Finish the eta split proof without any admits

This commit is contained in:
Yiyun Liu 2025-01-29 23:41:38 -05:00
parent 20eef78014
commit e4c2bd39db

View file

@ -578,34 +578,6 @@ Module ERed'.
(forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)). (forall i, R ((funcomp (ren_PTm ξ) ρ0) i) ((funcomp (ren_PTm ξ) ρ1) i)).
Proof. eauto using renaming. Qed. Proof. eauto using renaming. Qed.
(* Lemma morphing_ext n m (ρ0 ρ1 : fin n -> PTm m) a b : *)
(* R a b -> *)
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
(* (forall i, R ((scons a ρ0) i) ((scons b ρ1) i)). *)
(* Proof. hauto q:on inv:option. Qed. *)
(* Lemma morphing_up n m (ρ0 ρ1 : fin n -> PTm m) : *)
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
(* (forall i, R (up_PTm_PTm ρ0 i) (up_PTm_PTm ρ1 i)). *)
(* Proof. hauto l:on ctrs:R use:morphing_ext, morphing_ren unfold:up_PTm_PTm. Qed. *)
(* Lemma morphing n m (a b : PTm n) (ρ0 ρ1 : fin n -> PTm m) : *)
(* (forall i, R (ρ0 i) (ρ1 i)) -> *)
(* R a b -> R (subst_PTm ρ0 a) (subst_PTm ρ1 b). *)
(* Proof. *)
(* move => + h. move : m ρ0 ρ1. elim : n a b / h => n. *)
(* move => a0 a1 ha iha m ρ0 ρ1 hρ /=. *)
(* eapply AppEta'; eauto. by asimpl. *)
(* all : hauto lq:on ctrs:R use:morphing_up. *)
(* Qed. *)
(* Lemma substing n m (a : PTm n) b (ρ : fin n -> PTm m) : *)
(* R a b -> *)
(* R (subst_PTm ρ a) (subst_PTm ρ b). *)
(* Proof. *)
(* hauto l:on use:morphing, refl. *)
(* Qed. *)
End ERed'. End ERed'.
Module EReds. Module EReds.
@ -806,6 +778,8 @@ Module Type NoForbid.
Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Axiom P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Axiom P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
Axiom P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b.
Axiom P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a. Axiom P_renaming : forall n m (ξ : fin n -> fin m) a , P (ren_PTm ξ a) <-> P a.
End NoForbid. End NoForbid.
@ -851,6 +825,13 @@ Module SN_NoForbid : NoForbid.
Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b. Lemma P_AppInv : forall n (a b : PTm n), P (PApp a b) -> P a /\ P b.
Admitted. Admitted.
Lemma P_PairInv : forall n (a b : PTm n), P (PPair a b) -> P a /\ P b.
move => n a b. move E : (PPair a b) => u h.
move : a b E. elim : n u / h; sauto lq:on rew:off. Qed.
Lemma P_ProjInv : forall n p (a : PTm n), P (PProj p a) -> P a.
Admitted.
Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a. Lemma P_AbsInv : forall n (a : PTm (S n)), P (PAbs a) -> P a.
Proof. Proof.
move => n a. move E : (PAbs a) => u h. move => n a. move E : (PAbs a) => u h.
@ -906,7 +887,9 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
move : P_RReds. repeat move/[apply] => /=. move : P_RReds. repeat move/[apply] => /=.
hauto l:on use:P_AppPair. hauto l:on use:P_AppPair.
- move => n a0 a1 h. - move => n a0 a1 h ih /[dup] hP.
move /P_PairInv => [/P_ProjInv + _].
move : ih => /[apply].
move => [b [ih0 ih1]]. move => [b [ih0 ih1]].
case /orP : (orNb (ishf b)). case /orP : (orNb (ishf b)).
exists (PPair (PProj PL b) (PProj PR b)). exists (PPair (PProj PL b) (PProj PR b)).
@ -915,7 +898,12 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
case : b ih0 ih1 => //=. case : b ih0 ih1 => //=.
(* violates SN *) (* violates SN *)
+ admit. + move => p ?. exfalso.
have {}hP : P (PProj PL a0) by sfirstorder use:P_PairInv.
have : rtc RRed.R (PProj PL a0) (PProj PL (PAbs p))
by eauto using RReds.ProjCong.
move : P_RReds hP. repeat move/[apply] => /=.
sfirstorder use:P_ProjAbs.
+ move => t0 t1 ih0 h1 _. + move => t0 t1 ih0 h1 _.
exists (PPair t0 t1). exists (PPair t0 t1).
split => //=. split => //=.
@ -924,8 +912,11 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
apply RRed.ProjPair. apply RRed.ProjPair.
apply : rtc_r; eauto using RReds.ProjCong. apply : rtc_r; eauto using RReds.ProjCong.
apply RRed.ProjPair. apply RRed.ProjPair.
- hauto lq:on ctrs:NeERed.R_nonelim use:RReds.AbsCong. - hauto lq:on ctrs:NeERed.R_nonelim use:RReds.AbsCong, P_AbsInv.
- move => n a0 a1 b0 b1 ha [a2 [iha0 iha1]] hb [b2 [ihb0 ihb1]]. - move => n a0 a1 b0 b1 ha iha hb ihb.
move => /[dup] hP /P_AppInv [hP0 hP1].
have {iha} [a2 [iha0 iha1]] := iha hP0.
have {ihb} [b2 [ihb0 ihb1]] := ihb hP1.
case /orP : (orNb (ishf a2)) => [h|]. case /orP : (orNb (ishf a2)) => [h|].
+ exists (PApp a2 b2). split; first by eauto using RReds.AppCong. + exists (PApp a2 b2). split; first by eauto using RReds.AppCong.
hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf. hauto lq:on ctrs:NeERed.R_nonelim use:NeERed.R_nonelim_nothf.
@ -940,18 +931,25 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
hauto lq:on ctrs:NeERed.R_nonelim. hauto lq:on ctrs:NeERed.R_nonelim.
** hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.AppCong. ** hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.AppCong.
(* Impossible *) (* Impossible *)
* admit. * move => u0 u1 h. exfalso.
- hauto lq:on ctrs:NeERed.R_nonelim use:RReds.PairCong. have : rtc RRed.R (PApp a0 b0) (PApp (PPair u0 u1) b0)
- move => n p a0 a1 ha [a2 [iha0 iha1]]. by hauto lq:on ctrs:rtc use:RReds.AppCong.
move : P_RReds hP; repeat move/[apply].
sfirstorder use:P_AppPair.
- hauto lq:on ctrs:NeERed.R_nonelim use:RReds.PairCong, P_PairInv.
- move => n p a0 a1 ha ih /[dup] hP /P_ProjInv.
move : ih => /[apply]. move => [a2 [iha0 iha1]].
case /orP : (orNb (ishf a2)) => [h|]. case /orP : (orNb (ishf a2)) => [h|].
exists (PProj p a2). exists (PProj p a2).
split. eauto using RReds.ProjCong. split. eauto using RReds.ProjCong.
qauto l:on ctrs:NeERed.R_nonelim, NeERed.R_elim use:NeERed.R_nonelim_nothf. qauto l:on ctrs:NeERed.R_nonelim, NeERed.R_elim use:NeERed.R_nonelim_nothf.
case : a2 iha0 iha1 => //=. case : a2 iha0 iha1 => //=.
+ move => u iha0 iha1 _. + move => u iha0. exfalso.
(* Impossible by SN *) have : rtc RRed.R (PProj p a0) (PProj p (PAbs u))
admit. by sfirstorder use:RReds.ProjCong ctrs:rtc.
move : P_RReds hP. repeat move/[apply].
sfirstorder use:P_ProjAbs.
+ move => u0 u1 iha0 iha1 _. + move => u0 u1 iha0 iha1 _.
inversion iha1; subst. inversion iha1; subst.
