Add comment about the antirenaming proof
This commit is contained in:
parent
d2cd3105c7
commit
ecb50f1ab7
1 changed files with 8 additions and 4 deletions
|
@ -1282,7 +1282,7 @@ Module ERed.
|
||||||
(* destruct a. *)
|
(* destruct a. *)
|
||||||
(* exact (ξ f). *)
|
(* exact (ξ f). *)
|
||||||
|
|
||||||
|
(* Need to generalize to injective renaming *)
|
||||||
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
|
Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) :
|
||||||
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -1298,10 +1298,14 @@ Module ERed.
|
||||||
case : i => //= _ h.
|
case : i => //= _ h.
|
||||||
apply f_equal with (f := subst_PTm (scons (PAbs (VarPTm var_zero)) VarPTm)) in h.
|
apply f_equal with (f := subst_PTm (scons (PAbs (VarPTm var_zero)) VarPTm)) in h.
|
||||||
move : h. asimpl. move => ?. subst.
|
move : h. asimpl. move => ?. subst.
|
||||||
|
admit.
|
||||||
|
- move => n a m ξ []//=.
|
||||||
|
move => u u0 [].
|
||||||
|
case : u => //=.
|
||||||
|
case : u0 => //=.
|
||||||
|
move => p p0 p1 p2 [? ?] [? ?]. subst.
|
||||||
|
|
||||||
|
|
||||||
rewrite -/var_zero.
|
|
||||||
eexists. split. apply AppEta.
|
|
||||||
move : h. asimpl => ?. subst.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue