diff --git a/theories/fp_red.v b/theories/fp_red.v index 13e66f8..85a9512 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -1282,7 +1282,7 @@ Module ERed. (* destruct a. *) (* exact (ξ f). *) - + (* Need to generalize to injective renaming *) Lemma antirenaming n m (a : PTm n) (b : PTm m) (ξ : fin n -> fin m) : R (ren_PTm ξ a) b -> exists b0, R a b0 /\ ren_PTm ξ b0 = b. Proof. @@ -1298,10 +1298,14 @@ Module ERed. case : i => //= _ h. apply f_equal with (f := subst_PTm (scons (PAbs (VarPTm var_zero)) VarPTm)) in h. move : h. asimpl. move => ?. subst. + admit. + - move => n a m ξ []//=. + move => u u0 []. + case : u => //=. + case : u0 => //=. + move => p p0 p1 p2 [? ?] [? ?]. subst. + - rewrite -/var_zero. - eexists. split. apply AppEta. - move : h. asimpl => ?. subst.