* exists (PProj p a2). split. * exists (PProj p a2). split.
@ -961,13 +959,10 @@ Module UniqueNF (M : NoForbid) (MFacts : NoForbid_FactSig M).
hauto lq:on ctrs:NeERed.R_nonelim. hauto lq:on ctrs:NeERed.R_nonelim.
* hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.ProjCong. * hauto lq:on ctrs:NeERed.R_nonelim,NeERed.R_elim use:RReds.ProjCong.
- hauto lq:on ctrs:rtc, NeERed.R_nonelim. - hauto lq:on ctrs:rtc, NeERed.R_nonelim.
Admitted. Qed.
End UniqueNF. End UniqueNF.
Lemma η_nf_to_ne n (a0 a1 : PTm n) : Lemma η_nf_to_ne n (a0 a1 : PTm n) :
ERed'.R a0 a1 -> nf a0 -> ~~ ne a0 -> ne a1 -> ERed'.R a0 a1 -> nf a0 -> ~~ ne a0 -> ne a1 ->
(a0 = PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) \/ (a0 = PAbs (PApp (ren_PTm shift a1) (VarPTm var_zero))) \/
@ -986,309 +981,3 @@ Proof.
- sfirstorder b:on. - sfirstorder b:on.
- scongruence b:on. - scongruence b:on.
Qed. Qed.
Lemma η_nf'' n (a b : PTm n) : ERed'.R a b -> nf b -> nf a \/ rtc RRed.R a b.
Proof.
move => h.
elim : n a b / h.
- move => n a.
case : a => //=.
* tauto.
* move => p hp. right.
apply rtc_once.
apply RRed.AbsCong.
apply RRed.AppAbs'. by asimpl.
* hauto lb:on use:ne_nf_ren.
* move => p p0 /andP [h0 h1].
right.
(* violates SN *)
admit.
* move => p u h.
hauto lb:on use:ne_nf_ren.
- move => n a ha.
case : a ha => //=.
* tauto.
* move => p hp. right.
(* violates SN *)
admit.
* sfirstorder b:on.
* hauto lq:on ctrs:rtc,RRed.R.
* qauto b:on.
- move => n a0 a1 ha h0 /= h1.
specialize h0 with (1 := h1).
case : h0. tauto.
eauto using RReds.AbsCong.
- move => n a0 a1 b ha h /= /andP [h0 h1].
have h2 : nf a1 by sfirstorder use:ne_nf.
have {}h := h h2.
case : h => h.
+ have : ne a0 \/ ~~ ne a0 by sauto lq:on.
case; first by sfirstorder b:on.
move : η_nf_to_ne (ha) h h0; repeat move/[apply].
case => ?; subst.
* simpl.
right.
apply rtc_once.
apply : RRed.AppAbs'.
by asimpl.
* simpl.
(* violates SN *)
admit.
+ right.
hauto lq:on ctrs:rtc use:RReds.AppCong.
- move => n a b0 b1 h h0 /=.
move /andP => [h1 h2].
have {h0} := h0 h2.
case => h3.
+ sfirstorder b:on.
+ right.
hauto lq:on ctrs:rtc use:RReds.AppCong.
- hauto lqb:on drew:off use:RReds.PairCong.
- hauto lqb:on drew:off use:RReds.PairCong.
- move => n p a0 a1 h0 h1 h2.
simpl in h2.
have : nf a1 by sfirstorder use:ne_nf.
move : h1 => /[apply].
case=> h.
+ have : ne a0 \/ ~~ ne a0 by sauto lq:on.
case;first by tauto.
move : η_nf_to_ne (h0) h h2; repeat move/[apply].
case => ?. subst => //=.
* right.
(* violates SN *)
admit.
* right.
subst.
apply rtc_once.
sauto lq:on rew:off ctrs:RRed.R.
+ hauto lq:on use:RReds.ProjCong.
Admitted.
Lemma η_nf' n (a b : PTm n) : ERed'.R a b -> rtc ERed'.R (tstar a) (tstar b).
Proof.
move => h.
elim : n a b /h.
- move => n a /=.
set p := (X in (PAbs X)).
have : (exists a1, ren_PTm shift a = PAbs a1 /\ p = subst_PTm (scons (VarPTm var_zero) VarPTm) (tstar a1)) \/
p = PApp (tstar (ren_PTm shift a)) (VarPTm var_zero) by hauto lq:on rew:off.
case.
+ move => [a2 [+]].
subst p.
case : a => //=.
move => p [h0] . subst => _.
rewrite TStar.renaming. asimpl.
sfirstorder.
+ move => ->.
rewrite TStar.renaming.
hauto lq:on ctrs:ERed'.R, rtc.
- move => n a.
case : (tstar_proj n a).
+ move => [_ h].
rewrite TStar.pair.
rewrite !h.
hauto lq:on ctrs:ERed'.R, rtc.
+ move => [a2][b0][?]. subst.
move => h.
rewrite TStar.pair.
rewrite !h.
sfirstorder.
- (* easy *)
eauto using EReds.AbsCong.
(* hard application cases *)
- admit.
- admit.
(* Trivial congruence cases *)
- move => n a0 a1 b ha iha.
hauto lq:on ctrs:rtc use:EReds.PairCong.
- hauto lq:on ctrs:rtc use:EReds.PairCong.
(* hard projection cases *)
- move => n p a0 a1 h0 h1.
case : (tstar_proj n a0).
+ move => [ha0 ->].
case : (tstar_proj n a1).
* move => [ha1 ->].
(* Trivial by proj cong *)
hauto lq:on use:EReds.ProjCong.
* move => [a2][b0][?]. subst.
move => ->.
elim /ERed'.inv : h0 => //_.
** move => a1 a3 ? *. subst.
(* Contradiction *)
admit.
** hauto lqb:on.
** hauto lqb:on.
** hauto lqb:on.
+ move => [a2][b0][?] ->. subst.
case : (tstar_proj n a1).
* move => [ha1 ->].
simpl in h1.
inversion h0; subst.
** hauto lq:on.
** hauto lqb:on.
** hauto lqb:on.
* move => [a0][b1][?]. subst => ->.
rewrite !TStar.pair in h1.
inversion h0; subst.
** admit.
** best.
Lemma η_nf n (a b : PTm n) : ERed.R a b -> ERed.R (tstar a) (tstar b).
Proof.
move => h.
elim : n a b /h.
- move => n a0 a1 h h0 /=.
set p := (X in (PAbs X)).
have : (exists a1, ren_PTm shift a0 = PAbs a1 /\ p = subst_PTm (scons (VarPTm var_zero) VarPTm) (tstar a1)) \/
p = PApp (tstar (ren_PTm shift a0)) (VarPTm var_zero) by hauto lq:on rew:off.
case.
+ move => [a2 [+]].
subst p.
case : a0 h h0 => //=.
move => p h0 h1 [?]. subst => _.
rewrite TStar.renaming. by asimpl.
+ move => ->.
rewrite TStar.renaming.
hauto lq:on ctrs:ERed.R.
- move => n a0 a1 ha iha.
case : (tstar_proj n a0).
+ move => [_ h].
change (tstar (PPair (PProj PL a0) (PProj PR a0))) with
(PPair (tstar (PProj PL a0)) (tstar (PProj PR a0))).
rewrite !h.
hauto lq:on ctrs:ERed.R.
+ move => [a2][b0][?]. subst.
move => h.
rewrite TStar.pair.
rewrite !h.
sfirstorder.
- hauto lq:on ctrs:ERed.R.
- admit.
- hauto lq:on ctrs:ERed.R.
- move => n p a0 a1 h0 h1.
case : (tstar_proj n a0).
+ move => [ha0 ->].
case : (tstar_proj n a1).
* move => [ha1 ->].
hauto lq:on ctrs:ERed.R.
* move => [a2][b0][?]. subst.
move => ->.
elim /ERed.inv : h0 => //_.
** move => a1 a3 ? *. subst.
(* Contradiction *)
admit.
** hauto lqb:on.
** hauto lqb:on.
+ move => [a2][b0][?] ->. subst.
case : (tstar_proj n a1).
* move => [ha1 ->].
inversion h0; subst.
** admit.
** scongruence.
* move => [a0][b1][?]. subst => ->.
rewrite !TStar.pair in h1.
inversion h1; subst.
**
** hauto lq:on.
move : b.
apply tstar_ind => {}n {}a => //=.
- hauto lq:on ctrs:ERed.R inv:ERed.R.
- move => a0 ? ih. subst.
move => b hb.
elim /ERed.inv : hb => //=_.
+ move => a1 a2 ha [*]. subst.
simpl.
case : a1 ih ha => //=.
- move => a0 ? ih u. subst.
elim /ERed.inv => //=_.
+ move => a1 a2 h [? ?]. subst.
have : ERed.R (PApp (ren_PTm shift a1) (VarPTm var_zero)) (PApp (ren_PTm shift u) (VarPTm var_zero))
by hauto lq:on ctrs:ERed.R use:ERed.renaming.
move /ih.
move => h0. simpl.
move => h.
elim : n a b /h => n.
- move => a0 a1 ha iha.
simpl.
move => h.
move /iha : (h) {iha}.
move : ha. clear. best.
clear.
- sfirstorder.
-
Lemma η_nf n (a b c : PTm n) : ERed.R a b -> nf b -> RRed.R a c ->
ERed.R c b.
Proof.
move => h. move : c.
elim : n a b /h=>//=n.
- move => a0 a1 ha iha u hu.
elim /RRed.inv => //= _.
move => a2 a3 h [*]. subst.
elim / RRed.inv : h => //_.
+ move => a2 b0 [h0 h1 h2]. subst.
case : a0 h0 ha iha =>//=.
move => u [?] ha iha. subst.
by asimpl.
+ move => a2 b4 b0 h [*]. subst.
move /RRed.antirenaming : h.
hauto lq:on ctrs:ERed.R.
+ move => a2 b0 b1 h [*]. subst.
inversion h.
- move => a0 b0 a1 ha iha hb ihb u hu.
elim /RRed.inv => //=_.
+ move => a2 a3 b1 h0 [*]. subst.
elim /RRed.inv : h0 => //=_.
* move => p a2 b1 [*]. subst.
elim /ERed.inv : ha => //=_.
** sauto lq:on.
** move => a0 a2 b2 b3 h h' [*]. subst.
Lemma η_nf n (a b c : PTm n) : ERed.R a b -> nf b -> RRed.R a c ->
ERed.R a c.
Proof.
move => h. move : c.
elim : n a b /h=>//=.
- move => n A a0 a1 ha iha c ha1.
elim /RRed.inv => //=_.
move => A0 a2 a3 hr [*]. subst.
set u := a0 in hr *.
set q := a3 in hr *.
elim / RRed.inv : hr => //_.
+ move => A0 a2 b0 [h0] h1 h2. subst.
subst u q.
rewrite h0. apply ERed.AppEta.
subst.
case : a0 ha iha h0 => //= B a ha iha [*]. subst.
asimpl.
admit.
+ subst u q.
move => a2 a4 b0 hr [*]. subst.
move /RRed.antirenaming : hr => [b0 [h0 h1]]. subst.
hauto lq:on ctrs:ERed.R use:ERed.renaming.
+ subst u q.
move => a2 b0 b1 h [*]. subst.
inversion h.
- move => n a0 a1 ha iha v hv.
elim /RRed.inv => //=_.
+ move => a2 a3 b0 h [*]. subst.
elim /RRed.inv : h => //=_.
* move => p a2 b0 [*]. subst.
elim /ERed.inv : ha=>//= _.
move => a0 a2 h [*]. subst.
best.
apply ERed.PairEta.
-