Add back preservation lemma for ered
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
All checks were successful
ci/woodpecker/push/woodpecker Pipeline was successful
Needed for justifying that the extended algorithm
This commit is contained in:
parent
4c527c1b81
commit
d2576f21fc
1 changed files with 14 additions and 1 deletions
|
@ -719,6 +719,8 @@ Module RRed.
|
||||||
move => */=; apply : IndSuc'; eauto. by asimpl.
|
move => */=; apply : IndSuc'; eauto. by asimpl.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
|
Lemma abs_preservation a b : isabs a -> R a b -> isabs b. hauto q:on inv:R. Qed.
|
||||||
|
|
||||||
End RRed.
|
End RRed.
|
||||||
|
|
||||||
Module RPar.
|
Module RPar.
|
||||||
|
@ -1004,6 +1006,9 @@ Qed.
|
||||||
|
|
||||||
Module RReds.
|
Module RReds.
|
||||||
|
|
||||||
|
Lemma abs_preservation a b : isabs a -> rtc RRed.R a b -> isabs b.
|
||||||
|
induction 2; hauto lq:on use:RRed.abs_preservation. Qed.
|
||||||
|
|
||||||
#[local]Ltac solve_s_rec :=
|
#[local]Ltac solve_s_rec :=
|
||||||
move => *; eapply rtc_l; eauto;
|
move => *; eapply rtc_l; eauto;
|
||||||
hauto lq:on ctrs:RRed.R.
|
hauto lq:on ctrs:RRed.R.
|
||||||
|
@ -1755,6 +1760,15 @@ Module ERed.
|
||||||
|
|
||||||
Derive Inversion inv with (forall (a b : PTm), R a b) Sort Prop.
|
Derive Inversion inv with (forall (a b : PTm), R a b) Sort Prop.
|
||||||
|
|
||||||
|
Lemma abs_back_preservation (a b : PTm) :
|
||||||
|
SN a -> R a b -> isabs b -> isabs a.
|
||||||
|
Proof.
|
||||||
|
move => + h.
|
||||||
|
elim : a b /h => //=.
|
||||||
|
case => //=. move => p. move /SN_NoForbid.P_PairInv.
|
||||||
|
sfirstorder use:SN_NoForbid.PProj_imp.
|
||||||
|
Qed.
|
||||||
|
|
||||||
Lemma ToEPar (a b : PTm) :
|
Lemma ToEPar (a b : PTm) :
|
||||||
ERed.R a b -> EPar.R a b.
|
ERed.R a b -> EPar.R a b.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -3292,7 +3306,6 @@ Module DJoin.
|
||||||
Qed.
|
Qed.
|
||||||
End DJoin.
|
End DJoin.
|
||||||
|
|
||||||
|
|
||||||
Module Sub1.
|
Module Sub1.
|
||||||
Inductive R : PTm -> PTm -> Prop :=
|
Inductive R : PTm -> PTm -> Prop :=
|
||||||
| Refl a :
|
| Refl a :
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue