From df62e3691ce6f2bf6f974724b84525fc40ed5965 Mon Sep 17 00:00:00 2001 From: Yiyun Liu Date: Sat, 25 Jan 2025 16:53:48 -0700 Subject: [PATCH] Need to parallelize eta --- theories/fp_red.v | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/theories/fp_red.v b/theories/fp_red.v index 74af932..e105262 100644 --- a/theories/fp_red.v +++ b/theories/fp_red.v @@ -109,6 +109,12 @@ Module RRed. Derive Dependent Inversion inv with (forall n (a b : PTm n), R a b) Sort Prop. End RRed. +Module ERedM. + Inductive R {n} (a : PTm n) : PTm n -> Prop := + | refl : R a a + | step b : ERed.R a b -> R a b. +End ERedM. + Inductive Wt {n} (Γ : fin n -> Ty) : PTm n -> Ty -> Prop := | T_Var i : Wt Γ (VarPTm i) (Γ i) @@ -229,7 +235,7 @@ Lemma eta_postponement n Γ a b c A : @Wt n Γ a A -> ERed.R a b -> RRed.R b c -> - exists d, rtc RRed.R a d /\ ERed.R d c. + exists d, rtc RRed.R a d /\ ERed.R d c. Proof. move => + h. move : Γ c A. @@ -284,6 +290,10 @@ Proof. - move => n a b0 b1 hb ihb Γ c A hu hu'. elim /RRed.inv : hu' => //=_. + move => A0 a0 b2 [*]. subst. + move {ihb}. + eexists. + split. apply rtc_once. + apply RRed.AppAbs. admit. + sauto lq:on. + move => a0 b2 b3 hb0 [*]. subst.