import M. + + Lemma P_EReds : forall n (a b : PTm n), rtc ERed.R a b -> P a -> P b. + Proof. + induction 1; eauto using P_ERed, rtc_l, rtc_refl. + Qed. + + Lemma P_RReds : forall n (a b : PTm n), rtc RRed.R a b -> P a -> P b. + Proof. + induction 1; eauto using P_RRed, rtc_l, rtc_refl. + Qed. +End NoForbid_Fact. + +Module SN_NoForbid : NoForbid. + Definition P := @SN. + Arguments P {n}. + + Lemma P_ERed : forall n (a b : PTm n), ERed.R a b -> P a -> P b. + Proof. sfirstorder use:ered_sn_preservation. Qed. + + Lemma P_RRed : forall n (a b : PTm n), RRed.R a b -> P a -> P b. + Proof. hauto q:on use:red_sn_preservation, RPar.FromRRed. Qed. + + Lemma P_AppPair : forall n (a b c : PTm n), ~ P (PApp (PPair a b) c). + Proof. sfirstorder use:PProjPair_imp. Qed. + + Lemma P_ProjAbs : forall n p (a : PTm (S n)), ~ P (PProj p (PAbs a)). + Proof. sfirstorder use:PProjAbs_imp. Qed. + + Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. + Proof. sfirstorder use:SN_AppInv. Qed. + + Lemma P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b. + move => n a b. move E : (PPair a b) => u h. + move : a b E. elim : n u / h; sauto lq:on rew:off. Qed. + + Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a. + Proof. sfirstorder use:SN_ProjInv. Qed. + + Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. + Proof. + move => n a. move E : (PAbs a) => u h. + move : E. move : a. + induction h; sauto lq:on rew:off. + Qed. + + Lemma P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. + Proof. hauto lq:on use:sn_antirenaming, sn_renaming. Qed. + +End SN_NoForbid. + +Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M). + Import M MFacts. + #[local]Hint Resolve P_ERed P_RRed P_AppPair P_ProjAbs : forbid. + + Lemma η_split n (a0 a1 : PTm n) : + ERed.R a0 a1 -> + P a0 -> + exists b, rtc RRed.R a0 b /\ NeERed.R_nonelim b a1. + Proof. + move => h. elim : n a0 a1 /h . + - move => n a0 a1 ha ih /[dup] hP. + move /P_AbsInv /P_AppInv => [/P_renaming ha0 _]. + have {ih} := ih ha0. + move => [b [ih0 ih1]]. + case /orP : (orNb (ishf b)). + exists (PAbs (PApp (ren_PTm shift b) (VarPTm var_zero))). + split. apply RReds.AbsCong. apply RReds.AppCong; auto using rtc_refl. + by eauto using RReds.renaming. + apply NeERed.AppEta=>//. + sfirstorder use:NeERed.R_nonelim_nothf. + + case : b ih0 ih1 => //=. + + move => p ih0 ih1 _. + set q := PAbs _. + suff : rtc RRed.R q (PAbs p) by sfirstorder. + subst q. + apply : rtc_r. + apply RReds.AbsCong. apply RReds.AppCong. + by eauto using RReds.renaming. + apply rtc_refl. + apply : RRed.AbsCong => /=. + apply RRed.AppAbs'. by asimpl. + (* violates SN *) + + move => p p0 h. exfalso. + have : P (PApp (ren_PTm shift a0) (VarPTm var_zero)) + by sfirstorder use:P_AbsInv. + + have : rtc RRed.R (PApp (ren_PTm shift a0) (VarPTm var_zero)) + (PApp (ren_PTm shift (PPair p p0)) (VarPTm var_zero)) + by hauto lq:on use:RReds.AppCong, RReds.renaming, rtc_refl. + + move : P_RReds. repeat move/[apply] => /=. + hauto l:on use:P_AppPair. + - move => n a0 a1 h ih /[dup] hP. + move /P_PairInv => [/P_ProjInv + _]. + move : ih => /[apply]. + move => [b [ih0 ih1]]. + case /orP : (orNb (ishf b)). + exists (PPair (PProj PL b) (PProj PR b)). + split. sfirstorder use:RReds.PairCong,RReds.ProjCong. + hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf. + + case : b ih0 ih1 => //=. + (* violates SN *) + + move => p ?. exfalso. + have {}hP : P (PProj PL a0) by sfirstorder use:P_PairInv. + have : rtc RRed.R (PProj PL a0) (PProj PL (PAbs p)) + by eauto using RReds.ProjCong. + move : P_RReds hP. repeat move/[apply] => /=. + sfirstorder use:P_ProjAbs. + + move => t0 t1 ih0 h1 _. + exists (PPair t0 t1). + split => //=. + apply RReds.PairCong. + apply : rtc_r; eauto using RReds.ProjCong. + apply RRed.ProjPair. + apply : rtc_r; eauto using RReds.ProjCong. + apply RRed.ProjPair. + - hauto lq:on ctrs:NeERed.R_nonelim use:RReds.AbsCong, P_AbsInv. + - move => n a0 a1 b0 b1 ha iha hb ihb. + move => /[dup] hP /P_AppInv [hP0 hP1]. + have {iha} [a2 [iha0 iha1]] := iha hP0. + have {ihb} [b2 [ihb0 ihb1]] := ihb hP1. + case /orP : (orNb (ishf a2)) => [h|]. + + exists (PApp a2 b2). split; first by eauto using RReds.AppCong. + hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf. + + case : a2 iha0 iha1 => //=. + * move => p h0 h1 _. + inversion h1; subst. + ** exists (PApp a2 b2). + split. + apply : rtc_r. + apply RReds.AppCong; eauto. + apply RRed.AppAbs'. by asimpl. + hauto lq:on ctrs:NeERed.R_nonelim. + ** hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.AppCong. + (* Impossible *) + * move => u0 u1 h. exfalso. + have : rtc RRed.R (PApp a0 b0) (PApp (PPair u0 u1) b0) + by hauto lq:on ctrs:rtc use:RReds.AppCong. + move : P_RReds hP; repeat move/[apply]. + sfirstorder use:P_AppPair. + - hauto lq:on ctrs:NeERed.R_nonelim use:RReds.PairCong, P_PairInv. + - move => n p a0 a1 ha ih /[dup] hP /P_ProjInv. + move : ih => /[apply]. move => [a2 [iha0 iha1]]. + case /orP : (orNb (ishf a2)) => [h|]. + exists (PProj p a2). + split. eauto using RReds.ProjCong. + qauto l:on ctrs:NeERed.R_nonelim, NeERed.R_elim use:NeERed.R_nonelim_nothf. + + case : a2 iha0 iha1 => //=. + + move => u iha0. exfalso. + have : rtc RRed.R (PProj p a0) (PProj p (PAbs u)) + by sfirstorder use:RReds.ProjCong ctrs:rtc. + move : P_RReds hP. repeat move/[apply]. + sfirstorder use:P_ProjAbs. + + move => u0 u1 iha0 iha1 _. + inversion iha1; subst. + * exists (PProj p a2). split. + apply : rtc_r. + apply RReds.ProjCong; eauto. + clear. hauto l:on inv:PTag. + hauto lq:on ctrs:NeERed.R_nonelim. + * hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.ProjCong. + - hauto lq:on ctrs:rtc, NeERed.R_nonelim. + Qed. + +End UniqueNF. + +Lemma η_nf_to_ne n (a0 a1 : PTm n) : + ERed'.R a0 a1 -> nf a0 -> ~~ ne a0 -> ne a1 -> + (a0 = PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) \/ + (a0 = PPair (PProj PL a1) (PProj PR a1)). +Proof. + move => h. + elim : n a0 a1 /h => n /=. + - sfirstorder use:ne_ered. + - hauto l:on use:ne_ered. + - scongruence use:ne_ered. + - hauto qb:on use:ne_ered, ne_nf. + - move => a b0 b1 h0 ih0 /andP [h1 h2] h3 /andP [h4 h5]. + have {h3} : ~~ ne a by sfirstorder b:on. + by move /negP. + - hauto lqb:on. + - sfirstorder b:on. + - scongruence b:on. +Qed.