Finish the proof of completeness for the algorithm
This commit is contained in:
parent
b9b6899764
commit
dcd4465310
1 changed files with 71 additions and 3 deletions
|
@ -62,6 +62,14 @@ Proof.
|
|||
sfirstorder use:hred_complete, hred_sound.
|
||||
Qed.
|
||||
|
||||
Lemma coqeqr_no_hred a b : a ∼ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1; sauto lq:on unfold:HRed.nf. Qed.
|
||||
|
||||
Lemma coqeq_no_hred a b : a ↔ b -> HRed.nf a /\ HRed.nf b.
|
||||
Proof. induction 1;
|
||||
qauto inv:HRed.R use:coqeqr_no_hred, hne_no_hred unfold:HRed.nf.
|
||||
Qed.
|
||||
|
||||
Lemma check_equal_nfnf a b dom : check_equal_r a b (A_NfNf a b dom) = check_equal a b dom.
|
||||
Proof.
|
||||
have [h0 h1] : (ishf a \/ ishne a) /\ (ishf b \/ ishne b) by hauto l:on use:algo_dom_hf_hne.
|
||||
|
@ -178,6 +186,12 @@ Proof.
|
|||
sauto lq:on rew:off.
|
||||
Qed.
|
||||
|
||||
Lemma hreds_nf_refl a b :
|
||||
HRed.nf a ->
|
||||
rtc HRed.R a b ->
|
||||
a = b.
|
||||
Proof. inversion 2; sfirstorder. Qed.
|
||||
|
||||
Lemma check_equal_complete :
|
||||
(forall a b (h : algo_dom a b), ~ check_equal a b h -> ~ a ↔ b) /\
|
||||
(forall a b (h : algo_dom_r a b), ~ check_equal_r a b h -> ~ a ⇔ b).
|
||||
|
@ -199,6 +213,60 @@ Proof.
|
|||
destruct x as [].
|
||||
sauto q:on.
|
||||
sfirstorder.
|
||||
- admit.
|
||||
- sfirstorder.
|
||||
- best.
|
||||
- move => p0 p1 A0 A1 B0 B1 h0 ih0 h1 ih1.
|
||||
rewrite check_equal_bind_bind.
|
||||
move /negP.
|
||||
move /nandP.
|
||||
case. move /nandP.
|
||||
case. move => h. have : p0 <> p1 by sauto lqb:on.
|
||||
clear. move => ?. hauto lq:on rew:off inv:CoqEq, CoqEq_Neu.
|
||||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||
hauto qb:on inv:CoqEq,CoqEq_Neu.
|
||||
- simp check_equal. done.
|
||||
- move => i j. simp check_equal.
|
||||
case : nat_eqdec => //=. sauto lq:on.
|
||||
- move => p0 p1 u0 u1 neu0 neu1 h ih.
|
||||
rewrite check_equal_proj_proj.
|
||||
move /negP /nandP. case.
|
||||
case : PTag_eqdec => //=. sauto lq:on.
|
||||
sauto lqb:on.
|
||||
- move => u0 u1 a0 a1 hu0 hu1 h0 ih0 h1 ih1.
|
||||
rewrite check_equal_app_app.
|
||||
move /negP /nandP. sauto b:on inv:CoqEq, CoqEq_Neu.
|
||||
- move => P0 P1 u0 u1 b0 b1 c0 c1 neu0 neu1 domP ihP domu ihu domb ihb domc ihc.
|
||||
rewrite check_equal_ind_ind.
|
||||
move => + h.
|
||||
inversion h; subst.
|
||||
inversion H; subst.
|
||||
move /negP /nandP.
|
||||
case. move/nandP.
|
||||
case. move/nandP.
|
||||
case. qauto b:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
sauto lqb:on inv:CoqEq, CoqEq_Neu.
|
||||
- move => a b h ih.
|
||||
rewrite check_equal_nfnf.
|
||||
move : ih => /[apply].
|
||||
move => + h0.
|
||||
move /algo_dom_hf_hne in h.
|
||||
inversion h0; subst.
|
||||
have {h} [? ?] : HRed.nf a /\ HRed.nf b by sfirstorder use:hf_no_hred, hne_no_hred.
|
||||
hauto l:on use:hreds_nf_refl.
|
||||
- move => a a' b h dom.
|
||||
simp ce_prop => /[apply].
|
||||
move => + h1. inversion h1; subst.
|
||||
inversion H; subst.
|
||||
+ sfirstorder use:coqeq_no_hred unfold:HRed.nf.
|
||||
+ have ? : y = a' by eauto using hred_deter. subst.
|
||||
sauto lq:on.
|
||||
- move => a b b' u hr dom ihdom.
|
||||
rewrite check_equal_hredr.
|
||||
move => + h. inversion h; subst.
|
||||
have {}u : HRed.nf a by sfirstorder use:hne_no_hred, hf_no_hred.
|
||||
move => {}/ihdom.
|
||||
inversion H0; subst.
|
||||
+ have ? : HRed.nf b'0 by hauto l:on use:coqeq_no_hred.
|
||||
sfirstorder unfold:HRed.nf.
|
||||
+ sauto lq:on use:hred_deter.
|
||||
Qed.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue