Remove itauto dependency as it introduces weird axioms

This commit is contained in:
Yiyun Liu 2025-03-11 16:27:31 -04:00
parent 8dbef3e29e
commit f9d3a620f4
3 changed files with 17 additions and 18 deletions

View file

@ -10,7 +10,7 @@ From stdpp Require Import relations (rtc (..), rtc_once, rtc_r, sn).
From Hammer Require Import Tactics.
Require Import Autosubst2.core Autosubst2.unscoped Autosubst2.syntax common.
Require Import Btauto.
Require Import Cdcl.Itauto.
Ltac2 spec_refl () :=
List.iter
@ -2575,7 +2575,7 @@ Module LoReds.
~~ ishf a.
Proof.
move : hf_preservation. repeat move/[apply].
case : a; case : b => //=; itauto.
case : a; case : b => //=; sfirstorder b:on.
Qed.
#[local]Ltac solve_s_rec :=
@ -2633,7 +2633,7 @@ Module LoReds.
rtc LoRed.R (PSuc a0) (PSuc a1).
Proof. solve_s. Qed.
Local Ltac triv := simpl in *; itauto.
Local Ltac triv := simpl in *; sfirstorder b:on.
Lemma FromSN_mutual :
(forall (a : PTm) (_ : SNe a), exists v, rtc LoRed.R a v /\ ne v) /\
@ -3048,7 +3048,7 @@ Module DJoin.
have {h0 h1 h2 h3} : isbind c /\ isuniv c by
hauto l:on use:REReds.bind_preservation,
REReds.univ_preservation.
case : c => //=; itauto.
case : c => //=; sfirstorder b:on.
Qed.
Lemma hne_univ_noconf (a b : PTm) :
@ -3078,7 +3078,7 @@ Module DJoin.
Proof.
move => [c [h0 h1]] h2 h3.
have : ishne c /\ isnat c by sfirstorder use:REReds.hne_preservation, REReds.nat_preservation.
clear. case : c => //=; itauto.
clear. case : c => //=; sfirstorder b:on.
Qed.
Lemma bind_inj p0 p1 (A0 A1 : PTm) B0 B1 :
@ -3594,7 +3594,7 @@ Module Sub.
hauto l:on use:REReds.bind_preservation,
REReds.univ_preservation, Sub1.bind_preservation, Sub1.univ_preservation.
move : h2 h3. clear.
case : c => //=; itauto.
case : c => //=; sfirstorder b:on.
Qed.
Lemma univ_bind_noconf (a b : PTm) :
@ -3605,7 +3605,7 @@ Module Sub.
hauto l:on use:REReds.bind_preservation,
REReds.univ_preservation, Sub1.bind_preservation, Sub1.univ_preservation.
move : h2 h3. clear.
case : c => //=; itauto.
case : c => //=; sfirstorder b:on.
Qed.
Lemma bind_inj p0 p1 (A0 A1 : PTm) B0 B1 :